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THE UNIVERSAL THEORY OF THE HYPERFINITE II1 FACTOR IS NOT
COMPUTABLE

ISAAC GOLDBRING AND BRADD HART

Abstract. We show that the universal theory of the hyperfinite II1 factor is not computable.
The proof uses the recent result that MIP*=RE. Combined with an earlier observation of the
authors, this yields a proof that the Connes Embedding Problem has a negative solution that
avoids the equivalences with Kirchberg’s QWEP Conjecture and Tsirelson’s Problem.

§1. Introduction. In this note, R denotes the hyperfinite II1 factor. The
main result of this note is the following result (see Corollary 3.9):

Theorem. The universal theory of R is not computable.

In the next section, we will define this statement precisely. Roughly
speaking, this says that there is no algorithm which takes as inputs a universal
sentence and rational tolerance � > 0 and produces an interval of radius less
than � containing the truth value of the sentence in R.

In Section 4, we offer an alternative formulation which shows that our
main result is really a result about matrices and traces. Given positive integers
n and d, we fix variables x1, ... , xn and enumerate all *-monomials in the
variables x1, ... , xn of total degree at most d, m1, ... , mL. (Of course, L =
L(n, d ) depends on both n and d.) We consider the map �n,d : Rn1 → DL
given by �n,d (�a) = (�(mi(�a)) : i = 1, ... , L). (Here, D is the complex unit
disk.)

We let X (n, d ) denote the range of �n,d and X (n, d, p) be the image of
the unit ball ofMp(C) under �n,d . Notice that

⋃
p∈NX (n, d, p) is dense in

X (n, d ). Thus, there is a function F : N3 → N such that X (n, d, F (n, d, k))
is 1
k -dense inX (n, d ) for all n, d, k ∈ N. The fact that the universal theory of

R is not computable is equivalent to the fact that no such F is a computable
function.
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182 ISAAC GOLDBRING AND BRADD HART

The proof of our main theorem appears in Section 3 and uses the recent
result from [13] that shows that the complexity classes MIP* and RE are
the same. As noted in [13], that result can be used to show that the Connes
Embedding Problem (CEP) has a negative solution. Recall that CEP asks
whether or not every II1 factor embeds into an ultrapower of R. The
argument presented in [13] that MIP*=RE implies the failure of CEP
is complicated. First, one shows that MIP*=RE implies that Tsirelson’s
Problem has a negative solution; this fact first appears in [9]. Next, one
uses that the failure of Tsirelson’s Problem implies that Kirchberg’s QWEP
Conjecture has a negative solution; this fact is due to Fritz and Junge
et al. [8, 14]. (That Tsirelson’s Problem is actually equivalent to the QWEP
conjecture is due to Ozawa [17].) Finally, one uses that the failure of the
QWEP Conjecture implies the failure of CEP, which appears in [16].

The current authors showed in [10] that a positive solution to CEP implies
that the universal theory of R is computable. The proof is essentially an
immediate application of the Completeness Theorem for continuous first
order logic [3] and the fact that the theory of II1 factors has a recursively
enumerable axiomatization. Thus, the main theorem here yields a proof that
MIP*=RE implies that CEP has a negative solution using just basic facts
from continuous logic.

In Section 5, we offer a general perspective on embedding problems and
point out how our techniques give a stronger refutation of the CEP in the
spirit of the Gödel Incompleteness Theorem. In particular, we prove the
following result (a consequence of Corollary 5.3):

Theorem. If T is any consistent, recursively axiomatizable extension of the
theory of II1 factors, then there is a II1 factor which satisfies T which does not
embed into an ultrapower of R.

This theorem allows us to prove that there are “many” counterexamples to
CEP in a sense we now make precise. In [7], the authors proved the existence
of so-called locally universal II1 factors, that is, separable II1 factors M such
that every separable II1 factor embeds into an ultrapower of M. The negative
solution to CEP provided by MIP*=RE thus asserts that R is not a locally
universal II1 factor. It is a priori possible that all II1 factors fall into one
of two categories: those that are embeddable into an ultrapower of R and
those that are locally universal. Our previous theorem can be used to show
that this is emphatically not the case (see Corollary 5.5):

Theorem. There is a sequenceM1,M2, ... of separable II1 factors, none of
which embed into an ultrapower of R, and such that, for all i < j,Mi does not
embed into an ultrapower ofMj .

In Section 6, we present some applications of our techniques to a large
class of C*-algebras. When applied to the universal UHF algebra Q, we
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obtain a Gödelian-style refutation of the MF problem, which asks whether
every stably finite C∗-algebra embeds into an ultrapower of Q. On the other
hand, when applied to the case of the Jiang–Su algebra Z, we obtain the
following purely operator-algebraic consequence, which appears to be new
(see Corollary 6.6):

Theorem. There is a stably projectionless C∗-algebra that does not embed
into an ultrapower of the Jiang–Su algebra Z.

In the final section, we offer alternative proofs to the negative solutions
of Tsirelson’s problem and Kirchberg’s QWEP conjecture from MIP*=RE,
replacing the semidefinite programming argument from [9] with a simple
application of the Completeness Theorem.

In order to keep this note short, we include very little background
information on continuous logic (the material that is truly necessary for
our proof appears in the next section) or quantum games. We refer the
reader to [2] for continuous logic or [6] for an operator algebraic approach;
the introduction to [13] contains an excellent guide to the necessary work
on quantum games. A first version of the proof of the main theorem was
given in a talk at the Canadian Operator Symposium in May 2020. We
would like to thank Se-Jin Kim, Vern Paulsen, and Chris Schafhauser
for pointing out the simplification possible by considering synchronous
correlation sets and a special thanks to Thomas Vidick for providing the
additional information regarding the role of such correlation sets in the proof
in [13]. We would also like to thank Thomas Sinclair, Aaron Tikuisis, Mikael
Rørdam, and Jamie Gabe for enlightening discussions around the MF and
other embedding problems, and to Ward Henson for useful comments about
the computability-theoretic issues under discussion.

§2. A little continuous logic. For the purposes of this paper, we need to
state what we mean by a computable language, theory, and structure in
the continuous setting. There are some choices involved, but we make the
following definitions, following [5]:

By a computable uniform continuity modulus we will mean a strictly increas-
ing computable function � : N → N. We say that a function f : (X, d ) →
(X ′, d ′) between two metric spaces has uniform continuity modulus� if: for all
k ≥ 1 and for all a, b ∈ X , if d (a, b) < 1/�(k), then d ′(f(a), f(b)) ≤ 1/k.
We say that a function g : Nn → R is computable if there is an algorithm
which, when given k1, ... , kn ∈ N and m ≥ 1 as inputs, returns a rational
number q ∈ Q such that |g(k1, ... , kn) – q| < 1/m.

Recall that a language in continuous logic is a triple L = (S,F ,R)
consisting of a set of sorts, a set of function symbols, and a set of relation
symbols. We say that such a language is computable if:
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(1) there is a computable enumeration of all pairs (S, dS), where S ∈ S
and dS is the metric symbol for S;

(2) there is a computable enumeration of all tuples (f,D,C, �), where
f ∈ F , D is the domain of f, C is the codomain of f, and � is a
computable continuity modulus which acts as the uniform continuity
modulus for f ; and

(3) there is a computable enumeration of all tuples (R,D,B, �), where
R ∈ R, D is the domain of R, B is a positive integer representing the
bound on R, and � is a computable continuity modulus which acts as
the uniform continuity modulus for R.

Notice that necessarily a computable language has only countably many
symbols. We will have to address this when we consider theories like the
theory of tracial von Neumann algebras which a priori have continuum
many symbols. A similar consideration appears when we consider formulas
in continuous logic, the issue being the number of connectives. On this front
we will be explicit and say that the only connectives we will consider are
compositions of rational polynomials in several variables together with the
binary function x –. y = max{x – y, 0}. We will call this set of connectives
restricted.

For a separable L-structure M, we call an S-indexed sequence of maps
p = (pS : S ∈ S), with pS : N → S(M ) for every S ∈ S, a presentation of
M if the range of pS is dense in S(M ) for all S ∈ S. If L is a computable
language, then we say that such a presentation p is computable if for every
L-atomic formula ϕ(x1, ... , xn) with variables x1, ... , xn from sorts
S1, ... , Sn, the map valϕ : Nn → R given by

valϕ(k1, ... , kn) = ϕM (pS1(k1), ... , pSn(kn))

is computable, uniformly in ϕ.
We now fix a computable continuous language L. (In the next section, L

will be the language of tracial von Neumann algebras, restricted to complex
rational scalars.) We call an L-formula restricted if it only uses restricted
connectives and an L-sentence is restricted if it is a restricted L-formula
which has no free variables.

Given an L-structure M, the theory of M is the function Th(M ) whose
domain is the set of L-sentences and which is defined by Th(M )(�) := �M.
The universal theory of M, denoted Th∀(M ), is the restriction of Th(M ) to
the set of universal L-sentences.

Definition 2.1. Let M be an L-structure. We say that the (universal)
theory of M is computable if there is an algorithm which takes as inputs a
restricted (universal) L-sentence � and a rational number � > 0 and returns
rational numbers a < b with b – a < � and for which �M ∈ (a, b).
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One also uses the word theory in continuous logic as a synonym for a set
of L-sentences. In this case, given an L-structure M, the theory of M is the
set {� : �M = 0} and the universal theory of M is the intersection of the
theory of M with the set of nonnegative universal L-sentences.

Given a set of L-sentences T, an L-structure N is a model of T if �N = 0
for all � ∈ T . Note that an L-structure N is a model of the universal theory
of M if and only if N embeds into an ultrapower of M.

If T is a set of restricted L-sentences, then via usual Gödel coding, it
makes sense to speak of T being decidable, effectively enumerable, etc.
Since a theory is a set of sentences, we believe the following terminology
is appropriate:

Definition 2.2. A theory T is decidable if there is an algorithm which,
upon input a restricted L-sentence �, decides whether or not � belongs
to T. Similarly, T is effectively enumerable if there is an algorithm which
enumerates the restricted L-sentences that belong to T.

It is clear that each version of the theory of M can be recovered from the
other version, whence, from the point of view of model theory, there is no
harm in blurring the distinction. However, from the computability-theoretic
perspective, there is a difference. Indeed, while it is clear that the decidability
of the theory of M implies its computability, the converse need not be
true.

Given an L-structure M, a nonnegative L-formula ϕ(x) is called an
almost-near formula for M if, for any � > 0, there is � = �(�) > 0 so that,
for any a ∈M , if ϕM (a) < �(�), then there is b ∈M such that ϕM (b) = 0
and d (a, b) ≤ �. In this case, we refer to the function �(�) as an almost-near
modulus for ϕ. If ϕ is an almost-near formula for M, then we refer to the
zeroset ofϕM in M, denotedZ(ϕM ), as the definable set corresponding toϕ.

The utility of definable sets is that one can quantify over them in a
first-order way. In order to explain explicitly how we use this fact, we
note that, given an almost-near formula ϕ(x), [2, Remark 2.12] establishes
the existence of a nondecreasing, continuous function α : [0,∞) → [0,∞)
with α(0) = 0 and with the property that, for any a ∈M , we have
d (a,Z(ϕM )) ≤ α(ϕM (a)); moreover, the function α depends only on the
modulus �(�) for ϕ. As shown in the proof of [2, Proposition 9.19], it follows
that

d (a,Z(ϕM )) = (inf
x

(α(ϕ(x)) + d (a, x)))M. (†)

The import of (†) is that the formula on the right-hand side of (†) is
an actual formula of continuous logic. We note that the proof appearing
in [2, Remark 2.12] shows that if the almost-near modulus � is computable
(when restricted to rational �), then the correspondingα is also a computable
function. We summarize this discussion as follows:
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Proposition 2.3. There is an algorithm that takes as inputs a computable
almost-near formulaϕ(x) for M that has a computable modulus and a rational
	 > 0 and returns a restricted formula 
(x) so that, for all a ∈M, we
have |d (a,Z(ϕM )) – 
(a)M | < 	. Moreover, if ϕ is quantifier-free, then 
 is
existential.

In connection with the previous proposition, a sentence is existential (resp.
universal) if it is of the form infx ϕ(x) (resp. supx ϕ(x)), where x is a tuple
of variables and ϕ is quantifier-free.

We note also that if ϕ is an almost-near formula for M, then it is also an
almost-near formula for any ultrapower MU of M with the same almost-
near modulus and that the formula (†) and the conclusion of the previous
proposition also hold forMU as well.

There is a proof system for continuous logic, first introduced in [3]. There,
one defines the relation T � �, where T is a restricted L-theory and � is a
restricted L-sentence. A feature of this proof system is that, if T is effectively
enumerable, then so is the set of � such that T � �. The following version
of the completeness theorem, first proven in [3], will play a large role in the
sequel:

Fact 2.4. For any restricted L-theory T and any restricted L-sentence �,
we have

sup{�M : M |= T} = inf{r ∈ Q>0 : T � � –. r}.

Suppose, in the previous display, that � is a nonnegative universal sentence
and that the common value is 0. If T is effectively enumerable and we begin
to enumerate the theorems of T, then we may never see the fact that T � �
even though T � � –. 1

2n for all n. This motivates the following definition:

Definition 2.5. Given an L-structure M, we say that the universal theory
of M is weakly effectively enumerable if one can effectively enumerate the
sentences � –. r, where � is a nonnegative restricted universal sentence,
r ∈ Q>0, and �M < r.

For some structures (such as R), the computability of the universal theory
of the structure is equivalent to it being weakly effectively enumerable:

Proposition 2.6. Suppose that M is a separable L-structure that has a
computable presentation. Then Th∀(M ) is computable if and only if it is
weakly effectively enumerable.

As mentioned in [10] (and elaborated on in [11]), R has a computable
presentation. The proof of the nontrivial direction of the previous proposi-
tion follows by using the computable presentation to perform a brute force
lower bound approximation to the value of any positive universal sentence.
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§3. Proof of the main theorem.

Definition 3.1. Fix n,m ∈ N.

(1) Given a Hilbert space H, a sequence of projections (Ca : a ≤ m) on
H such that

∑
a Ca = 1 is called a projection valued measure (PVM)

on H. If N is a subalgebra of B(H ) and each Ca ∈ N , then we say
that (Ca : a ≤ m) is a PVM in N.

(2) The set Cq(n,m) of quantum correlations consists of the n2m2-tuples
of the form p(a, b|x, y) = 〈Axa ⊗ B

y
b
�, �〉 for x, y ≤ n and a, b ≤ m,

where H is a finite-dimensional Hilbert space, � ∈ H ⊗H is a unit
vector, and for every x, y ≤ n, (Axa : a ≤ m) and (By

b
: b ≤ m) are

PVMs on H.
(3) We set Cqa(n,m) to be the closure in [0, 1]n

2m2
of Cq(n,m).

(4) Given an element p ∈ Cqa(n,m), we say that p is synchronous if
p(i, j|v, v) = 0 whenever i �= j. We let Csqa(n,m) denote the set of
synchronous correlation matrices.

We remind the reader that if (Ca : a ≤ m) is a PVM on H, then the
projections are automatically pairwise orthogonal, that is, CaCb = 0 for all
distinct a, b ≤ m.

Definition 3.2. A nonlocal game G with n questions and m answers is a
probability distribution � on n × n together with a decision function

D : n × n ×m ×m → {0, 1}.

We call the nonlocal game synchronous if D(v, v, i, j) = 0 whenever i �= j.

Definition 3.3. For each nonlocal game G, the entangled value of G is the
quantity

val∗(G) = sup
p∈Cqa(n,m)

∑
v,w

�(v,w)
∑
i,j

D(v,w, i, j)p(i, j|v,w).

We also define the synchronous value of G to be the quantity

s-val∗(G) = sup
p∈Csqa(n,m)

∑
v,w

�(v,w)
∑
i,j

D(v,w, i, j)p(i, j|v,w).

In general, s-val∗(G) ≤ val∗(G).
The following is the main result of [13]:

Theorem 3.4. There is an effective map M �→ GM from Turing machines
to synchronous nonlocal games such that:

• if M halts, then s-val∗(GM) = 1;
• if M does not halt, then val∗(GM) ≤ 1

2 .
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Remark 3.5. The fact that the games in the statement of the previous
theorem are synchronous does not appear explicitly in [13] but is an artifact
of their proof. Moreover, in the case that M halts, the fact that a winning
strategy can be taken to be synchronous is also an artifact of the proof (see
Remark 5.12 in [13]).

We let ϕn,m(xv,i) (i = 1, ... , m, v = 1, ... , n) denote the (computable!)
formula

max

(
max
v,i

‖x2
v,i – xv,i‖2,max

v,i
‖x∗v,i – xv,i‖2,max

v
‖
∑
i

xv,i – 1‖2

)
.

We let XNn,m denote the zeroset of ϕn,m in N. Note that elements of XNn,m are
n-tuples of PVMs in N, where each PVM in the tuple consists of m orthogonal
projections.

Theorem 3.6. Each formula ϕn,m is an almost-near formula for R with a
computable modulus.

Proof. This follows immediately from [15, Lemma 3.5] and its proof. �
Given a nonlocal game G, let 
G(xv,i) denote the formula∑

v,w

�(v,w)
∑
i,j

D(v,w, i, j) tr(xv,ixw,j).

Theorem 3.7. For any game G, we have

s-val∗(G) =

(
sup

xv,i∈Xn,m

G(xv,i)

)R

.

Proof. This follows immediately from the equivalence of (1) and (4) in
[15, Theorem 3.6]. �

Theorem 3.8. Suppose that Th∀(R) is computable. Then for any com-
putable game G (meaning that the �(v,w) are computable reals), we have
that s-val∗(G) is a computable real, uniformly in the description of G, that is,
there is an algorithm that takes as input a code for the game G and a rational
number � and returns an interval with rational endpoints of length at most �
containing s-val∗(G).

Proof. For simplicity, set X := Xn,m and x := (xv,i). Set � :=
supx∈X 
G(xv,i). Note first that, since 
G is 1-Lipshitz, we have
�R = (supx(
G(x) –. d (x,X )))R. Now given 	 > 0, one can effectively
find an existential restricted formula ϕn such that, for all x ∈ RU , we have
|d (x,XRU

) – ϕn(x)R
U | < 	. It follows that∣∣∣∣�R – (sup

x
(
G(x) –. ϕn(x)))R

∣∣∣∣ < 	.
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THE UNIVERSAL THEORY OF THE HYPERFINITE II1 FACTOR IS NOT COMPUTABLE 189

Since the latter formula in the above display is equivalent to a universal
restricted formula, the computability of the universal theory of R allows us
to compute it to within 	, and thus we can compute �R to within 2	. By the
previous theorem, this is equivalent to being able to compute s-val∗(G) to
within 2	.

It is clear that these considerations are uniform in the description ofG. �
Corollary 3.9. Th∀(R) is not computable.

Proof. Suppose, towards a contradiction, that Th∀(R) is computable.
Given a Turing machine M, we use the effective map from Theorem 3.4 to
construct the computable game GM . Using the previous theorem, we can
compute an interval (a, b) := (aM, bM) ⊆ [0, 1] of radius smaller than 1

4
such that s-val∗(GM) ∈ (a, b). If a > 1

2 , then val∗(GM) ≥ s-val∗(GM) >
1
2 , whence val∗(GM) = 1 and M halts. If a ≤ 1

2 , then b < 3
4 , whence

s-val∗(GM) < 3
4 and hence M does not halt. Since this allows us to decide

the halting problem, we have reached a contradiction. �

§4. A reformulation in terms of noncommutative moments. In this section,
we offer a reformulation of our main theorem in terms that might be more
appealing to operator algebraists.

Given positive integers n and d, we fix variablesx1, ... , xn and enumerate all
*-monomials in the variables x1, ... , xn of total degree at most d,m1, ... , mL.
(Of course, L = L(n, d ) depends on both n and d.) We consider the map
�n,d : Rn1 → DL given by �n,d (�a) = (�(mi(�a)) : i = 1, ... , L). (Here, D is
the complex unit disk.)

We let X (n, d ) denote the range of �n,d and X (n, d, p) be the image of
the unit ball ofMp(C) under �n,d . Notice that

⋃
p∈NX (n, d, p) is dense in

X (n, d ).

Theorem 4.1. The following statements are equivalent:

(1) The universal theory of R is computable.
(2) There is a computable function F : N3 → N such that, for every n, d,
k ∈ N, X (n, d, F (n, d, k)) is 1

k -dense in X (n, d ).

Proof. First suppose that the universal theory of R is computable.
We produce a computable function F as in (2). Fix n, d, and k, and set
� := 1

3k . Computably find s1, ... , st , an �-net in DL. For each i = 1, ... , t,
ask the universal theory of R to compute intervals (ai , bi) with bi – ai < �
and with

(
inf �x |�n,d ( �x) – si |)R ∈ (ai , bi). For each i = 1, ... , t such that

bi < 2�, let pi ∈ N be the minimal p such that when you ask the universal
theory of Mp(C) to compute intervals of shrinking radius containing(
inf �x |�n,d ( �x) – si |)Mp(C), there is a computation that returns an interval

(ci , di) with di < 2�. Let p be the maximum of these pi ’s. We claim that
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190 ISAAC GOLDBRING AND BRADD HART

setting F (n, d, k) := p is as desired. Indeed, suppose that s ∈ X (n, d )
and take i = 1, ... , t such that |s – si | < �. Then

(
inf �x |�n,d ( �x) – si |)R < �,

whence bi < 2�. It follows that there is an interval (ci , di) as above with(
inf �x |�n,d ( �x) – si |)Mp(C)

< di < 2�. Let a ∈Mp(C) realize the infimum.
Then |�n,d (�a) – s | < 3� = 1

k , as desired.
Now suppose that F is as in (2). We show that the universal theory of R

is computable. Towards this end, fix a restricted universal sentence

� = sup
�x
f(�(m1), ... , �(m�)),

where �x = x1, ... , xn and m1, ... , m� are *-monomials in �x of total degree
at most d. Fix also rational � > 0. We show how to compute the value
of �R to within �. Since f is a restricted connective, it has a computable
modulus of continuity �. Consequently, we can find k ∈ N computably
so that 1

k ≤ �(�). Set p = F (n, d, 2k). Computably construct a sequence
�a1, ... , �at ∈ (Mp(C)1)n that is a 1

2k cover of (Mp(C)1)n (with respect to the
�1 metric corresponding to the 2-norm). Consequently,�n,d (�a1), ... , �n,d (�at)
is a 1

2k -cover of X (n, d, p). Set

r := max
i=1,...,t

f(�(m1(�ai)), ... , �(ml (�ai))).

By assumption, X (n, d, p) is 1
2k -dense in X (n, d ). It follows that r ≤ �R ≤

r + �, as desired. �
Remark 4.2. Notice that the *-monomials used in the proof of Theorem

3.8 are of very low degree (at most 4—we compute the trace of products of
two variables and the sup is over a definable set which uses *-polynomials
of degree 2 in its definition) and so we have the stronger result that there is
no computable function of the form F (n, 4, k) in the theorem above.

§5. A general perspective on Embedding Problems. As stated above, a
structure N embeds into an ultrapower of another structure M (in the same
language) if and only if N is a model of the universal theory of M. All of the
embedding problems in operator algebras attempt to find a small subset of
the universal theory of some canonical object so that modeling that small
subset suffices to conclude that one models the entire universal theory. For
example, the Connes Embedding Problem asks whether or not modeling the
theory of tracial von Neumann algebras (which is a subset of the universal
theory of R) is enough to know that one models the entire universal theory
of R. Similarly, the MF Problem asks whether or not modeling the theory
of stably finite C*-algebras (which, again, is part of the universal theory of
Q) is enough to know that one models the entire universal theory of Q.

Now that we know that the Connes Embedding Problem is false, it is
natural to ask whether or not one can “reasonably” enlarge the theory of
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tracial von Neumann algebras in such a way that then modeling that enlarged
theory does indeed imply that you model the entire universal theory of R.
We show that, under one interpretation of “reasonable,” this is impossible.
We first offer the following general definition:

Definition 5.1. Given a structure M in a languageL, we call the MEP the
statement that there is an effectively enumerable subset T of the full theory
of M such that, for any L-structure N, if N |= T , then N embeds into an
ultrapower of M.

Note that this definition allows the possibility that the extra information
being allowed need not be universal information, but rather can have
arbitrary quantifier-complexity. On the other hand, the restriction that T
be effectively enumerable is somewhat severe (although natural from the
logical point of view).

We have the following general statement:

Theorem 5.2. If the MEP has a positive solution, then the universal theory
of M is weakly effectively enumerable.

Proof. Suppose that there is an effectively enumerable subset T of the
theory of M such that wheneverN |= T , then N embeds into an ultrapower
of M. It follows that, for any universal sentence �, we have, using the
Completeness Theorem, that

�M = sup{�N : N |= T} = inf{r ∈ Q>0 : T � � –. r}.

The result now follows. �

Recalling that weak effective enumerability is equivalent to computability
for the universal theory of R, we now have the following strengthening of
the fact that CEP has a negative solution:

Corollary 5.3. REP has a negative solution.

Remark 5.4. In the case of the REP, we can make an even stronger
statement, namely that there is no effectively enumerable theory T extending
the theory of II1 factors with the property that every model of T embeds
into an ultrapower of R. Note that we are not requiring that R itself be a
model of T, but instead require that every model of T be a II1 factor. Indeed,
since every II1 factor contains a copy of R, the proof of Theorem 5.2 goes
through and we obtain this stronger statement.

Recall that a tracial von Neumann algebra S is called locally universal
if every tracial von Neumann algebra embeds into an ultrapower of S. As
shown in [7], there is a locally universal tracial von Neumann algebra and it
is clear that they all have the same universal theory. Since the theory of tracial
von Neumann algebras is recursively axiomatizable, it follows that if S is a
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locally universal tracial von Neumann algebra, then the SEP has a positive
solution. The same remark can be made for locally universal C*-algebras.

As stated in the introduction, Corollary 5.3 allows us to provide “many”
counterexamples to CEP:

Corollary 5.5. There is a sequence M1,M2, ... of separable II1 factors,
none of which embed into an ultrapower of R, and such that, for all i < j,Mi
does not embed into an ultrapower ofMj .

Proof. We construct the sequence inductively. SetM1 to be any separable
II1 factor that does not embed into an ultrapower of R. Suppose now
that M1, ... ,Mn have been constructed satisfying the conclusion of the
Corollary. For each i = 1, ... , n, let �i be a nonnegative restricted sentence
such that �Ri = 0 but �Mii > 0. For each i = 1, ... , n, fix a rational
number �i ∈ (0, �Mii ). Let T be the theory of II1 factors together with the
single condition maxi=1,...,n(�i –. �i) = 0. It is clear that T is a recursively
enumerable subset of the theory of R. Thus, by Corollary 5.3, there is
a separable model Mn+1 of T such that Mn+1 does not embed into an
ultrapower of R. Given i = 1, ... , n, since �Mii > �i while �Mn+1

i ≤ �i , it
follows thatMi does not embed into an ultrapower ofMn+1. This indicates
how to continue the recursive construction, completing the proof. �

§6. An application to C*-algebras. Recall that the MF problem, first posed
by Blackadar and Kirchberg, asks whether or not every stably finite C∗-
algebra embeds into an ultrapower of the universal UHF algebra Q. The
following consequence of the failure of CEP was pointed out to us by
Thomas Sinclair and Aaron Tikuisis:

Proposition 6.1. The MF problem has a negative solution.

Proof. Suppose that M is a II1 factor that does not embed into RU

(here we mean the tracial ultrapower). We claim then that M does not
embed (as a C*-algebra) into a nonprincipal C*-ultrapower of Q. Indeed,
suppose, towards a contradiction, that i :M ↪→ QU is such an embedding.
Let � : QU → RU denote the composition of the quotient mapQU → QU/I ,
where I is the trace ideal, with the natural inclusion QU/I ↪→ RU . Since M
has a unique trace, which is faithful, we get that the composition � ◦ i :M →
RU is an embedding and a *-homomorphism, yielding a contradiction. �

Remark 6.2. The counterexample to the MF problem in the proof above
is not separable. One can easily obtain a separable counterexample, e.g., by
taking a separable elementary substructure in the language of C∗-algebras.

In this section, we improve upon this result by showing that the QEP has a
negative solution. This result will follow from a more general result applying
to a wider class of C*-algebras.
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Definition 6.3. Given m ∈ N and 0 < � < 1, we say that a unital C∗-
algebra A has the (m, �)-uniform Dixmier property if, for all self-adjoint
a ∈ A, there are unitaries u1, ... , um ∈ U (A) and z ∈ Z(A) such that∥∥∥∥∥

m∑
i=1

1
m
uiau

∗
i – z

∥∥∥∥∥ ≤ �‖a‖.

We say that A has the uniform Dixmier property if it has the (m, �)-Dixmier
property for some m and �.

Clearly if A has the (m, �)-Dixmier property, then it has the (m, � ′)-
Dixmier property for any 0 < � < � ′ < 1, whence we may always assume
that � is dyadic rational.

Given m and �, let �m,� denote the following sentence in the language of
C∗-algebras:

sup
a

inf
u1,...,un

inf
�

max

(
max
i=1,...,n

‖uiu∗i – 1‖, ‖
m∑
i=1

1
m
uiau

∗
i – �‖ –. �‖a‖

)
.

Here, the supremum is over self-adjoint contractions, the first infimum is
over contractions, and the second infimum is over the unit disk in C. If A is
a simple unital C∗-algebra with the (m, �)-uniform Dixmier property, then
�Am,� = 0. Conversely, if �B�,m = 0 and B admits a trace, then this trace on B
is unique (see [1, Proposition 1.4 and Theorem 3.2]).

Given a tracial C*-algebra (A, �A), one letsN(A,�A) denote the weak closure
of A in the GNS representation corresponding to �A. It is known thatN(A,�A)
is isomorphic to the algebra obtained from taking the ‖ · ‖2,�A-completion
of each bounded ball of A.

We are now ready to prove our main theorem of this section:

Theorem 6.4. Suppose that (A, �A) is an infinite-dimensional, unital, simple
tracial C*-algebra with the uniform Dixmier property such thatN(A,�A) embeds
into an ultrapower of R. Then the AEP has a negative solution.

Proof. Suppose, towards a contradiction, that the AEP has a positive
solution as witnessed by the theory T0. Fix m and � with � a dyadic rational
such that A has the (m, �)-uniform Dixmier property. Let L be the language
of tracial C∗-algebras and let T be the union of the following three L-
theories:

• T0;
• the L-theory of tracial C∗-algebras;
• the single condition �m,� = 0.

Note that T is recursively axiomatizable. Clearly (A, �A) |= T . Now suppose
that (M, �M ) |= T . Since M |= T0, there is an embedding M ↪→ AU .
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Since �Mm,� = 0, �M is the unique trace on M, whence this embedding
is trace preserving, that is, we have an embedding (M, �M ) ↪→ (A, �A)U.
Consequently, for any universal L-sentence �, we have that

�(A,�A) = sup{�(M,�M ) : (M, �M ) |= T} = inf{r ∈ Q>0 : T � � –. r},

where the second equality follows from the Completeness Theorem. Thus,
by running proofs from T, we obtain approximations from above to the
value of �(A,�A). If � is a sentence in the language of tracial von Neumann
algebras, then � can be construed in the language of tracial C∗-algebras.
In this case, set N := N(A,�A). Since A has a unique trace, N is a II1 factor;
call its trace �N . Note that since A is simple, �A is faithful and so A embeds
into N. It follows that we have �(A,�A) = �(N,�N ). Since N is a II1 factor that
embeds into an ultrapower of R, we have that �(N,�N ) = �(R,�R). We thus
have that the universal theory of R is weakly effectively enumerable, which
is a contradiction. �

We remind the reader of a theorem of Haagerup and Zsidó [12], namely
that a simple unital C∗-algebra has the Dixmier property if and only if it is
monotracial. In particular, Q and Z have the Dixmier property. Relevant
for our discussion is the following:

Fact 6.5. Q and Z have the uniform Dixmier property.

Proof. [1, Corollary 3.11] states that all unital AF C∗-algebras with the
Dixmier property have the uniform Dixmier property, whence Q has the
uniform Dixmier property. [1, Remark 3.18 and Corollary 3.22] show that
Z has the uniform Dixmier property. �

Corollary 6.6. The QEP and ZEP have negative solutions.

Remark 6.7. A specific consequence of the previous corollary is that there
is a unital, stably projectionless C*-algebra that does not embed into ZU.
Here, a C*-algebra A is said to be stably projectionless if, for every n, the
only projections inMn(A) are, up to Murray–von Neumann equivalence, 0
or of the form p ⊗ 1, where p is a projection in Mn(C). (Note that this is
indeed expressible by a set of ∀∃ axioms true of Z.) It would be interesting
to see if one could derive this conclusion from the failure of CEP alone using
purely operator algebra techniques.

§7. Tsirelson’s problem and Kirchberg’s QWEP Conjecture revisited. As
discussed in the introduction, the result MIP*=RE implies a negative
solution to Tsirelson’s problem. This conclusion is achieved by applying
a semidefinite programming argument coupled with a noncommutative
Positivstellensatz result. In this section, we show how to replace this latter
argument with a simple argument using the Completeness Theorem and a
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result from [18], whose proof is essentially just an application of the Cauchy–
Schwarz inequality.

We first remind the reader of the definitions relevant to state Tsirelson’s
problem.

Definition 7.1. The set Cqc(n,m) of quantum commuting correlations
consists of the correlations of the form p(a, b|x, y) = 〈AxaB

y
b �, �〉 for

x, y ≤ n and a, b ≤ m, where H is a separable Hilbert space, � ∈ H is a unit
vector, and for every x, y ≤ n, (Axa : a ≤ m) and (Byb : b ≤ m) are PVMs on
H for which AxaB

y
b = Byb A

x
a . As before, if p(a, b|x, x) = 0 whenever a �= b,

we call the quantum correlation synchronous and we let Csqc(n,m) denote
the set of synchronous quantum commuting correlations. If G is a nonlocal
game, we set

s-valco(G) = sup
p∈Csqc(n,m)

∑
v,w

�(v,w)
∑
i,j

D(v,w, i, j)p(i, j|v,w).

Tsirelson’s problem asks whether or not Cqa(n,m) = Cqc(n,m) for all n
and m. Our derivation of a negative solution to Tsirelson’s problem from
MIP*=RE also establishes a complexity-theoretic fact, which we now state.
(To be fair, this result is also derivable from the aforementioned semidefinite
programming/Positivstellensatz argument.)

Definition 7.2. Fix 0 < r ≤ 1. We define MIPco,s0,r to be the set of those
languages L (in the sense of complexity theory) for which there is an efficient
mapping z �→ Gz from strings to nonlocal games such that z ∈ L if and only
if s-valco(Gz) ≥ r.

The terminology MIPco0 already exists in the literature and denotes the set
of languages for which there exists an efficient mapping z �→ Gz as above
such that z ∈ L if and only if valco(Gz) = 1, where valco of a game is defined
as s-valco except one takes the supremum over Cqc(n,m) instead of just over
Csqc(n,m). Our aim is to prove the following:

Theorem 7.3. For any 0 < r ≤ 1, every language in MIPco,s0,r belongs to the
complexity class coRE.

In other words, if L ∈ MIPco,s0,r , then there is an algorithm which
enumerates the complement of L.

The following is [18, Corollary 5.6].

Fact 7.4. The correlation p(i, j|v,w) belongs to Csqc(n, k) if and only if
there is a C*-algebra A, a tracial state � on A, and a generating family of
projections pv,i such that

∑k
i=1 pv,i = 1 for each v = 1, ... , n and such that

p(i, j|v,w) = �(pv,ipw,j).
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Recall the formula 
G(xv,i) from Section 3. Let �G,r be the sentence

inf
xv,i

max

(
max
v,i

(‖x2
v,i – xv,i‖,max

v,i
‖x∗v,i – xv,i‖,max

v
‖

∑
i

xv,i – 1‖, r –. 
G(xv,i )

)
.

Let T be the theory of tracial C*-algebras as in the previous section. The
following is immediate from Fact 7.4:

Proposition 7.5. For any nonlocal game G, we have s-valco(G) ≥ r if and
only if the theory T ∪ {�G,r = 0} is satisfiable.

We will also need the following immediate consequence of the Complete-
ness Theorem. In the displayed expression, the symbol “1” refers to the
L-sentence 1, while the symbol “ 1

2 ” refers to the “truth value” 1
2 .

Lemma 7.6. Let U be a continuous theory. Then U is satisfiable if and only if

U �� 1 –.
1
2
.

We can now prove Theorem 7.3. Let L belong to MIPco,s0,r . Given a string
z, let Gz be the corresponding game. By Proposition 7.5 and Lemma 7.6,
z /∈ L if and only if T ∪ {�Gz ,r = 0} � 1 –. 1

2 ; since this latter condition is
recursively enumerable, the proof of Theorem 7.3 is complete.

One can now deduce the failure of Tsirelson’s problem from MIP*=RE as
follows. Suppose, towards a contradiction, that Csqa(n,m) = Csqc(n,m) for
every n and m. LetM �→ GM be the efficient mapping from Turing machines
to nonlocal games described in Theorem 3.4. Given a Turing machine
M, one simultaneously starts computing lower bounds on s-val∗(GM)
while running proofs from T ∪ {�GM,1 = 0}. Either the first computation
eventually yields the fact that s-val∗(GM) > 1

2 , in which case M halts, or
else the second computation eventually yields the fact that T ∪ {�GM,1 = 0}
� 1 –. 1

2 , in which case s-val∗(GM) < 1, and M does not halt. In this way, we
can decide the halting problem, a contradiction. Note that we derived the a
priori stronger statement that Csqa(n,m) �= Csqc(n,m) for some n and m.

Although somewhat implicit in [15], we can now quickly derive a
negative solution to Kirchberg’s QWEP conjecture. Indeed, based on the
previous paragraph, it suffices to show that if the QWEP conjecture had
a positive solution, then Csqa(n,m) = Csqc(n,m) for all n and m. Towards
this end, fix p ∈ Csqc(n,m) and take a tracial C*-algebra (A, �) generated
by projections pv,i as in Fact 7.4. Recall from [15] that C ∗(F(n,m)) is the
universal C*-algebra generated by projections as in Fact 7.4. Letting ev,i
denote the corresponding projections in C ∗(F(n,m)), we fix a surjective *-
homomorphism � : C ∗(F(n,m)) → A sending ev,i to pv,i . Let �′ be the trace
onC ∗(F(n,m)) defined by �′(a) := �(�(a)). SinceC ∗(F(n,m)) has the local
lifting property, if the QWEP conjecture were true, it would also have the
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weak expectation property, whence �′ would be an amenable trace. (See [4]
for all the of the terms and facts described in the previous sentence.) By the
equivalence of (1) and (3) in [15, Theorem 3.6], it follows thatp ∈ Csqa(n,m),
as desired.

Funding. I. Goldbring was partially supported by NSF grant DMS-
2504477.
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