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Abstract

The long-standing open problem of finding an upper bound for the Wiener index of a graph in terms of its
order and diameter is addressed. Sharp upper bounds are presented for the Wiener index, and the related
degree distance and Gutman index, for trees of order n and diameter at most 6.
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1. Introduction

Let G be a graph with vertex set V(G) and order n. We denote the distance between two
vertices u, v in G by dg(u, v) (or simply d(u, v)); the diameter of G will be denoted by
d(G) (or d), the eccentricity of a vertex v will be denoted by ec(v) and the degree of v
will be denoted by deg(v). Let NiG(v) (or simply N;(v)) be the set of vertices at distance
i from v in G. Let u, v be two adjacent (nonadjacent) vertices of a graph G. Then
G’ =G — uv (G’ = G + uv) is obtained by removing the edge uv from G (by adding the
edge uv to G).

The Wiener index is the oldest topological index. It has been investigated in the
mathematical, chemical and computer science literature since the 1940s. The Wiener
index W(G) of a connected graph G is defined as the sum of the distances between all
unordered pairs of vertices. The minimum value of the Wiener index of a graph (of a
tree) of given order is attained by the complete graph (by the star), and the maximum
value is attained by the path.

The degree distance, a variant of the Wiener index, is defined as

D'G)= ) (deg(u)+deg()) d(u, v),
{u,v}CV(G)
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and the Gutman index is defined as

GuG)= ) deg(uydeg(v) d(u, v).
{u.v}CV(G)

The smallest value of the degree distance and Gutman index of graphs of order n
is attained by stars (see [1, 11]). Turning to upper bounds on the degree distance,
in 1999 Tomescu [11] conjectured the asymptotic upper bound D'(G) < (1/27)n* +
O(n?). Nine years later, Bucicovschi and Cioabd [2] commented that Tomescu’s
conjecture ‘seems difficult at present time’. In the following year Dankelmann et al. [3]
considered this problem and though they came close to proving the conjecture, their
proof was inadequate to meet the O(n?) error term. Recently, Morgan et al., in a
submitted paper (‘On a conjecture by Tomescu’), salvaged enough from the proof
given in [3] and solved Tomescu’s conjecture completely. There one can also find
upper bounds on the degree distance of graphs of given order and diameter. Upper
bounds on the Gutman index of a graph of given order and diameter were studied
in [4, 9]. In [9] it was proved, that Gut(G) < (1/16)d(n — d)* + O(n*) and consequently
Gut(G) < (2*/5%)n° + O(n*).

In this paper we study the indices mentioned above for trees of given order and
diameter. Since Klein et al. [7] showed that for every tree T of order n,

D'(T)=4W(T) —n(n—1), (1.1)
and in [6] Gutman proved that
Gu(T)=4W(T) - 2n—1)(n - 1), (1.2)

any result on W(T) yields a similar result on D’(T) and Gut(T'). It is not difficult to
show that the extremal tree, which has the minimum Wiener index among trees of
order n and diameter d, is the path of length d (containing d + 1 vertices) with the
central vertex joined to the other n — d — 1 vertices; see [12].

The problem of finding an upper bound on the Wiener index of a tree (or graph)
in terms of order and diameter is quite challenging; it was addressed by Plesnik [10]
in 1975, and restated by Del.aVifia and Waller [5], but still remains unresolved to this
date. In this paper, we give a starting point to solving this long-standing problem. We
present upper bounds on the Wiener index of trees of order n and diameter at most
6, and we show that our bounds are best possible. As a corollary we obtain upper
bounds on the degree distance and Gutman index of trees of given order and diameter
at most 6. Let us mention that there are indices which were introduced much later than
the Wiener index, however upper bounds on these indices for trees of given order and
diameter are known. For example, a sharp upper bound on the eccentric connectivity
index of trees of given order and diameter was given in [8]. To find a sharp upper
bound on the Wiener index for trees of given order and large diameter seems to be a
very complicated problem.
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2. Preliminary results

First we give a few results which will be used in proofs of our main theorems. Note
that

d
W= ) d(u,v):% >y d(u,v):% N LA

{uv}CV(T) ueV(T) veV(T) ueV(T) i=1

Lemma 2.1. Let T be a tree of diameter 2r (r > 2) with the central vertex v, and let
deg(u) = 2 for every vertex u € N;(v) where i=1,2,...,r=2. If T has the maximum
Wiener index among trees of given order and diameter 2r, then the degrees of any two
vertices in N,_(v) differ by at most one.

Proor. Let uy, up be any two vertices in NrTfl(v), and let n; be the number of leaves
adjacent to u; in T, i=1,2. We prove the result by contradiction. Suppose that
ny > ny + 2. We show that T does not have the maximum Wiener index among trees
of given order and diameter 2r. Let w be any leaf adjacent to u; in T, and let 7’ =
T —uyw + uyw. We have V(T') = V(T), d(T") =d(T) =2r, dr(wy, wp) = dr (w1, wa)
for any two vertices wy, w, different from w, and |NI.T w)| # |NI.T "(w)| only if i = 2 or 2r.
Since [N ()] = n1, NI (W)l = ny + 1 and [NE ()] = [N w)| = (1 = 1) =

W(T") = W(T) = 2r(INJ (w)| = INZ (w)]) + 2(NZ" ()] = INT (w)])
=2r—=1)(ny—np, —1)>0,

which is a contradiction. m|

CoroLLARY 2.2. Let T be a join of a tree T (which is defined in the previous lemma)
and any tree Ty, where T is constructed in such a way that we unify the central vertex
of T with any vertex of T». If T| has the maximum Wiener index among trees of given
order and diameter, then the degrees of any two vertices in N,_1(v) which are in T
differ by at most one.

Lemma 2.3. Let T be a tree of diameter 2r (r > 2) with the central vertex v, and let
deg(u) =2 for every vertex u € N;(v) where i=1,2,...,r—2. Let IN(v)|=k and
IN,(W| =nk. If T has the maximum Wiener index among trees of given order and
diameter 2r, then

> doo s -ni-1),
. XN (v)
and we have the equality only if the degrees of all vertices in N,_1(v) are equal.

Proor. Let T be a tree with deg(u) =2 for every vertex u € N;(v) where i=
1,2,...,r—2 and let |[IN(v)| =k. Then |N;(v)| =k for any i=2,3,...,r—1. Let
N—1(v) ={vi,v2, ..., w}. ByLemma 2.1, if T has the maximum Wiener index, then v;
(j=1,2,...,k) has either s — 1 or s neighbours in N,(v) for some s > 1. Without loss
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of generality, we can assume that the number of vertices in N,(v) which are adjacent
tov;(i=1,2,...,p, 1 <p<k)iss— 1, and the number of vertices in N,(v) which are
adjacenttov; (j=p+1,p+2,...,k)iss. Wehaveny = p(s — 1) + (k- p)s=ks — p.
Then any two vertices in N,(v) are of distance 2 if they have a common neighbour in
N,_1(v), otherwise they are of distance 2r. Hence, for w, w’ € N,(v),

D dow,x)=2s-2)+2rtks = p—s+1) ifweNw),i=1,2...,p,

XEN,(v)
DA, ) =2s = 1)+ 2rtks = p—s) ifw ENW), j=p+1p+2,... .k
XxeN,(v)
which yields
2 Y dyw= Yy Y dow)
{y,X}CN;(v) YEN,(v) XEN,(v)
=ps=1) Y, dw+k=pys ), dw'.x)
XEN,(v) XEN,(v)

= (ks — p)Qrks — p)+2(1 —r)s—2) +2p(s — 1)(r — 1).
Since p/k <1, we have s — 1 < s — p/k, and consequently

2p(s = D= D < 2p(s = ) - 1) = 2T’D(ks - p)r= D).

Hence

> dovn < L (ortks - py+ 201 - s+ L= 1)-2)

{y.X}EN,(v)
= nk(rnk +(1 - r)@ - 1).
k
Clearly we have equality above only if p/k =1, which means that every vertex in
N,_1(v) is adjacent to s — 1 vertices in N,(v). m]

CorOLLARY 2.4. Let Ty be a join of a tree T (defined as in Lemma 2.3) and a new tree
T,, where Ty is constructed in such a way that we unify the central vertex of T with
any vertex of T,. Then the distances between vertices in T do not change, and if Ty
has the maximum Wiener index among trees of given order and diameter, then

> den< nk(rnk +(1-n%- 1),
{(y.X)ENF (v)
and we have equality only if the degrees of all vertices in NrT_l(v) are equal.

Lemma 2.5. Let uy, up, . . ., uy be any set of vertices of a tree T which have a common
neighbour, and let all the other neighbours of u; be leaves, i = 1,2, ..., k. If T has the
maximum Wiener index among trees of order n and diameter d > 5, then:

https://doi.org/10.1017/S0004972713000816 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713000816

[5] Wiener index of trees of given order and diameter at most 6 383

() if k=2 and ecw)<d, then |N(u)+|N(ujl>\N2n—1 for any i, je
(1,2,..., k), i # j;
(i) INw)l < V2n+1foranyie(l,2,..., k).

Proor. Let u be aneighbour of all u;, i =1,2,...,k,andlet U; = N(;) \ {u}. We prove
by contradiction that |U;| < V2n and if k > 2 and ec(u;) <d, then |Uj| +|Uj| > V2n-3
forany i, je{l,2,...,k}, i+ j.

(i) Suppose that there are 2 vertices u;, u; such that |U;| + |U}| < V2n - 3. Let

,— . —_— . . . .
T"=T- U ujw — uu; + U Uiw + Uit .

weU, weU;

Note that if we do not assume that ec(u;) < d(T), then u; can be the end vertex of a
diametral path in T, which implies d(T") < d(T’). We also know that (since d(T) > 5)
there is a vertex, say y, such that dr(v, y) = dr(v, ¥) > 3, and hence d(T”) cannot be less
than 5. It follows that d(T) = d(T”) and dr (w1, wy) = dp-(wy, wy) for any two vertices
wi, wa except for the cases when wy € U; U {u;} and w;, € U;, or when wy = u;. We

have
dr(wi, wa) =dr(wi, w2) =2 if wy €U; Uful, wm € U,
dT/(l/tj, W)Zdr(uj, w)—1 ifweU; Uy},
dTr(Mj, w) = dT(uj, w)y+1 ifweV()\ (U; U {u;, l/tj}).
Hence

W) =WTy= > 3 (dr(wi, wa) = dr(wi, w)

wieU;U{u;} wo€U;
+ 3 (dpuy, w) = dp(uj, w)) e
weV(T) ’
==2(1Uil + DIUj| = (Uil + 1) + (n = |Ui| = 2)
=n = 2Ui|U;| - 21Ul - 2|U,| - 3.

Since |U|U;| < (IU}| + U j1)/2)%,

_2\2
W(T’)—W(T)Zn—z(\/z_nz 3) —2(@—3)—3:@—%>0.

Hence T is not a graph with the maximum Wiener index.

(ii) Suppose that |U;| > V2nforsomei€{l,2,...,k}. Letx € U;, and let X and Y be
two disjoint subsets of U; such that |X| and |Y| differ by at most 1,and U; = X U Y U {x}.
Then |X], |Y| > Vn/2 — 1. Let

T’:T—Uuiw—uix+ux+wa.

weX weX
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Then drp(wy, wy) # dr(wy, wy) only in the following cases:

dr(wy, w2) =dr(wi,wa) + 2 ifwy €Y U{u}, w €X,
dr(x,w)=dr(x,w)+1 ifweY U {u},
dr(x,w)=dr(x,w)—1 ifweV(T)\ (Y U{u, x}).

Hence

W)= W)= > > (dr(wi,wa) =dp (i, wa) + > (dr(x, w) = dp(x, w)

wi€YU{u;} waeX weV(T)
= =2(Y1+ DIX| = (Y[ + D+ (n = Y] = 2)
=n—2IX||Y| - 2IX| - 2|Y| - 3
=n=2X||Y| = 2|Ui| - 1

2
Sn—Z(\/g—l) _oVan—1=-3,

which is a contradiction. O

3. Main results

We present results on the Wiener index of trees of given order and diameter at
most 6. The only tree of order n and diameter 2 is the star S, having n — 1 leaves.
Since any two leaves of the star are at distance 2, and the distance between the central
vertex and any leaf is 1, the Wiener index of §, is 2(";1) +(n—-D=n*-2n+1.
Then from (1.1) and (1.2) it follows that the degree distance of the star is D’(S,) =
3n* — 7n + 4 and the Gutman index is Gut(S ,,) = 2n*> — 5n + 3.

Now we bound the Wiener index for diameter d where 3 < d < 6.

Tueorem 3.1. Let T be a tree of order n and diameter 3. Then the Wiener index of T is
5 2
W(T) < == =3n+3
and this bound is best possible.

Proor. Let T be any tree of order n and diameter 3. We denote the central vertices of
T by v and u. The set of leaves adjacent to v (to u) will be denoted by K (by L). Let
|K| = k. Then |L| = n — k — 2. It can be checked that

> dy,x) = 2(];) > dy, = 2(” N ]; - 2), >0 d0, x) =3kn - k-2),
{

{y,x})<K v,x}CL yeK xeL
Z dv,x)=(k+1)+2(n—k-2) and Z d(u, x) = (n—k = 1) + 2k,
xeV(T) xeV(T)
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which yield
W)= > dyx)+ D, dy, 0+ ) > dy, )+ Y dw,x)+ Y dw, )
{y,x}CK {y,x}cL yeK xeL xeV(T) xeV(T)

=n*-2n+kn—-k*>-2k+2=fk).

Then from the derivative f’(k) = 0 we obtain k = n/2 — 1, which yields the maximum
of f(k). Hence
5 2
W(T)sf(g— 1):%—3;”3.
This value is attained by the Wiener index of a tree which has both central vertices of
degree n/2. Therefore our bound is best possible. O

THeorEM 3.2. Let T be a tree of order n and diameter 4. Then
W(T)<2n® —2nVn—1-3n+2Vn— 1 + 1

and the bound is best possible.

Proor. Let T be a tree with the maximal Wiener index among all trees of order n and
diameter 4. We denote the central vertex of 7 by v. Let IN(v)| =k and [N,(v)| = ny.
Clearly |V(T)|=n=1+k + n;. By Lemma 2.3,

< nk(an - % - 1). 3.1

{y,x}CSN2(v)

It is easy to check that

> d(y,x)=2(';), DD Ao =m(1+ 30— 1)

{y.x}EN(v) YEN2(v) xEN(v)
and
D dev, ) =k+2n.
xeV(T)
Consequently,
W= > dy,o+ ) de,x+ Y > dp+ ) dmv,
(¥, X}EN2(v) {y.X}SN () YEN>2(v) XEN(v) xeV(T)

2
n
SZni—?k+(3k—1)nk+k2

=2n" - = 1)”

—kn-3n+k+1=f(k).

Then the derivative f’(k) = 0 yields the value k = Vn — 1, which gives us the maximum
of f(k). It follows that

W) <2n* =2nVn—1-3n+2Vn—1+ 1. (3.2)
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Note that our bound is best possible. If every vertex in N[v] is of degree
Vn — 1, where n — 1 is a square, then by Lemma 2.3 we have equality in (3.1), and
consequently equality in (3.2) as well. m|

TueorEM 3.3. Let T be a tree of order n and diameter 5. Then the Wiener index

W(T) < -2’ + O(n)

and the bound is best possible.

Proor. Let T be a tree with the maximal Wiener index among all trees of order n

and diameter 5. We denote the central vertices of 7 by v and u. Let K; = N(v) \ {u},
=N(u) \ {v}, and let K, (L) contain every leaf which has a neighbour in K, (in

Ly). Clearly V(T)={v,u} UK UL UK, U L,. Let |K||=k, |Li|=1, |K3|=n; and

|Ls| = ny.

Claim 1. We show that

2 2

2 e
W(T) < 2(nk + nl) + ngn; — ? - 7 + 3(k + l)(l’lk + I’ll)

Flng+hkm + K>+ P+ 3kl +2k+20+ 1.

From Corollary 2.4 it follows that
ng nj
Y dy < nk(an L 1) and > dxy) < n;(2nl e 1).
k l
lx.ylcKs {(x.ylcly

It can be checked that

Z Z d(x,y) = mg(1 +2 + 3k + 4I),

x€Ky yeK UL U{v,u}

DD Ay =l +2+ 31+ 4k),

x€Ly yeK UL U{v,u}

Z Z d(x,y) = Smyiny, Z Z d(x,y) = 3kl,

xekKs yELz xekK, yELl
k i

D, dny)= 2(2) =kk=1. ) dxy)= 2(2) =10~ 1),
{x.y}CK; {x.y}CL,

Z dv, x) = k + 21, Z du,x)=1+2k and d(u,v)=1.
xeK UL, X€K UL,

Hence
2 2
W(T) < 2(ny + n))* + mgny — ?k - 7’ + 3k + D(ng +ny)

tlng+hkn + K>+ P+ 3kl +2k+20+ 1.
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By Lemma 2.5(i), if k>2 (if [ >2), then |[N(x)| + |[N(y)| > V2n -1 for any two
vertices x,y in K; (in L;). Since by Corollary 2.2 |[N(x)| and |N(y)| differ by
at most 1, both |[N(x)| and |[N(y)| are greater than vn/2 — 1. By Lemma 2.5(ii),
IN(X)I, INO)| < V2n + 1. Hence if k > 2 (if [ > 2) then we can assume that every vertex
in K; (in L;) is adjacent to c;y/n + O(1) vertices in K,, where V2/2<¢1 <V2 (to
covn + O(1) vertices in Ly, V2/2 < ¢> < V2). Tt follows that ny = k(c;vn + O(1)) and
n; = l(c;yn + O(1)), and consequently k < /n/c; + O(1) and [ < v/n/cy + O(1) (since
n; and n; cannot exceed n).

Claim 2. We have ny = n; + O(n'/?).

Suppose to the contrary that n; > n; + O(n'/?). Let w be any vertex in K, let
vy be the neighbour of w in T (v; € K1), and let u; be any vertex in L;. Let
T' =T —viw+uw. Wehave d(T’) =d(T) =5,

Z dow, w') = 1+ 2(c;¥n + O(1) + 3k + 4(ny — c;¥n — O(1)) + 41 + 5

weV(T)
= 4ng + 5n; + O(n''?)

and
Z d(w, w') = 4ny + Sy + O(n'1?).
weV(T")
Then

0< W(T) - W(T") = Z dw, w') — Z dow, w') = n; — my + O(n''?),
weV(T) weV(T")

which is a contradiction.
Analogously it can be shown that n; cannot be greater than n; + O(n'/?).

Since n=ng +n; +k+1+2=n; +n; + 0n'?), we have ny =n; =n/2 + O(n'/?).
We can write ny = n/2 + ¢jvn + O(1) and n; = n/2 + ¢;,\/n + O(1), where ¢} and ¢} are
real numbers.

We also know that n; = k(c;vn + O(1)) which implies that k = vn/2c; + O(1).
Similarly we obtain [ = v/n/2c; + O(1).

By Claim 1,
I’l2 n2
W(T) < 2(ng + n))* + ngny — ?" - 7’ + 3k + D(ng + 1)) + Ing + kny + O(n),

and from the previous part of the proof it follows that

(g +n)?=(m—k—1-2)=n>-2kn-2In + O(n),
"i”'\/'mzk”zo o,
7= (5 +evarom) fi=grom. 5 =50,

k+Dng+n)=Ck+Dn+0Mm), knj+In,=(k+ l)g + O(n).
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Since

n=nk+nl+k+l+2=(g+c’l\/ﬁ)+(g+c§\/ﬁ)+k+l+0(l),

we obtain (¢} + c’2)\/_ = —k — [+ O(1). Consequently,

2 2
ey = "Z +(c} + c;)\/ﬁg +0(n) = ”Z —(k+ l)g +0(n).

It follows that

9n? 11
<— - —— =+ = = .
W(T) < = = (k+ Dn 4(k+ l)+0(n) 7k, Dy
Then the partial derivatives fi(k, /) =0 and fi(k, [) = O show that f(k, [) is maximised
for k =1 =+/n/2. Hence

2
W(T) < 9% — 2232 1 O(n).

It can be checked that if |K;| =|L;| = Vrn —2/2 and every vertex in K; and L; is
adjacent to Vn —2 — 1 leaves, where n—2 is a power of 4, then W(T) =9n?/4 —
2132 + O(n). The proof is complete. mi

THeoreM 3.4. Let T be a tree of order n and diameter 6. Then
W(T) < 3n* = 2V6rn®? = 2n + O(n'/?)

and the bound is best possible.

Proor. Let T be a tree with the maximal Wiener index among all trees of order n and
diameter 6. We denote the central vertex of 7' by v.

Note that instead of Claims 1 and 2 one could prove a more general claim saying
that all leaves of T must be at distance 3 from v. However, we do not need such a
result to prove our theorem.

Claim 1. There is no leaf joined to v.

Suppose to the contrary that x is a leaf joined to v. Since v is the central vertex of a
tree of diameter 6, there must be at least two other vertices u;, u; adjacenttovin 7. Let
U, be the set which contains all vertices u that satisfy the inequality dr(u, u;) < dr(u, v),
i=1,2. Then Uy N U, =0. Since |U;| + |Uy| < n — 2, at least one set U; contains at
most n/2 — 1 vertices. Without loss of generality, we can suppose that |U;| <n/2 — 1.
LetT'=T —vx+ ujx. Then d(T") = d(T) = 6 and

W) = W(T)= > (dr(x, 1) - dr(x, w)).
ueV(T)

Since dr/(x, u) = dr(x,u) — 1 for any ue Uy, and dy/(x,u’)=dr(x,u’) + 1 for any
w e V(T)\ (U; U{x}), we get W(T") > W(T).
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Claim 2. The vertex v does not have a neighbour of degree two which is adjacent to a
leaf.

Suppose that v has a neighbour x; of degree two which is adjacent to a leaf, say x;.
As in the previous claim, one can show that there must be a neighbour of v, say
uy, such that dy(uy, u) < dr(v, u) for at most (n —3)/2 vertices u of T. Then for
T =T —vx; +u;x; we get dp/(x;, u) = dr(x, u) — 1 for at most (n — 3)/2 vertices u,
and dp (x;, u’) = dp(x;, u’) + 1 for atleast (n — 1)/2 vertices v’ (i = 1, 2). Consequently,

W) = W(T)=2 " (dr(x1,u) = dr(x, 1) > 2.
ueV(T)

Claim 3. Each neighbour of v has degree at most three.

Suppose to the contrary that v; is a neighbour of v, which is adjacent to at least three
other vertices v, v, and v} Let V3 (V}, V}') be the set of leaves adjacent to v, (v}, v5).
Without loss of generality, we can assume that |[V3| > [V'| > [V}] > 0. Let

T =T - U wvh —vivy + U Vaw + Vo).
weVj weVj
Analogous steps as the ones in the proof of Lemma 2.5(i) yield

W(T") = W(T) = n = 2|V3|V3] = 2|V3] = 2|V3] = 3,

(see (2.1)). Note that if [V3]| = [V}| = 0, then W(T") — W(T) > 0, so we can assume that
there is a vertex, say v3 € V3.
Let T =T — vivy + vv3. Then dy(wy, wy) # dr»(wy, wy) in the following cases:

dpr(Wi, wp) =dr(wi, wp) +2  if wi € V3 U {vo} \ {vs}, wo € V3 U VI U (v, v5,V5)
dr»(v3,w) =dr(vs,w) =2 ifwe V(T)\ (V3 U VU Vi U{vi, v, v), vy }).

Consequently,

W(T) — W(T")

=2V3l(IV3] + V3T + 3) + 2(n — [V3] = V3] = V5| - 4)
2(n = [V3lIV31 = [V3lIVE| = 41V3| = V3] = V5| = 4).

Since T has the maximum Wiener index among all graphs of order n and diameter d,
we have W(T") — W(T) <0< (W(T) — W(T""))/2 which yields
0 < [V3lIV3] = [V5lIV3'| = 21V3] + V3] = V5] - 1
= (I3l + DAV3 = V3D = 2IV3] - 1.
Since |V;| < [V}| and |V3] > 1, we get a contradiction.

Let K; (L) be the set of neighbours of v which are of degree two (of degree three),
and let K; (L;) be the set of vertices at distance i from v, such that every vertex in K;
(in L;) has a neighbour in K;_; (in L;_1), i =2,3. Let |K{| =k, |Li| =1, |K3| = n; and
|L3| =nj. Clearly n=1+2k+3l+ ny + ny.
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Claim 4. For any two vertices v, and v}, in K>, where V3 (V) is the set of neighbours
of v, (of v}) in K3, we have [V3] + [V4| > V3n - 5.

Let vy (v}) be the vertex in K adjacent to v, (to v5), and let V3 (V3) be the set of
leaves adjacent to v, (to v}). Let

’r _ / ’ ’ 7 / 4
T"=T- U WV, — VY| = V]V, + U VoW + VoV + VoV,

weVj weVj]
We mention all cases when dr(wi, wy) # dr»(w1, wo). We have

dp(wi, wa) =dr(wi,wy) =4 if wy € V3U {1}, wy € V5,
dr(vy, w) =dr(vy,w) =3 if we V3U {1},
dr(vi,w) =dr(vi,w) =2 ifwe V3U {1,
dr(vi,w) =dr(vi,w) =2 ifweVj,
dp(vi,v5) = dr(vi, vy) — 1,
dr (v, w) =dr(vy,w)+ 1 ifwe V(G)\ (V3 U {v, v, V5})
dr(vi,w) =dr(vi,w)+2 ifweV(G)\ (V3U VU {v, V], va, V3}).

Then

W(T") = W(T) = 2(n— V3| = |V5| = 4) + (n — |V3] = 3)
=1 =2(1Va| + V3| + 1) = 3(|V3] + 1) = 4(|V3| + D)|Vj]
= 3n - 4|V3||V;| = 8|V3| - 8|V — 17
Vi| + |V
:3n_4(l 3l + V3l

2
: ) — 8(IV3 + Vi) - 17.

If |V3] + |V} < V3n -5, then we get W(T") - W(T) > 2(V3n-1)>0. It can be
checked that d(T") <d(T). If d(T’) <d(T), it is easy to transform 7’ to 7" such
that V(T”) = V(T), d(T"") =d(T) and W(T"") > W(T") > W(T). So W(T) is not the
maximum Wiener index of trees of order n and diameter 6.

Claim 5. We have [ < Yn/2 and k < V3n.
By Claim 4, for the sets of neighbours V3 and V} of any two vertices v, and v}

in K we have |V3| + |V}] > V3n—5. If k is even, then ng > (k/2)(\/3_— 5). From
Corollary 2.2 we know that |V3| and |Vj| differ by at most 1, so the number of leaves
joined to any vertex in K is greater than V3n/2 - 3. Hence, if k is odd,

nk>k;21(\/3_n—5)+?—3=§(\/3_n—5)—%.

Then n > 1 + 2k + (k/2)(\3n — 5) — 1/2 which implies that k < (2n — 1)/(\3n - 1) <
(2 + €)n/V3n for some small € > 0. For us it suffices to use € = 1.
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By Lemma 2.5(1), if v, and v} are any two vertices in L, which have a common
neighbour, where V3 (V}) is the set of neighbours of v, (of v}) in Ls, then |V3| +
IVjl > V2n —3. We get ;> (V2n —3)l which yields n> 1+ 3[+ (V2n - 3)l, and
consequently < vn/2.

Claim 6. Let vy, u; € Ly and let V3 (U3) be a subset of L3 containing vertices which
are at distance 2 from vy (u;). Then |V3| and |Us;| differ by at most 1.

Suppose that [V3| > |Us| + 2. Let v, v} (u), u}) be two vertices in L, adjacent to
vi (u1), and let Vi (V}, U}, UY) be the set of neighbours of vj (v}, u}, u)) in Lj.
Since [V]| + |VY| = |Uj| + |UY| + 2, without loss of generality we can assume that |V}| >
|U;| + 1. Let w be any vertex in V} and let 7" =T —v,w+u}w. Since |N2T(v1)ﬂL3|Z2,
we have |N2T "(v1) N L3| > 1, which implies that there must be two vertices at distance
6 1in 7’. Hence d(T) = d(T’). It can be checked that dy(wy, wy) = d (w1, wy) for any
two vertices wy, w, different from w, and |Nl.T(w)| = INl.T' w)|lifi=1,3,5. We have

INT" ()] = INT (w)] = (U3 + 1) = V3],
INI (W) = INFw)l = (UZ |+ 1) = (IVY ] + 1),
INL' (W) = INEw)l = (IV3] = 1) = |U;.

Then

6
W(T") = W(T) = > iN] )l = INT (w))
i=1
= 6(1V3| = |Us) = 4(V5| = U5 D) = 24V3] = |U3]) — 4
= 2(Vsl = [Us| = 2) + 20V3] = [U3D) = 20V3] = 1U3D) > 0,

which is a contradiction.

Claim 7. We have
37’[1
> d(x.y) < n1(3n; 2 1).

2
{xy}CLs !

Let Ly ={vy,va,..., v} and let v, u;, w; be the neighbours of v;, i=1,2,...,L
By Claim 6, the number of vertices in Ls which are at distance 2 from v; is either
2s or 2s + €, where s is an integer, and e =1 or —1. Without loss of generality,
we can assume that the number of vertices in L3 which are at distance 2 from v;
(G=1,2,...,p, 0<p<l)is 25 + €, and the number of vertices in L3 which are at
distance 2 fromv; (j=p+1,p+2,...,0)is 25s. Then by Corollary 2.2 we can assume
thatw; (=1,2,...,)andw; (j=p+1,p+2,...,0) are adjacent to s vertices in L3,
andw; (j=1,2,..., p) are adjacent to s + € vertices in L. It follows that

L3l =n;= Q21— p)s + p(s + €) = 2ls + ep.
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Then, for the vertices w, w’, w” in Lz,

D d(w, V') = 2s = 1) +4s + 6(2s + €p - 25)

Vel

ifweNu)UNw)),j=p+1,p+2,...
Z dwW V) =2(s-1)+4(s+e)+6Qls+ep—2s—¢€)

VveLs

ifw eNu),i=1,2,...,p,
Z dw’' V)=2(s+€—-1)+4s+6Q2ls +ep—2s—€)

v'els

ifw” eNw),i=1,2,...,p,

which yield
2 ) A0 V=) Y de )
(v’ v)cLs v'ely vELs
=21-p)s ) dw,v)+ps ». dw', V)
VeLs veLs
+ p(s+€) Z dw”, V)

Vel

= (2ls + ep)(6(2ls + €p) — 65 — 2) — p(6es + 4).

Since p/l <1, we have —p(6es + 4) < —p(6es + 3p/l) = —(3ep/D(2ls + ep). Conse-

quently,
21 3 3
Z dw,u) < S;rep(6(zls+ep)—6s— % —2): %(6n1— 2 _2)_
{w,ulCls
Claim 8. We have
2n? 3”12

W(T) < 3(ni + m)* + (9 + 14Dy + ny) — Tk -
—4dny — 6ny + 6k* + 1517 + 19k1 — 2k — 6.

It can be checked that

Z Z d(u, w) = 6nny,

ueks wels
du,w)=m(1+2+3+4k-1)+4l+5(k-1)+5-2])

uekKz weV(G)\(K3UL3)
= Ok + 141 = 3),
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du,w)=m(1+2+3-2+4k+4(1-1)+5%+5-2(I-1))
uels weV(G)\(K3UL3)
= m(9% + 141 -5),

Z d(u, w) = 4(’;) = 2k(k - 1),

{uw)CK,
D d(u, w) = (81 - 6) since for any ue Ly,
{uw}CLy
Z du, w) =2 +4-2(1- 1),
wel,

Z Z A, w) = k(1 +2 +3(k — 1) + 31 + 4 - 21) = k(3k + 110),

uek, weK UL ULyU{v}

Z Z d(u, w) = 201 + 2 + 3k + 3(1 - 1)) = 6I(L + k).

uel, weKUL,U{y

Finally,
Z d(u w)—Z(k)—k(k— 1 Z d(u w)—z(l)—l(Z— 1
9 - 2 - 9 k) - 2 - 9
{u,w}CK; {u,w}CL,;
Z Z d(u, w) = 2k, Z dv, w) =k + 1.
uek, weL, weK UL,
By Claim 7,
3,
Z d(x,y) < n1(3n1 -— = 1)
21
{x.ylCLs

and from Corollary 2.4 it follows that
2
> dey) < nk(3nk - % - 1).
{x.yICK3
Hence,

) an 3”12
W(T) < 3(ng +n))” + Ok + 14D)(ny + ny) — < "

— 4dny — 6m; + 6k> + 1517 + 19kl — 2k — 6.

Now we complete the proof of Theorem 3.4. Let

N Zni 3n
f(l’lk, n;) = 3(1’lk + I’ll) + (9/( + 14[)(I’lk + I’ll) - T — 7
— 4ny — 6y + 6k + 1512 + 19k1 — 2k — 61.
We find the maximum of f(ny, n;) subject to the constraint

n+m=n—-2k-31-1=a.
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Let F(ng, ny, A) = f(ng, ny) — A(ng + n; — a). Then using F,, (ng, ny, A) = Fp,(ng, ny, 1)
we get 4ny /k = 3n;/1 — 2. Substituting n; = a — ny, yields ny = k(3a — 21)/(3k + 41), and
then we obtain n; = 21(2a + k)/(3k + 41). It is easy to check that these values of n; and
n; give the maximum of F(ny, n;, 4). Hence W(T') is at most

2%(Ba -2l  6lQa+k?* 4k(Ba-21) 12IQ2a+k)
(3k + 41)2 (3k + 41)2 3k + 41 3k + 41
+ 6k> + 157 + 19kl — 2k — 6.

3d® + (9 + 14Da —

Consequently,
2k(3a — 21)? . 6l(2a + k> _ 6a* + 2kl
(3k + 41)2 Gk +402  3k+4l

and
4k(3a — 2I) N 121Q2a + k) 12a(k + 21) + 4kl

3k + 41 3k+41 3k + 41 ’
and, usinga=n—-2k-3/-1,

W(T) <3n* — Bk +4Dn—6n+k-20+3
_ 6(n* = 2kn —2In — 2n = 3P — kil + 2k + 21 + 1)
3k + 41 '

Since by Claim 5, k and [ are at most O(n'/?),

6n(n — 2k —21-2)

T 2_ 4hn — 6n — 12
W(T) <3n"— Bk+4Dhn—6n T Al +0m'*)
6n(n —2) k
=3n? - — 61— - 172
3n® — 3k +4hn — 6n e dl +3n(1 + 3k+4[)+0(n ).

Let b = 3k + 41 such that the expression above is maximal. Then

3}12—17;1—611—M

k
+3 (1 + —)
T
is maximised for b = 3k (and [ = 0). Now we need to find b such that

6n(n —2)
b

is maximal. The partial derivative f;(n, b) = 0 yields the value b = V6(n — 2), which
gives us the maximum of f(n, b), that is,

f(n, b)=3n* - (b+2)n -

12
3n% — 2/6(1 = 2y — 2n < 3n — 2(\/6n _ —)n —
Vén
= 3n% - 2V6r?% = 2n + O(n'?).

Clearly W(T) < f(n, b) + O(n'/?).
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It remains to prove that the upper bound is best possible. We show that there is an
infinite family of trees 7 such that

W(T)) = 3n* = 2Von*’? = 2n + O(n'?).

Let n=(3/2)k* + 1 where k is even. Let T) be a tree of order n, diameter 6, with
the central vertex v, where the degree of v is k, any vertex in N(v) has one neighbour
in N,(v), and any vertex in N,(v) is adjacent to n = (3/2)k —2 = (1/2)vV6(n — 1) -2
vertices in N3(v). Then IN(V)| = [N2(v)| = k = (1/3)V/6(n — 1) and

3 2
INs()| = g = k(zk - 2) =n- V6=~ 1.

We have

2
d(y, x) = nk(3ﬂk - % - 1),
{y,.x}EN3(v)

which is the upper bound in Lemma 2.3 if the diameter is 6. Consequently we get
equality in Claim 8 (where in our case [/ = 0 and n; = 0). It follows that

5 Zni 5
W(T1) = 3n; + %kny — - 4ny + 6k° — 2k.

Since ny = k(3k/2 — 2), we obtain W(T) = (27/4)k* — 9k> + 6k* — 2k or equivalently
W(T1) = 30 = 2n/6(n — 1) = 2n + 24/6(n — 1) — 1 = 3n* = 2V6r>/? = 2n.+ O(n'/?).

The proof is complete. O

Since by (1.1) and (1.2), D'(T) =4W(T) — n(n — 1) and Gut(T) =4W(T) - 2n —
1)(n — 1), we obtain the following corollaries.

CoroLLARY 3.5. Let T be a tree of order n and diameter d. Then the degree distance
D'(T) is at most:

() 4’ -1ln+12ifd=3;

() Tn®-8nVn—-1-1ln+8Vn—1+4ifd=4;

(iii) 8n>—8n*2 +On) ifd =5;

(iv) 112 —8Vor*’2 —Tn+ O(n'?) ifd = 6.

CoroLLARY 3.6. Let T be a tree of order n and diameter d. Then the Gutman index
Gut(T) is at most:

() 3 -9n+11ifd=3;

() 6> —8nVn—-1-9n+8Vn—1+3ifd=4;

(iii) 7n*-8n*? + O(n) ifd =5;

(iv) 10n* — 8V6r*? — 5n + O(n'1?) if d = 6.
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