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Coherent structures in two-dimensional Navier–Stokes turbulence are ubiquitously
observed in nature, experiments and numerical simulations. The present study conducts
a comparison between several structure detection schemes based on the Okubo–Weiss
criterion, the vorticity magnitude and Lagrangian coherent structures (LCSs), focusing on
the inverse cascade in two-dimensional hydrodynamic turbulence. A recently introduced
vortex scaling phenomenology (Burgess & Scott, J. Fluid Mech., vol. 811, 2017, pp.
742–756) allows the quantification of the respective thresholds required by these methods
based on physical properties of the flow. The resulting improved comparability allows
us to identify characteristic relative differences in the detection sensitivity between the
employed structure detection techniques. With respect to the inverse cascade of energy,
coherent structures contribute, as expected, substantially less to the cross-scale flux than
the residual incoherent parts of the flow although the energetically dominant coherent
structures lead to an important large-scale deformation of the energy spectrum. This
cascade inactivity can be understood by an increased misalignment of strain-rate and
subgrid stress tensors within coherent structures. At the same time, the structures exhibit
strong and localised nonlinear cross-scale interactions that appear to stabilise them. We
quantify and interpret the resulting shape preservation of coherent structures in terms of a
multi-scale gradient approach (Eyink, J. Fluid Mech., vol. 549, 2006, pp. 191–214) as the
depletion of strain rotation and vorticity gradient stretching whereas the dynamics of the
residual fluctuations are consistent with the vortex thinning picture.
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1. Introduction

The formation of structures in turbulent flows is ubiquitously observed in nature, for
example in atmospheric flows or oceans. In two-dimensional hydrodynamic turbulence,
the structure formation process is associated with the inverse cascade of kinetic energy,
transferring this quantity from smaller to ever larger spatial scales. This well-known
phenomenon has already been predicted in the seminal papers of Kraichnan (1967), Leith
(1968) and Batchelor (1969) (KLB) and observed in numerous simulations (e.g. Lilly
1971; Frisch & Sulem 1984; Maltrud & Vallis 1993; Boffetta & Musacchio 2010) and
experiments (e.g. Paret & Tabeling 1998; Rutgers 1998; Chen et al. 2006). We have
chosen this physical system for the present work because it allows us to study naturally
emergent coherence typically appearing in the form of structurally rather simple vortices
or combinations of those. These vortical structures are embedded in a statistically isotropic
and turbulent two-dimensional flow which is conveniently accessible to direct numerical
simulation (DNS) and measurement.

An intuitive and commonly accepted defining characteristic of coherence is persistence
for a finite time, which leaves room for more detailed specification. A mathematically
unique definition would not only be beneficial for fluid mechanics research but also
for related disciplines such as astrophysics. There, the problem of the non-universality
regarding vortex identification has been pointed out by Canivete Cuissa & Steiner (2020)
and Yadav, Cameron & Solanki (2021) with respect to studies of the solar atmosphere.

A number of methods for the detection of coherent structures exist that are often built
on different specifications of coherence. In fact, most of the comparative studies in the
literature focus on a specific class of coherence specification, e.g. Jeong & Hussain (1995)
studied various vortex criteria, Hadjighasem et al. (2017) compared different techniques
for Lagrangian coherent structure (LCS) identification and Taira et al. (2017) discussed
numerous mode decomposition methods. A comparison and meaningful evaluation of
different detection strategies and of their respective coherence specification requires
fiducial physical properties of the considered flow which can be related to the detected
structures.

In the present work, we consider three coherence detection schemes, two vorticity
based and one of Lagrangian type, that use the Okubo–Weiss (OW) criterion (Okubo
1970; Weiss 1991), the vorticity magnitude (VM) and the finite-time Lyapunov exponent
(FTLE) field determining LCSs (Haller & Yuan 2000; Haller 2015). We compare the
detection results by investigating the physical properties of the coherent and the residual
(non-coherent) structures in the two-dimensional turbulent system.

The work of Ouellette (2012) follows a similar approach, which has led to several
experimental studies (see Liao & Ouellette 2013; Kelley, Allshouse & Ouellette 2013). The
low Reynolds numbers attained in these two-dimensional experiments (Re = 185 (Liao &
Ouellette 2013) and Re = 220 (Kelley et al. 2013)), however, do not allow for, e.g., an
adequate investigation of cross-scale turbulent interactions in the framework of the KLB
similarity ansatz. This motivates the use of DNSs in the present investigation.

More specifically, we consider spectral nonlinear cross-scale fluxes of energy, as well as
their scale-filtered correspondents in configuration space. We also compare with previous
results based on a multi-scale gradient (MSG) ansatz and employ a recently proposed
vortex scaling phenomenology for two-dimensional Navier–Stokes turbulence (Burgess &
Scott 2017, 2018) which applies dimensional arguments to impose physically motivated
constraints onto coherent vortices. The results obtained by these theoretical approaches
serve as physical reference points for the comparison of structure detection techniques and
the interpretation of their results in relation to the inverse turbulent cascade of energy.
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This paper is structured as follows. Section 2 presents the decomposition of the flow
into coherent and residual contributions. Section 3 briefly introduces coherent structure
specifications. Section 4 describes the applied diagnostics and theoretical concepts.
Section 5 presents numerical methods and the parameters used for simulations and
analysis. The main results are presented in § 6. A conclusion is given in § 7.

2. Physical model and flow decomposition

We consider Navier–Stokes turbulence on a two-dimensional 2π-periodic square of size A
governed by the differential equations

∂tu + (u · ∇)u = −∇p + ν∇2u, (2.1)

∇ · u = 0, (2.2)

where u = (ux, uy), p and ν are the velocity, pressure and kinematic viscosity,
respectively. The kinetic energy per unit mass E = (1/2A)

∫
A u2 dA and the enstrophy

Ω = (1/2A)
∫

A ω
2 dA defined with the vorticity ω = ∂xuy − ∂yux, are inviscid invariants

in a two-dimensional configuration. The kinetic energy exhibits an inverse cascade,
transferring energy from small to large length scales, in contrast to the enstrophy, which
exhibits a direct cascade.

We employ a decomposition of the total vorticity field into a coherent part, ωc, and
a residual/incoherent contribution, ωr, (cf. Ohkitani 1991) to carry out the analysis of
different schemes for coherence detection (cf. § 3):

ω = ωc + ωr, (2.3)

ωc(x) =
{
ω(x), ε(x) ≥ εthr,

0, ε(x) < εthr,
(2.4)

ωr(x) =
{

0, ε(x) ≥ εthr,

ω(x), ε(x) < εthr.
(2.5)

Based on the particular specification of coherence, a physical characteristic of the flow,
ε(x), serves as an indicator of this property, turning the detection into a thresholding
procedure with a fixed threshold, εthr. In order to improve comparability of different
detection schemes, it is important to gauge their thresholds with respect to a physical
property of the flow (see § 3.4). Technical details of the decomposition are pointed out in
Appendix A.1. The coherent velocity field, uc = (uc,x, uc,y), and the residual velocity ur =
(ur,x, ur,y), are approximated by inverting ωc/r = ∇ × uc/r in Fourier space, a procedure
symbolically represented by the operator ∇ × ∇−2, which similarly has been employed in
several related works (see Benzi et al. 1986; Benzi, Patarnello & Santangelo 1988; Borue
1994; Okamoto et al. 2007; Yoshimatsu et al. 2009; Vallgren 2011; Burgess & Scott 2018):

uc/r = −∇ × (∇−2ωc/r),

u = uc + ur.

}
(2.6)

This enables straightforward access to various decomposed turbulent fields and related
quantities such as the Fourier spectrum of kinetic energy per unit mass. It is defined
as E(k) = ∑

k |û(k)|2/2 with the wavevector k = (kx, ky) and for the respective length
scale � ∼ k−1. Fourier-transformed quantities are denoted by ‘^’ and the sum over
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all wavevectors located on a wavenumber shell, k ≤ |k| < k + 1, is indicated as
∑

k.
According to the KLB phenomenology, the spectrum possesses scaling properties for the
inverse kinetic energy and direct enstrophy cascade ranges, which are

E(k) ∼ ε
2/3
I k−5/3, k � kf , (2.7)

E(k) ∼ η
2/3
I k−3, k � kf , (2.8)

with kf the forcing wavenumber at which energy and enstrophy are injected with an
injection rate εI or ηI = k2

f εI , respectively. Here, we are interested in a decomposition
of the kinetic energy spectrum as

E(k) = Ec(k)+ Er(k)+ Ecr(k), (2.9)

where Ec(k) = ∑
k |ûc(k)|2/2 and Er(k) = ∑

k |ûr(k)|2/2 are associated to spectral
contributions from purely coherent and residual regions, respectively, and Ecr(k) =∑

k Re[û∗
c(k) · ûr(k)] the spectrum resulting from mixed contributions of coherent and

residual parts, with ‘∗’ denoting the complex conjugate.
In the following, we introduce the identification schemes considered for ε(x) in (2.4)

and (2.5) and the choice of the corresponding threshold values εthr.

3. Coherence specifications

In general, schemes for the detection of coherent structures can be grouped into several
categories including threshold methods, modal decomposition methods such as proper
orthogonal decomposition (POD) (Holmes et al. 2012), dynamic mode decomposition
(DMD) (Rowley et al. 2009; Schmid 2010) or spectral proper orthogonal decomposition
(SPOD) (Towne, Schmidt & Colonius 2018) and wavelet methods (see Okamoto et al.
2007; Yoshimatsu et al. 2009; Farge & Schneider 2015). In this work, we focus on
threshold methods, in particular the approaches based on the OW criterion (Okubo 1970;
Weiss 1991), the VM and the LCSs (Haller & Yuan 2000; Haller 2015). These schemes
are straightforwardly employed using equations (2.4) and (2.5). The thresholds for the VM
and for the LCS-based structure detection are chosen with the help of vortex scaling (see
§ 3.4).

3.1. Okubo–Weiss criterion (OW)/Q-criterion
A frequently applied quantity for structure identification is the Eulerian velocity
gradient tensor ∇u, which is often investigated in decomposed form ∇u = S + W , with
S = (∇u + (∇u)T)/2 the symmetric strain-rate tensor and W = (∇u − (∇u)T)/2 the
skew-symmetric spin tensor. The usage of invariants of ∇u, e.g. the eigenvalues or the
trace, and of its tensor decomposition have led to numerous identification schemes (see
e.g. Hunt, Wray & Moin 1988; Chong, Perry & Cantwell 1990; Jeong & Hussain 1995;
Hua 1998; Zhou et al. 1999; Chakraborty, Balachandar & Adrian 2005). However, all of
these methods face the problem of objectivity (Haller 2005; Haller et al. 2016), i.e. they
lack invariance under certain transformations of the frame of reference which combine
rotation and translation. Thus, for the sake of simplicity, we restrict ourselves to the
well-known Q-criterion (Hunt et al. 1988), whose two-dimensional equivalent resembles
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the OW criterion. It is defined as

Q = 1
2(|W |2 − |S|2) = 1

2 (
1
2ω

2 − |S|2), (3.1)

where for Q > 0 vortex dominated/elliptical regions and for Q < 0 strain dominated/
hyperbolic regions are detected. Thus, ε(x) = Q(x) and εthr = 0 are set in (2.4) and (2.5).

3.2. Vorticity magnitude
Coherent structures in two-dimensional flows are often most clearly visible in the spatial
distribution of the vorticity. Thus, an intuitive approach is to set ε(x) = |ω(x)| in (2.4) and
(2.5). Furthermore, the vorticity is closely connected to the Lagrangian-averaged vorticity
deviation (LAVD) method (Haller et al. 2016), which is an objective detection criterion.

3.3. Lagrangian coherent structures
LCSs take the evolution of the flow field into account by determining the pair-dispersion
characteristic of passively advected Lagrangian tracers (Haller & Yuan 2000; Haller 2015).
Thus, they reveal structures in the flow, which are neither captured by the vorticity ω nor
variants of the velocity gradient tensor ∇u. To this end, the flowmap F t

t0(x0) = x(t; t0, x0)
is considered, with x0 = (x0, y0) the initial position at time t0. The detection of LCSs can
be realised by determining the FTLE field which is given by

Λt
t0(x0) = 1

Teddy
log

√
λC

2 (x0), (3.2)

with λC
2 the largest eigenvalue of the Cauchy–Green strain tensor Ct

t0(x0) =
[∇F t

t0(x0)]T∇F t
t0(x0). The FTLE is interpreted as a local measure of stretching and can be

calculated forward and backward in time. Thus, the values are set to ε(x) = Λ
t0+Teddy
t0 (x)

for the forward-in-time and ε(x) = Λ
t0−Teddy
t0 (x) for the backward-in-time case. Please

note, that for the FTLE case the roles of ωc and ωr are switched in (2.4) and (2.5), meaning
that small FTLE values correspond to coherent regions, in contrast to the VM |ω(x)|. This
is because large FTLE values isolate coherent regions as illustrated in figure 4(c,d). To
the best of the authors’ knowledge no condition exists for the flowmap integration time.
Hence, we suggest setting it to the large-eddy turnover time Teddy according to § 5, which is
typically the longest characteristic correlation time scale of the system. Further numerical
details for the FTLE calculation are discussed in Appendix A.2.

Although more refined LCS approaches exist, for our purposes the FTLE yields
sufficient insight into the flow physics, as high-valued FTLE regions, which are visually
perceived as sharp ridges in the flow, are supposed to materially separate dynamically
distinct domains with different transport characteristics. For example, these domains mark
areas of zero cross-scale energy fluxes in low-Reynolds-number systems (cf. Kelley et al.
2013). Furthermore, forward-in-time FTLE (f-FTLE) ridges are associated with repelling
LCSs and backward-in-time FTLE (b-FTLE) ridges to attracting LCSs, indicating stable
and unstable manifolds in the flow in the sense of dynamical systems theory.

3.4. Determining the threshold: vortex scaling
Two of the three detection schemes considered here include free threshold parameters
which complicate a meaningful comparison of the detection methods and the physical
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interpretation of the detection results. In order to achieve comparability between the three
coherence specifications, the VM and LCS schemes are gauged by making use of the
above-mentioned vortex scaling phenomenology.

This model, which we briefly summarise here for completeness, provides a physically
motivated diagnostic signature which we use as a reference for the highly non-trivial
threshold choice of εthr in (2.4) and (2.5). The phenomenology characterises coherent
structures by their vortex area A in configuration space instead of the classical wavenumber
dependence in Fourier space. Therefore, a time-dependent vortex number density
distribution n(A, t) is defined, which yields the number of coherent vortices per unit area
for a certain vortex area A at time t. The model is based on the first three moments of
nω2

v with the vortex intensity ω2
v . They are the vortex energy Ev , vortex enstrophy Zv

and vortex number Nv , respectively. All three quantities are assumed to be approximately
conserved during the spatial growth of an ‘average’ vortex of area A. The number density
is anticipated to follow a power law tαiA−ri with exponents αi and ri determined via the
conservation of Ev , Zv and Nv . The range of areas is divided into a thermal bath regime
Af ≤ A < A−, an intermediate scaling regime A− < A < A+ and a front of the vortex
population A+ < A ≤ Amax, respectively, where A− and A+ are transitional areas, Af the
forcing-scale area and Amax the maximum vortex area.

In this model, the thermal bath is associated with the equilibration of the flow with the
continuous forcing, which injects energy at a constant rate generating small-scale vorticity.
This leads to an A-independent flux of Ev in A-space. The intermediate scaling regime
consists of a self-similar distribution of vortex sizes. It is assumed that the enstrophy lost
through filament shedding during merger and aggregation processes is replaced by the
enstrophy injection such that the vortex enstrophy Zv is also approximately conserved. In
the front regime, vortices are expected to be large and distant from each other, such that
merging events rarely occur. Thus, approximately conserving the vortex number Nv . Based
on these conservation assumptions, the scaling laws of the number density for varying area
regimes are derived as (see Burgess & Scott 2017, 2018)

n(A, t) ∼

⎧⎪⎨
⎪⎩

A−3, Af ≤ A < A−,
t−1A−1, A− < A < A+,
t5A−6, A+ < A ≤ Amax.

(3.3)

We take the best achievable agreement with the three regime subdivision (3.3) as a
reference to gauge the threshold values in (2.4) and (2.5). Please note that this qualitative
level of agreement mainly relies on the assumption that the emergence and the evolution
of coherence are asymptotically self-similar for sufficiently large scale-separation between
the regions of the forcing and the large scales of the system under consideration. This can
only be fulfilled up to a rather modest approximate level in turbulence DNS. In the present
work, the scaling exponents are considered relative to each other. Thus, their absolute
numerical values are not of principal importance to the investigation. They are nevertheless
mentioned above for completeness.

4. Diagnostic methods for the inverse cascade

The inverse cascade of kinetic energy corresponds to a cross-scale energy flux of which
we distinguish coherent and residual contributions from three perspectives: (i) spectrally
in Fourier space, (ii) scale-filtered in configuration space which combines the aspects of
spatial scale and position and (iii) via a MSG approach (Eyink 2006b) which adds scale
locality and the differentiation between involved physical processes.
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4.1. Spectral flux
The temporal evolution of the energy spectrum is straightforwardly obtained from the
Navier–Stokes equations (2.1) and (2.2) as

∂tE(k)+ T(k) = D(k)+ F(k), (4.1)

with the nonlinear transfer term T(k) = ∑
k Re[û∗(k) · ̂(u · ∇u)(k)]. Kinetic energy is

provided to the flow by a forcing term + f u on the right-hand side of the Navier–Stokes
momentum balance (2.1). Thus, the energy source term is determined as F(k) =∑

k Re[û∗(k) · f̂ u(k)], which is equivalent to the energy injection rate εI when summed
over all Fourier wavenumbers. In order to allow for a statistically stationary state, kinetic
energy accumulating at the largest length scales of the flow due to the inverse cascade has
to be continuously extracted from the system. For this purpose a large-scale damping term
−dαu is added to the right-hand side of (2.1). The energy sink D(k) = Dν(k)+ Dα(k)
is split into two dissipative contributions, where Dν(k) = −2νk2E(k) is the viscous
dissipation active on small length scales and Dα(k) = −2dαE(k) introduces friction active
on large length scales. These terms are equivalent to the energy dissipation rate on viscous
scales εν and on large scales εα , respectively, when summed over all wavenumbers. Details
on the numerical implementation of + f u and −dαu are given in the text around equation
(5.1) in § 5.

The spectral cross-scale energy flux Z(k) is obtained by summing the transfer term over
consecutive shells labelled by their characteristic wavenumber radius, k′′:

Z(k) =
k∑

k′=0

T(k′) =
k∑

k′=0

∑
k′′

Re[û∗(k) · ̂(u · ∇u)(k)], (4.2)

and corresponds to the flux of energy from scales smaller than k to scales larger than k. The
influence of the coherent and residual contributions with regard to the cascade mechanism
is measured by the decomposition

Z(k) =
∑

α,β,γ∈{c,r}
Zα,β,γ (k), (4.3)

Zα,β,γ (k) =
k∑

k′=0

Tα,β,γ (k′) =
k∑

k′=0

∑
k′′

Re[û∗
α(k) · ̂(uβ · ∇uγ )(k)], (4.4)

which results in eight independent flux contributions. We investigate the homogeneous
fluxes originating from purely coherent Zc,c,c(k) and residual components Zr,r,r(k), and the
mixed flux arising through coherent–residual interactions as Zcr(k) = Z(k)− Zc,c,c(k)−
Zr,r,r(k).

4.2. Spatial flux distribution
A complementary formulation of the cross-scale energy flux which captures its local
structure in configuration space and which enables a detailed analysis regarding its spatial
distribution is obtained by a scale-filter approach (cf. e.g. Ouellette 2012). For the ith
component of the velocity vector the filter operation at a length scale � is given by

ūi(x) =
∫

G�(r)ui(x + r) d2r, (4.5)

where we choose G� as a smooth, non-negative, spatially well-localised filter kernel
with unit integral. Because we are interested in the spatial distribution of the cross-scale
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flux, the locality aspect of the filter is crucial for the accurate localisation of flux
contributions in configuration space. Hence, in this work we employ a Gaussian filter:
Ĝ�(k) = exp(−k2�2/24) to achieve sufficient filter locality in Fourier space as well as in
configuration space. The temporal evolution of the filtered kinetic energy, Ē = |ū|2/2, is
given by (see Pope 2000)

∂tĒ + ∂iq̄i = −ε̄ν − Z̄, (4.6)

with ∂i the partial derivative of the ith component, where we use the Einstein summation
convention. In addition, q̄i = ūiĒ + ūj(p̄δij + τ̄ij − 2νS̄ij) contains the nonlinear spatial
transport and the viscous dissipation of the filtered large-scale kinetic energy with δij the
Kronecker delta function, ε̄ν = 2νS̄ijS̄ij the viscous dissipation from the filtered velocity
field, and Z̄ = −S̄ijτ̄ij the spatial cross-scale flux term representing the exchange of
kinetic energy between the known filtered fields and the fluctuations which have been
depleted by the filter operation in the filtered numerical system. The flux term is an inner
product of the (filtered) strain-rate tensor S̄ij = (∂jūi + ∂iūj)/2 and the subgrid stress tensor
τ̄ij = uiuj − ūiūj, that expresses the stresses exerted by the depleted fluctuations. Please
note that we are referring to the deviatoric (trace-free) stress term

◦
τ̄ = τ̄ − (1/2)tr(τ̄ )I,

with tr the trace operator and I the unit matrix. For the remainder we write τ̄ instead of
◦
τ̄ . The production term Z̄ is equally understood as a spatial cross-scale flux term. Note
that choosing a sharp spectral filter instead of a smooth Gaussian filter will lead to the
equality between the spatial average of the production term and the spectral flux in (4.2)
as 〈Z̄(x)〉 = Z(k = 2π/�), if the wavenumber k is chosen according to the filtering length
scale �.

The strain-rate and stress tensor are further decomposed into coherent, residual and
mixed contributions

Z̄(x) =
∑

α,β,γ∈{c,r}
Z̄α,β,γ (x) =

∑
α,β,γ∈{c,r}

S̄α : τ̄β,γ , (4.7)

with S̄α = (∇ūα + (∇ūα)T)/2 and τ̄β,γ = uβuγ − ūβ ūγ . We propose the following
three-part decomposition:

Z̄(x) = −S̄ : τ̄ =−S̄c : τ̄ c,c︸ ︷︷ ︸
Z̄c(x)

−S̄r : τ̄ r,r︸ ︷︷ ︸
Z̄r(x)

−S̄c : τ̄ r,r − S̄r : τ̄ c,c − S̄c : (τ̄ c,r + τ̄ r,c)− S̄r : (τ̄ c,r + τ̄ r,c)︸ ︷︷ ︸
Z̄cr(x)

, (4.8)

where Z̄c(x) consists of purely coherent and Z̄r(x) of purely residual contributions, and
Z̄cr(x) is the flux contribution originating from mixed interactions.

Because the spatial cross-scale flux consists of an inner product of two tensors, the
analysis of angle alignments between tensor eigenframes is possible. Thus, a polar
decomposition leads to the following expression for the total and decomposed fluxes (see
Eyink 2006b; Fang & Ouellette 2016):

Z̄(x) = −2σ̄ (x)λ̄(x) cos(2δθ̄(x)), (4.9)

Z̄c/r(x) = −2σ̄c/r(x)λ̄c/r(x) cos(2δθ̄c/r(x)), (4.10)

respectively. The positive eigenvalues of the strain-rate and subgrid stress tensors are σ̄ and
λ̄, respectively, and the angle between their corresponding eigenvectors is δθ̄ as illustrated
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Scale flux efficiency

S̄
S(0)

S(0)
S(0)

S[b]

Vortex thinning

δβ[b] δβ[b] → 0

δα[b]
δθ̄

δθ̄

τ̄

∇ω[b]∇ω[b]

ω[b] ω[b]

ω[b]

τ[b]ω[b]

(a) (b)

(c)

Figure 1. Overview of different angles used in this work. (a) Angle δθ̄ between the strain rate S̄ and subgrid
stress tensor τ̄ . (b) Angle δα[b] between the large-scale strain-rate tensor S(0) and the band-pass filtered
strain-rate tensor S[b]. Reproduced with permission from Eyink (2006b). (c) Angle δβ[b] between the contractile
direction of the large-scale strain-rate tensor S(0) and the band-pass filtered vorticity gradient vector ∇ω[b].

in figure 1(a). The same definitions are used for the eigenvalues and angles of coherent
and residual parts, which are indicated by the indices c and r, respectively. The cosine of
the rotation angle between strain-rate and stress tensors, cos(2δθ̄), can be understood as an
efficiency of the cross-scale energy transfer (Fang & Ouellette 2016). Therefore, a detailed
analysis of angle distributions from coherent δθ̄c and residual parts δθ̄r is conducted in
§ 6.1.

The mixed cross-scale flux Z̄cr in (4.8) is a very complex object due to the heterogeneous
subgrid stress tensors, τ̄ c,r and τ̄ r,c, which are not symmetric and, thus, not straightforward
to interpret. Only the sum of τ̄ c,r + τ̄ r,c yields a symmetric stress quantity. Thus, the mixed
cross-scale flux contribution consists of a sum of four different physical contributions: (i)
exertion of residual stress on coherent strain rate; (ii) exertion of coherent stress on residual
strain rate; (iii) exertion of mixed stress on coherent strain rate; and (iv) exertion of mixed
stress on residual strain rate. For conciseness of this paper, we abstain from analysing all
the single contributions of this mixed flux regarding their rotation angles, and focus on the
sum of all four contributions altogether.

4.3. MSG flux expansion
As a final extension of the flux analysis, the locality between strain-rate tensors on varying
scales is analysed according to the second-order MSG approach (Eyink 2006a,b). For that,
a second filtering operation is defined as

u(b)i (x) =
∫

G�b(r)ui(x + r) d2r, (4.11)

where G�b filters out contributions from all scales smaller than �b = λ−b�, with a
geometric factor λ > 1. This leads to the band-pass filtered velocity

u[b]
i =

{
u(b)i − u(b−1)

i , b ≥ 1,
ūi, b = 0,

(4.12)
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representing contributions from a band of length scales between �b and �b−1. The
filtering operation leads to the multi-scale property of the MSG expanded cross-scale
flux approach. The multi-gradient nature comes from a Taylor expansion of the velocity
increments δu(r; x) = u(x + r)− u(x) with separation vector r. The technical details for
the derivation of the second-order MSG flux are outlined in Appendix A.3 and yield (see
Eyink 2006b)

ZMSG
∗ = −S(0) : τMSG

∗
= ZMSG

∗ (S(0) : S̃[b],S(0) : S[b], (∇ω[b])TS(0)(∇ω[b]))

=
nb∑

b=0

(Z[b]
SR + Z[b]

DSR + Z[b]
DSM + Z[b]

VGS)− Z(nb)
FSF. (4.13)

The parameter b ∈ N0 denotes the level of scale locality of the respective MSG flux
contributions Z[b]

SR , Z[b]
DSR, Z[b]

DSM and Z[b]
VGS, meaning that for low b-values contributions

from strongly scale local interactions are measured, whereas contributions of non-local
interactions are obtained for larger values. The total number of filter bands is denoted as
nb. The inner products between tensors, as well as matrix vector products are expressible
in polar coordinates as

S(0) : S̃[b] = −σ (0)σ [b] sin(2δα[b]), (4.14)

S(0) : S[b] = σ (0)σ [b] cos(2δα[b]), (4.15)

(∇ω[b])TS(0)(∇ω[b]) = −σ (0)|∇ω[b]|2 cos(2δβ[b]), (4.16)

where σ (0) and σ [b] are the positive eigenvalues of the strain-rate tensors S(0) and S[b],
respectively, with α(0) and α[b] the angles between their corresponding eigenvectors
to a fixed orthogonal frame of reference, and S̃[b] the skew-strain-rate matrix rotated
counterclockwise by π/4 to the original strain matrix S[b]. According to figure 1(b),
δα[b] = α[b] − α(0) is the rotation angle between the large-scale tensor S(0) and the
subfilter-scale tensors S[b]. Figure 1(c) shows δβ[b], which is the angle between the
vorticity gradient vector ∇ω[b] and the eigenvector of S(0) corresponding to the negative
eigenvalue. The latter is equivalent to its contractile direction.

The second-order MSG flux can be subdivided into four flux channels, in which the
investigation of the angles δα[b] and δβ[b] directly illuminates the proposed vortex thinning
picture (Eyink 2006b; Xiao et al. 2009).

(a) The strain rotation (SR) Z[b]
SR is equivalent to the first-order MSG expansion and

relates to the following physical picture: a small-scale vortex ω[b] embedded in a
large-scale strain-rate field S(0), as illustrated in figure 1(b), is stretched along the
positive and compressed along the negative eigendirection of the strain. This leads to
an elliptical shape inducing a shear layer and, thus, a small-scale strain rotated with
δα[b] = ±π/4 towards the large-scale strain, depending on the sign of the vorticity.

(b) The differential strain rotation (DSR) Z[b]
DSR contains a Newtonian stress–strain

relation of the form τ [b] = −ν[b]
T S[b], with negative eddy viscosity ν[b]

T . According
to figure 1(b), the elliptically shaped vortex still possesses the same area, but the
circumference increases leading to a loss of energy, due to Kelvin’s theorem of
the conservation of circulation Γ = ∮

u · ds. As a consequence, the small-scale
stress τ [b] exerts negative work on the large-scale strain S(0) because of its parallel
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alignment to that strain. This results in an energy transfer towards larger length
scales.

(c) The vorticity gradient stretching (VGS) Z[b]
VGS is a measure of the elongation of

vortex lines. The angle δβ[b] between the vorticity gradient vector ∇ω[b] and
the contractile direction of the large-scale strain S(0) measures the alignment of
the stretching direction to the vorticity isolines. Thus, a higher tendency for this
alignment increases the rate of stretching parallel to the isolines, as depicted in
figure 1(c), leading to a thinning of the vortex.

(d) The differential strain magnification (DSM) Z[b]
DSM contains, similar to the SR term,

a skew-Newtonian stress–strain relation with skew-eddy-viscosity γ [b]
T . It measures

the logarithmic rate of strain increase, when moving in the direction of increasing
vorticity. According to Xiao et al. (2009), this term is generally expected to be
smaller, as we can confirm in the results of § 6.2.

Although the vortex thinning picture is not necessarily associated with single coherent
vortices, but rather with the whole vorticity ensemble itself, we intend to measure the
influence of coherent regions and their residual backgrounds regarding this mechanism.
This is achieved by the following three-part decomposition:

ZMSG
∗ = −S(0)c : τMSG

∗,c,c︸ ︷︷ ︸
ZMSG∗,c

−S(0)r : τMSG
∗,r,r︸ ︷︷ ︸

ZMSG∗,r

−S(0)c : τMSG
∗,r,r − S(0)r : τMSG

∗,c,c − S(0)c : (τMSG
∗,c,r + τMSG

∗,r,c)− S(0)r : (τMSG
∗,c,r + τMSG

∗,r,c)︸ ︷︷ ︸
ZMSG∗,cr

,

(4.17)

with ZMSG∗,c and ZMSG∗,r the purely coherent and residual second-order MSG flux expansions,
respectively, and ZMSG∗,cr the flux contribution originating from the mixed interactions. For
the reasons similar to those already given in § 4.2, the same form of heterogeneous stresses,
τMSG∗,c,r and τMSG∗,r,c, appears in the mixed MSG expanded flux. To limit the scope of this paper,
we refrain from an in-depth analysis of the vortex thinning angles δα[b] and δβ[b] for the
mixed MSG flux contribution. However, the decomposition of the MSG expanded flux into
purely coherent and residual parts implies a decomposition of the different flux channels
as well:

ZMSG
∗,c/r =

nb∑
b=0

(Z[b]
SR,c/r + Z[b]

DSR,c/r + Z[b]
DSM,c/r + Z[b]

VGS,c/r)− Z(nb)
FSF,c/r. (4.18)

This leads to the analysis of different angles between strain-rate tensors and vorticity
gradient vectors for varying scale localities, set by b, originating from coherent and
residual components:

S(0)c : S̃[b]
c = −σ (0)c σ [b]

c sin(2δα[b]
c ), (4.19)

S(0)r : S̃[b]
r = −σ (0)r σ [b]

r sin(2δα[b]
r ), (4.20)

S(0)c : S[b]
c = σ (0)c σ [b]

c cos(2δα[b]
c ), (4.21)
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S(0)r : S[b]
r = σ (0)r σ [b]

r cos(2δα[b]
r ), (4.22)

(∇ω[b]
c )TS(0)c (∇ω[b]

c ) = −σ (0)c |∇ω[b]
c |2 cos(2δβ[b]

c ), (4.23)

(∇ω[b]
r )TS(0)r (∇ω[b]

r ) = −σ (0)r |∇ω[b]
r |2 cos(2δβ[b]

r ). (4.24)

The variables are interpreted in the same fashion as above for the total field but now
with respect to the coherent (index c) and residual (index r) contributions. We present
an analysis of the thinning effects in § 6.2, for which Z[b]

SR,c/r, Z[b]
DSR,c/r, Z[b]

VGS,c/r and

their corresponding angles δα[b]
c/r, δβ

[b]
c/r are the relevant quantities measuring the thinning

tendencies of purely coherent and residual parts, respectively.

5. Numerical methods and parameters

Equations (2.1) and (2.2) are solved in Fourier space using the equivalent and numerically
more favourable vorticity representation. The differential equation includes a small-scale
forcing term, f̂ω, and a large-scale damping function, −d̂ωω̂, yielding

∂tω̂ + ̂[(u · ∇)ω] = νk2ω̂ + f̂ω − d̂ωω̂. (5.1)

It is solved by a pseudospectral approach, with a second-order trapezoidal leapfrog
time integration scheme, and a 2/3-dealiasing method (Canuto et al. 1988). The forcing
components of the velocity field f̂u,x and f̂u,y are drawn from Gaussian normal distributions
and they are afterwards projected onto the solenoidal components f̂u,j = (δij − kikj/k2)f̂u,i
to satisfy the incompressibility condition. The forcing term is then constructed as f̂ω(k) =
i(kx f̂u,y (k)− kyf̂u,x(k)) and applied at a wavenumber of kf = 200. In order to avoid the
accumulation of energy at large scales due to the inverse cascade, a large-scale linear
damping term with a Gaussian damping factor d̂ω(k) = αω exp(−(k − k0,ω)

2/(2σ 2
ω)) is

employed. The parameters for the large-scale friction factor αω, the centre of the Gaussian
damping profile k0,ω and its variance σ 2

ω are given in table 2 in Appendix B. We solve the
system at a resolution of 40962 in the square periodic domain 2π × 2π.

The large-eddy turnover time is estimated as Teddy = Lint/urms, with Lint =∫
k−1E(k) dk/

∫
E(k) dk the integral length scale and urms the root-mean-square velocity,

which is also used for the integration time of the passive tracers in the FTLE/LCS
calculation in (3.2). Our results are taken after reaching a statistically stationary state, as
confirmed in figure 2(a). They are averaged over 100 snapshots equidistantly distributed
over roughly 20Teddy.

A discussion of the chosen values of the energy injection rate εI and the general
system parameters for the present numerical setup can be found in Appendix B, which
is related to the characteristics of structure formation, the kinetic energy spectrum
and the cross-scale kinetic energy flux. There, we conclude that run 1 (table 2 in
Appendix B) is the best choice for the purpose of our present study. The spatial
vorticity distribution in figure 2(b) exhibits a clearly developed population of visually
distinguishable vortices or coherent structures. The kinetic energy spectrum in figure 2(c)
deviates from the theoretically expected k−5/3 scaling due to finite-size effects discussed
in Appendix B, but we deem it to be more adequate for the subsequent analysis due to
a more clearly discernible structuring of the flow. The cross-scale kinetic energy and
enstrophy fluxes shown in figure 2(d) possess sufficiently extended ranges of inverse
and direct spectral transfer. This facilitates the cross-scale flux decompositions in §§ 6.1
and 6.2.
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Figure 2. Flow observables of run 1 (see table 2 in Appendix B). (a) Time evolution of the kinetic energy
E and enstrophy Ω . The enstrophy is divided by 103 for better visualisation. (b) Vorticity ω from a 10242

region, which is 6.25 % of the total physical domain. The colourbar is normalised to ω/max |ω| for better
visualisation of emerging structures. The upper circle highlights a vortex pair and the lower circle marks
a single large-scale vortex. Physical quantities for both of these regions are further analysed in figure 4.
(c) Kinetic energy spectrum E(k)with inset showing the compensated spectrum E(k)k5/3ε

−2/3
I , where the black

dashed line indicates a value of CE = 6.69 predicted by the test-field model (TFM) closure of Kraichnan (1971).
(d) Normalised cross-scale kinetic energy flux ZE(k)/εI , where the inset shows the normalised enstrophy flux
ZΩ(k)/ηI .

5.1. Structure detection
As already mentioned in the previous §§ 3.2 and 3.3, the threshold choice for the VM,
the f-FTLE and the b-FTLE criterion to sample coherent regions from the vorticity
distribution is not straightforward. Therefore, the threshold is chosen such that the
three-subregime structure of the coherent vortex number density, n(A), in (3.3) is realised
most clearly. The system studied by Burgess & Scott (2017, 2018) assumed stationarity by
imposing an integral length scale far below the largest length scales of the system domain.
In contrast, our system is in a statistically stationary state with constant kinetic energy E
and enstrophy Ω according to figure 2(a). Therefore, we analyse the scaling sensitivity of
the number density n(A) only in dependence of the coherent area A without the time t, as
presented in figure 3(b,e,h,k).
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Figure 3. Coherent structures, number density and kinetic energy spectra obtained by the VM (a–c), OW
criterion (d–f ), f-FTLE (g–i) and b-FTLE ( j—l), respectively. The coherent areas are colour-coded matching
the normalised number densities n(A)/N and the decomposed energy spectra, with N the total number of
detected structures. Colour code: (i) lowest area occupation, green regions corresponding to the green lines of
the number density and decomposed energy spectra plots; (ii) intermediate area occupation, green+blue regions
corresponding to the blue lines; and (iii) largest area occupation, green+blue+red regions corresponding to the
red lines. The OW criterion has only one permitted threshold, hence only a single area occupation is shown. All
the energy spectra are compensated by k−5/3, with the black solid line indicating the total energy spectrum E(k),
and the coloured solid and dashed lines denoting the coherent Ec(k) and residual Er(k) spectra, respectively.
The black dotted horizontal line visualises deviations from the k−5/3 scaling.

Our comparison of coherence specifications and detection methods begins with the VM
criterion. This approach is technically closest to the detection method chosen in Burgess
& Scott (2017, 2018) and, thus, expected and observed to yield the best agreement with
the findings published there and with the corresponding asymptotic scaling laws of the
vortex number density, n(A). We vary the VM threshold introduced in § 3.2 with three
different values εthr = 1.1ωrms, 0.9ωrms and 0.7ωrms, for which the total areas occupied
by the coherent regions in figure 3(a) amount to 3.4 %, 6.1 % and 13.5 %, respectively.
Filamentary structures occur with increasing area occupation extending the thermal bath
regime in figure 3(b). The number density approximately exhibits the phenomenologically
proposed asymptotic A−3 scaling for the highest area occupation. The approximate power
law deteriorates as the threshold is raised and the detected set comprises of fewer
structures. As the VM criterion explicitly detects regions of high vorticity, the most
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Method log10(Af ) log10(A−) log10(A+) log10(Amax) (i) (ii) (iii)

VM 2.6 3.44 3.94 4.14 −2.92 ± 0.09 −1.38 ± 0.11 −5.15 ± 0.86
OW 2.57 3.42 3.72 3.95 −3.41 ± 0.07 −1.01 ± 0.13 −4.63 ± 0.66
f-FTLE 2.57 3.53 3.66 3.73 −2.63 ± 0.01 0.11 ± 0.31 −24.45 ± 2.24
b-FTLE 2.56 3.45 3.58 3.68 −2.8 ± 0.02 0.08 ± 0.31 −23.79 ± 1.68

Table 1. Logarithmic power-law scalings of the three-part vortex number densities n(A) corresponding
to structures detected by the VM (εthr = 0.9ωrms, area occupation: 6.1 %), OW criterion, f-FTLE (εthr =
0.905Λ

t0+Teddy
t0,rms , area occupation: 6.0 %) and b-FTLE (εthr = 0.915Λ

t0−Teddy
t0,rms , area occupation: 6.8 %),

respectively. The scaling ranges are denoted as (i) thermal bath Af ≤ A < A−, (ii) intermediate A− < A < A+,
and (iii) front A+ < A ≤ Amax. Scaling exponents based on linear regression are given together with the
respective standard deviation. The transitional areas A− and A+ are estimated from figure 3(b,e,h,k). For
simplicity, the forcing-scale area Af and the maximum vortex area Amax are chosen as the first and last data
points of the respective abscissae of n(A).

energetic regions of the flow are included in the coherent part, which is evident from the
decomposed kinetic energy spectra in figure 3(c). Most of the energy is concentrated in
Ec(k), whereas the energy in the residual spectrum Er(k) decreases for larger length scales
with scalings which become flatter than k−5/3 for increasing area occupations. The clearly
discernible intermediate region exhibits an increased fluctuation level for lower thresholds
because larger and, thus, fewer structures tend to be detected. This is consistent with larger
deviations of the measured scaling exponent from the predicted value than in the case of
the thermal bath as presented in table 1.

In contrast to the VM method, the OW criterion only permits one possible threshold
εthr = 0. The detected coherent regions in figure 3(d) amount to an area occupation of
5.3 %. The thermal bath range obtained via the OW method drops steeper with increasing
area A than for the VM technique (cf. table 1). This indicates a preference of the OW
criterion for intense vortices at the cost of lesser vortical structures in the interval Af ≤
A < A−. The intermediate range of the number density n(A) in figure 3(e) has the best
fulfillment of the A−1 scaling compared with the other methods according to table 1. This
is not surprising, because the OW criterion favours circularly shaped structures, which are
also detected by the modified vorticity threshold criterion used by Burgess & Scott (2017,
2018). The residual energy spectrum Er(k) in figure 3( f ) possesses a scaling closer to k−5/3

in the inertial range from k ≈ 10–200 versus the total spectrum E(k). In comparison, the
coherent spectrum Ec(k) has a much shorter k−5/3 scaling range from k ≈ 10 − 30, which
becomes shallower for increasing wavenumbers. This indicates that the lacking energetic
self-similarity of largest-scale coherent structures detected by the OW criterion pollutes
the scaling of the theoretically expected KLB spectrum of total energy (see Appendix B).
The residual energy whose scaling is not suffering from this specific finite-size effect of
the numerical simulation exhibits good agreement with KLB expectations, see also, e.g.,
Borue (1994), Scott (2007), Vallgren (2011) and Burgess & Scott (2018).

With regard to the sensitivity of the LCS detection, presented in § 3.3, we set
the thresholds of the f-FTLE sampling scheme to εthr = 0.87Λ

t0+Teddy
t0,rms , 0.905Λ

t0+Teddy
t0,rms

and 0.94Λ
t0+Teddy
t0,rms , which amount to coherent area occupations of 3.1 %, 6.0 % and

11.2 %, respectively. The thresholds for the b-FTLE are set to εthr = 0.88Λ
t0−Teddy
t0,rms ,

0.915Λ
t0−Teddy
t0,rms and 0.94Λ

t0−Teddy
t0,rms , resulting in coherent area occupations of 3.3 %,

6.8 % and 10.9 %, respectively. The crinkly shaped structures occurring in the domain,
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as shown in figure 3(g,j), lead to the flattening of the thermal bath regime and a
simultaneous steepening of the intermediate range with increasing area occupation, as
depicted in figure 3(h,k). Note that the different structural shape also results in a more
extended thermal bath regime and a diminishing intermediate range with increasing area
occupation in contrast to the OW and VM criterion. Comparing f-FTLE and b-FTLE
fields, similar larger-sized structures are detected by both fields, whereas smaller-sized
structures are detected at differing positions. This is not surprising, because forward- and
backward-in-time LCSs, are associated with different fluid dynamics, i.e. repelling and
attracting manifolds in a dynamical systems sense, respectively (Haller & Yuan 2000;
Haller 2015). The residual energy spectra Er(k) in figure 3(i,l) are closer to a k−5/3 scaling
throughout the entire inertial range compared with the total spectrum E(k), indicating a
pollution of the KLB spectrum by the coherent structures similar to the results of the OW
criterion.

The large-scale damping required for the achieving stationarity impacts the apparition
of large-scale structures as discussed in Appendix B. This leads to the anomalous and
partially polluted power laws of the front regime in figure 3(b,e,h,k) compared with the
phenomenologically expected exponent of A−6 (Burgess & Scott 2017, 2018), where a
large-scale damping mechanism has not been employed. Another reason for the deviation
is the resolution of 81922 in the conducted DNS of Burgess & Scott (2017, 2018), which is
higher compared with our present study. Nevertheless, the overall trend of the three-part
number density n(A) is satisfied in all of these definitions. Moreover, independent of the
definition, coherent structures tend to distort the theoretically predicted KLB scaling as
illustrated in figure 3(c, f,i,l).

In summary and in comparison with the VM detection technique the OW and the LCS
approaches tend to detect similar large-scale coherence features of the flow, in spite of their
distinct underlying coherence specifications. The different characterisations of coherence
lead to a reduced sensitivity for small-scale turbulent structures in the case of OW, while
the physically most involved LCS method tends to detect a surplus of small-scale structures
compared with the most simple VM specification. We proceed by setting the respective
detection parameters such that the detection signatures as shown in figure 3(b,e,h,k)
become most similar to each other, i.e. an area occupation of 6.1 % for VM, of 6.0 %
for f-FTLE and of 6.8 % for b-FTLE. The resulting scalings in table 1 reflect a rough
overall agreement with the three expected scaling regimes of the number density n(A).
Small adjustments of these thresholds do not result into qualitatively significant differences
regarding the inverse cascade analysis, which is conducted in the next section.

6. Relation of coherent structures to the inverse cascade process

Coherent features of the vorticity field ω (shown in figure 2b) contain most of its
kinetic energy, as inferred from the spatial distribution from the absolute velocity |u| in
figure 4(a), with the largest fraction located in the vicinity of the vortex core. For the vortex
pair in figure 2(b), the energy increases towards their separatrix where the maximum value
is reached.

The f-FTLE and b-FTLE fields, Λ
t0+Teddy
t0 and Λ

t0−Teddy
t0 , are illustrated in figures 4(c)

and 4(d), respectively, where high FTLE values are potential candidates for LCSs. The
LCS method considered here detects coherent vortices by the characteristic patterns
of two-particle dispersion dynamics perpendicular to the identified material lines that
are shown in the figure. From this perspective, the approach senses the imprint of a
coherent structure on the surrounding flow rather than detecting specific differential (OW)
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Figure 4. Various physical quantities of the same region as shown in figure 2(b). (a) Absolute velocity |u|.
(b) Energy rate dE/dt. (c) The f-FTLEΛ

t0+Teddy
t0 . (d) The b-FTLEΛ

t0−Teddy
t0 . (e) Cross-scale kinetic energy flux

Z̄ obtained from a smooth Gaussian filter with a filtering wavenumber of k = 60. ( f ) Angle between strain rate
and subgrid stress tensor δθ̄ obtained from the same filter as in (e).

or amplitude markers (VM) associated with coherence. LCS can thus be regarded as
complementary to the two other methods considered here. The LCS based on the f-FTLE
field displays more pronounced small-scale fluctuations perpendicular to the respective
material line as compared with the b-FTLE field. This reflects the different repelling
and attracting dynamics expected along forward- and backward-in-time LCSs, while the
difference between the Lagrangian scheme used for the f-FTLE and the semi-Lagrangian
approach employed for the b-FTLE (see Appendix A.2) can play a role here as well.
There is a strong visual correlation between ridges in both FTLE fields with the
boundaries of vortices observed in the vorticity field. This corroborates the above choice
of sampling the vorticity distribution with the f-FTLE and b-FTLE according to (2.4)
and (2.5).
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6.1. Cross-scale flux efficiency
When aiming at establishing a link between the nonlinear cross-scale flux and the detected
structures in configuration space, the temporal derivative of energy, dE/dt, see figure 4(b),
is only of limited value as it does not yield clear localised signatures correlated with
coherent vortices. In contrast, the spatial distribution of the cross-scale energy flux Z̄
exhibits intense quadrupolar structures in coherent regions reflecting their high level of
symmetry. This is shown in figure 4(e) and has been observed by Xiao et al. (2009) and
Liao & Ouellette (2013) as well. Thus, coherent regions lead to large local contributions
to the cross-scale flux, but do not necessarily generate significant contributions to the
spatially averaged net inverse flux 〈Z̄〉.

The cross-scale energy flux is decomposed into its coherent, residual and mixed
contributions, for the spectral cross-scale fluxes ZE

c,c,c(k), ZE
r,r,r(k), ZE

cr(k) (4.4) and the
spatially averaged cross-scale flux distributions in configuration space 〈Z̄c(x)〉, 〈Z̄r(x)〉,
〈Z̄cr(x)〉 (4.8), respectively. Both cross-scale flux measurements are shown in figure 5,
because the ZE(k) representation is usually favoured for quantifying the existence of
turbulent cascade activity, whereas the Z̄(x) representation is commonly used to reveal
the spatial structure of the flux. We observe that the fluxes of all coherence definitions
are qualitatively similar, although the OW criterion in figure 5(b), and the f-/b-FTLE in
figures 5(c) and 5(d), respectively, possess higher quantitative similarity in contrast to the
VM scheme. For the latter, the coherent flux ZE

c,c,c(k) is slightly higher for all scales as
shown in figure 5(a) which shows the limits of the applied simple gauge criterion. This
is because the VM favourably extracts higher-valued vorticity regions compared with the
other detection schemes, which are attributed to larger-sized structures according to the
coherent spectrum Ec(k) in figure 3(c). Therefore, the highest coherent flux contributions
are rather in the lower wavenumber range, with a decreasing contribution towards higher
wavenumbers. The structures detected by the f-FTLEs and b-FTLEs have vanishing
coherent flux contributions, which are close to zero for the entire inertial range. This is
in agreement with both forward- and backward-in-time LCSs, having the tendency to
collectively inhibit the energy transfer among scales (Kelley et al. 2013). The circularly
shaped structures identified by the OW criterion also exhibit the same behaviour of
inhibiting the cross-scale flux. These observations contribute to an alternative definition
of coherence in a turbulence context in the sense that energy within these structures tends
to remain rather closely at their given length scales without cascading across scales.

In general, the merging of coherent vortices has been one of the most appealing physical
mechanisms for the inverse cascade for quite some time. However, independent of the
definition and as shown above, the coherent part of the flux ZE

c,c,c(k) has an overall low
negative contribution throughout the inertial range. Therefore, merging effects of coherent
structures have a weak influence to the overall inverse cascade, which also has been pointed
out by Xiao et al. (2009).

The residual flux ZE
r,r,r(k) remains negative throughout the inertial range as well,

peaking at small-scales, close to the forcing wavenumbers, and decaying roughly
logarithmically towards larger scales. This is due to the contribution of detected
smaller-sized structures, according to the residual spectra Er(k) already shown in
figure 3(c, f,i,l) above. We propose in § 6.2 that the negative contribution of the residual
flux is attributed to a stronger impact of the thinning mechanism on smaller scales.

Furthermore, a substantial amount of the net negative flux on each length scale
originates from the mixed coherent–residual interactions ZE

cr(k), which roughly stays at
a constant level throughout the inverse flux region. We abstain from ascribing this flux
contribution to more specific physical dynamics as this flux results from the complex
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Figure 5. Comparison of cross-scale kinetic energy fluxes of varying coherence definitions, obtained from the
spectral formulation ZE(k) (dashed lines) and the spatially averaged formulation 〈Z̄(x)〉 (solid lines) obtained
by Gaussian filtering for varying filter length scales �: (a) VM, (b) OW, (c) f-FTLE and (d) b-FTLE. The grey
vertical line indicates the wavenumber k = 60, at which the subsequent analysis of the spatial cross-scale flux
distribution is conducted.

interplay between coherent/residual/mixed stresses and coherent/residual strain rates as
already mentioned in § 4.2.

Because the Fourier cross-scale flux is determined via spatial integration, an
investigation in configuration space is reasonable for gaining further insight. The coherent
part Z̄c(x) reconstructed from ωc mostly consists of highly ordered quadrupolar structures
and is exemplarily illustrated for the VM criterion in figure 6(a). Compared with
that, the ωr-reconstructed residual part Z̄r(x) in figure 6(b) has rather complex and
unordered spatial features. Similar spatial characteristics for coherent and residual parts
are obtained for the other coherence-detection methods. In addition, qualitatively similar
findings are gained for filtering lengths below the damping-dominated and above the
forcing-dominated length scales, hence we employ a filtering wavenumber of k = 60 for
the remaining analysis.

Another observation, in the context of the present work, is that coherent structures,
independent of their detection method, have much higher local cross-scale flux amplitudes
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Figure 6. Reconstructed spatial cross-scale kinetic energy flux distributions of the (a) purely coherent Z̄c(x)
and (b) purely residual Z̄r(x) parts obtained by the VM criterion for a filtering wavenumber of k = 60, with
each normalised by its root-mean-square value for visualisation purposes. The absolute values of Z̄c are much
higher compared with Z̄r with a ratio max(|Z̄c|)/max(|Z̄r|) ≈ 44.

compared with their residual counterparts. Using the VM criterion as an example, the ratio
between the maximum absolute values of the ωc-reconstructed and the ωr-reconstructed
spatial cross-scale fluxes is max(|Z̄c|)/max(|Z̄r|) ≈ 44. Similar ratios are obtained for the
other coherence definitions. However, high amplitudes are not necessarily responsible
for a high net inverse flux. As a general observation, the probability density function
(p.d.f.) of the total cross-scale flux Z̄, used for reference for the comparison with the
various coherence schemes shown in figure 7(a–d), centralises around zero with a slightly
negative skewness of μ̃3 = −0.93. Furthermore, the p.d.f. has a kurtosis of μ̃4 = 336
corresponding to a very flat distribution, which indicates that rare high negative amplitude
events contribute to the total net negative flux. The p.d.f.s of the coherent parts Z̄c of all
coherence definitions exhibit larger tails to both positive and negative values compared
with the total field, with kurtosis values of 404, 430, 503 and 547 for the VM, OW
criterion, f-FTLE, and b-FTLE, respectively. This suggests that coherent structures are
responsible for the high spatial fluctuations of the total cross-scale flux distribution,
although these strong fluctuations do not sustain a cascade as already seen before with
the overall low Fourier cross-scale flux contributions in figure 5(a–d). In contrast, the
p.d.f.s of the residual contributions Z̄r possess lower tails to both positive and negative
values. The negative skewness values of −0.76, −1.4, −2.01, and −0.96 for the VM, OW
criterion, f-FTLE, and b-FTLE, respectively, lead to a measurable net inverse cascade of
the residual part. However, due to the overall flat nature of the residual p.d.f.s, the residual
cascade is also driven by rare high negative amplitude events.

The angle distributions between stress and strain-rate tensors as a flux transfer efficiency
measure, motivated by (4.9) and (4.10), is shown in figure 4( f ), where the largest part
of the marked coherent regions display angles close to δθ̄ = π/4. The corresponding
misalignment of strain-rate and subfilter stress tensors results in a lower nonlinear flux
efficiency. A clearer picture of the overall cascade direction tendencies is obtained from
the p.d.f.s of δθ̄ , δθ̄c and δθ̄r shown in figure 7(e–h). The p.d.f. of the total field δθ̄ clearly
shifts towards values smaller than π/4, with skewness and kurtosis values of μ̃3 = 0.06
and μ̃4 = 3.79, respectively. This indicates that the strain-rate and stress tensors, S̄ and
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Figure 7. All quantities are filtered at a wavenumber of k = 60. (a–d) The p.d.f.s of spatial cross-scale flux
distributions Z̄, Z̄c and Z̄r with each normalised by its standard deviation Z̄SD, Z̄SD

c and Z̄SD
r , respectively.

(e–h) The p.d.f.s of rotation angle distributions between strain-rate and subgrid stress tensors δθ̄ , δθ̄c and δθ̄r.
(a) VM, (b) OW, (c) f-FTLE, (d) b-FTLE, (e) VM, (f ) OW, (g) f-FTLE, (h) b-FTLE.

τ̄ , tend to positively align, which lead to the overall net negative flux. However, the shape
of all the p.d.f.s of the coherent parts δθ̄c are mostly symmetric and centred at a value of
π/4 with skewness values 0.06, 0.02, 0.0, and 0.03 for the VM, OW criterion, f-FTLE and
b-FTLE, respectively. Thus, the coherent strain-rate and stress tensors, S̄c and τ̄ c,c, have
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the tendency to fully misalign, resulting in a lower cross-scale flux efficiency, despite their
high local flux amplitudes. On the contrary, the p.d.f.s of the residual parts δθ̄r skew even
more to the right compared with the total field δθ̄ , with skewness values of 0.14, 0.13,
0.12, and 0.11 for the VM, OW criterion, f-FTLE and b-FTLE, respectively. In addition,
for the OW criterion in figure 7( f ), for the f-FTLE in figure 7(g), and for the b-FTLE in
figure 7(h), the left tails of the residual parts δθ̄r are even higher and the right tails even
lower compared with their corresponding coherent counterparts δθ̄c. These tendencies lead
to a higher stress-strain tensor alignment behaviour and thus a higher cross-scale flux
efficiency of the residual compared with the coherent part.

We conclude that although strong nonlinear cross-scale flux interactions are found
within the quadrupolar structures of figure 6(a), these high local flux amplitudes are not
responsible for an actual cascade process. They are rather responsible for sustaining the
structures’ coherence in a turbulent environment by keeping the associated energy close to
specific length scales.

6.2. Coherent shape preservation and residual thinning mechanism
A possible reason for the small coherent Fourier cross-scale flux contributions is the shape
preservation of coherent structures in combination with the enhanced flux efficiency of
the residual part due to increased vortex thinning. To verify this hypothesis, the MSG
expanded cross-scale energy flux in (4.13) and its decomposed form in (4.17) and (4.18)
are investigated in more detail with a filtering length of � = π/15, a geometric factor of
λ = 2 and a total number of filter bands of nb = 5. For a detailed analysis the flux fractions
Q[b] on different subfilter-scales are divided into

Q[b] = 〈Z[b]
SR 〉 + 〈Z[b]

DSR〉 + 〈Z[b]
DSM〉 + 〈Z[b]

VGS〉
〈ZMSG∗ 〉 = Q[b]

SR + Q[b]
DSR + Q[b]

DSM + Q[b]
VGS, (6.1)

where Q[b]
SR , Q[b]

DSR, Q[b]
DSM and Q[b]

VGS are the flux fractions resulting from SR, DSR, DSM
and VGS, respectively. All the flux channels are further decomposed into their coherent
(c), residual (r) and mixed (cr) contributions, e.g. the fraction of the SR is decomposed as
Q[b]

SR = Q[b]
SR,c + Q[b]

SR,r + Q[b]
SR,cr. All these contributions are illustrated in figure 8.

As already discussed by Xiao et al. (2009), the MSG flux ZMSG∗ exhibits the locality
behaviour predicted by the test-field model (TFM) closure of Kraichnan (1971). Thus,
it is not surprising in figure 8 that the majority of the contributions do not result from
strongly local interactions b = 0, but rather from non-local interactions b ∈ [1, 3], with a
decreasing influence from highly non-local interactions b ≥ 4, with b being a measure of
the scale locality of nonlinear interactions. The first-order MSG flux only consists of the
SR term Z[b]

SR , which has no contribution to the strongly local interactions (Q[0]
SR = 0) (Eyink

2006b; Xiao et al. 2009). Thus, second-order contributions are necessary to sufficiently
capture the cross-scale flux. The DSM Z[b]

DSM has the lowest overall contribution and is also
non-existent for strongly local interactions (Q[0]

DSM = 0) (Eyink 2006b; Xiao et al. 2009).
Hence, its effect originating from coherent and residual parts are not further analysed with
respect to strain-rate alignment properties.

In figure 8 the relative contributions of the coherent, residual and mixed parts to each
flux channel are nearly independent of the scale locality b and the specific coherence
definition. The simple VM method represents a notable exception generally yielding
increased coherent flux contributions at the cost of the residual fluxes. As already
mentioned above, this is the consequence of the simple gauge criterion chosen in § 5.1
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Figure 8. Second-order MSG flux fractions for the length scale bands in the range of b ∈ [0, 5] originating
from SR Q[b]

SR (green), DSR Q[b]
DSR (violet), DSM Q[b]

DSM (blue), and VGS Q[b]
VGS (orange) contributions, decoded

into their corresponding coherent (subscript c), residual (subscript r), and mixed (subscript cr) parts. The
varying coherence criterions are compared for every b in the following order: VM, OW criterion, f-FTLE and
b-FTLE.

that is not capable of eliminating all differences between the detection methods. Test
simulations (not shown) indicate that the VM method is more robust than the LCS
techniques to variations of the threshold value with regard to the scaling of the vortex
number density, but exhibits a stronger and monotonic impact of the threshold on the
relative importance of the different MSG flux fractions than the LCS methods. The
gauging procedure thus leads to an effective relative threshold decrease for the VM method
compared with the other more complex coherence specifications, illustrating the difficulty
of neutralising all differences between the coherence specifications. The flux fractions
mostly reflect the decomposed Fourier cross-scale flux contributions already presented
in figure 5 above. For example, the f-FTLE criterion has small coherent cross-scale
flux contributions ZE

c,c,c(k) throughout the inertial range in figure 5(c), and the coherent
fractions Q[b]

SR,c, Q[b]
DSR,c, Q[b]

DSM,c, and Q[b]
VGS,c of the MSG flux in figure 8 are small for

all of the flux channels as well, except for the VM method as mentioned above. We
associate the lack of substantial SR and VGS of the coherent structures with their shape
preservation characteristic. In contrast, the residual fractions Q[b]

SR,r, Q[b]
DSR,r, Q[b]

DSM,r, and

Q[b]
VGS,r have a much higher contribution in all these MSG flux channels, which is also

reflected by the residual cross-scale flux ZE
r,r,r(k). In addition, the coherent cross-scale

flux of the VM criterion is decreasing, while the residual flux is increasing for higher
wavenumbers in the inertial range in figure 5(a). This is also reflected by the MSG flux
fractions in figure 8. There, the coherent fractions of all MSG flux channels decrease,
while the residual fractions increase for lower scale locality. These observations are a
first sign that vortex thinning plays a minor role in coherent structures and is more active
in the residual counterpart instead. Lastly, similar to the decomposed cross-scale fluxes
in figure 5(a–d), the mixed interactions Q[b]

SR,cr, Q[b]
DSR,cr, Q[b]

DSM,cr, and Q[b]
VGS,cr contribute

to almost half of the fractions in all MSG flux channels in figure 8. However, this does
not imply that coherent–residual interactions lead to an enhanced thinning mechanism,
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since the MSG cross-scale flux of the mixed contribution ZMSG∗,cr in (4.17) consists of four
different heterogeneous strain-rate and stress components. We leave the analysis of these
heterogeneous interactions for future investigations.

According to the numerical studies of Xiao et al. (2009) and as described in § 4.3,
the vortex thinning mechanism is geometrically quantified by the rotation angles δα[b]

and δβ[b], which are illustrated in figures 1(b) and 1(c), respectively. Conditioning the
angle δα[b] onto the band-pass filtered vorticities ω[b] allows us to obtain statistics of the
rotation angle behaviour between the large scale strain-rate S(0) and the band-pass filtered
strain-rates S[b], and thus reveals the physical mechanism of the MSG flux contribution
originated from the SR term Z[b]

SR in (4.13). A conditioning of the angle δα[b] onto the
band-pass filtered eddy-viscosities ν[b]

T allows the analysis of the alignment behaviour
between the large scale strain-rate S(0) and the band-pass filtered stress τ [b] = −ν[b]

T S[b],
which comes from a Newtonian stress-strain relation as already described in § 4.3. From
this we are able to infer the physical mechanism of the DSR term Z[b]

DSR in (4.13), which
quantifies the direction of the stress work exertion on the strain-rate field from small to
large length scales. Finally, analysing the δβ[b] angle reveals the influence of the VGS
mechanism described by Z[b]

VGS in (4.13). We extend the angle analysis by investigating
the angles δα[b]

c/r and δβ[b]
c/r of the purely coherent and residual contributions based on

the (4.19)–(4.24). According to figure 9(b,d, f ) all coherence definitions provide similar
results regarding the above mentioned angle statistics. Thus, the following observations
and conclusions are made for coherent structures in general, independent of the concrete
definition.

The closer the angles between the strain-rate tensors δα[b] are to values of ±π/4 (their
sign reflecting the sign of ω[b]), the higher the contribution of the SR term Z[b]

SR to the
inverse cascade. This rotation angle tendency is exemplarily illustrated in figure 9(a) for
the negative vorticity condition −ω[b], for which the peak of the p.d.f. P(δα[b]|ω[b] < 0)
gradually shifts towards +π/4 with decreasing scale locality, implied by the increasing
b-values (cf. Xiao et al. 2009). This gradual peak shift quantifies SR and the accompanied
transformation of circularly shaped structures into shear layers. Thus, investigating the
presence of SR is one possibility to show the existence of the thinning process for the total
field. Therefore, if we measure the shift of the p.d.f. peak, we are able to determine the SR
effect separately for the purely coherent and residual parts. We achieve this by evaluating
the conditional expectation values of the angles δα[b], δα[b]

c and δα[b]
r as

E[δα[b]|(ω[b] < 0)],E[δα[b]
c |(ω[b]

c < 0)],E[δα[b]
r |(ω[b]

r < 0)]. (6.2)

Figure 9(b) shows that the conditional expectation values for the coherent structures,
independent of the concrete definition, are approximately E[δα[b]

c |(ω[b]
c < 0)] ≈ 0. This

means that there is only a minor gradual shift of the p.d.f. peak for coherent structures
with decreasing scale locality (increasing b-values). This leads to the conclusion that
SR and therefore thinning effects are barely present within structures of the coherent
part. Hence, coherent structures are generally not turned into shear layers and tend to
preserve their shape. On the contrary, the residual part exhibits an increased expected value
E[δα[b]

r |(ω[b]
r < 0)] with decreasing scale locality. Therefore, the background residual

field is prone to the development of shear layers and thus has a higher thinning tendency
compared with the coherent structures in the system.
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Figure 9. (a) The p.d.f.s of strain-rate tensor angles δα[b] conditioned onto the negative vorticities ω[b].
(b) Expected values of δα[b], δα[b]

c and δα[b]
r conditioned onto the negative vorticities ω[b], ω[b]

c and ω[b]
r ,

respectively, for varying coherence definitions. (c) The p.d.f.s of strain-rate tensor angles δα[b] conditioned
onto the positive eddy-viscosities ν[b]

T . (d) Expected values of |δα[b]|, |δα[b]
c | and |δα[b]

r | conditioned onto the
positive eddy-viscosities ν[b]

T , ν[b]
T,c and ν[b]

T,r, respectively, for varying coherence definitions. (e) The p.d.f.s of
angles between the large-scale strain-rate tensor and vorticity gradient vector δβ[b]. ( f ) Expected values of
δβ[b], δβ[b]

c and δβ[b]
r for varying coherence definitions.

The DSR term Z[b]
DSR has an increasing contribution to the overall inverse cascade, if

the angle is |δα[b]| ≷ π/4 for positive or negative eddy-viscosities ±ν[b]
T , respectively.

Therefore, the band-pass filtered stress tensors τ [b] should exhibit parallel or anti-parallel
alignments to the large-scale strain-rate tensor S(0) based on the eddy-viscosity’s sign
in order to maximise the Z[b]

DSR contribution. The alignment tendency reveals the energy
transfer between scales during the vortex thinning procedure. Thus, negative work exertion
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of the small-scale stress τ [b] on the large-scale strain-rate field S(0) is understood as a
general energy transfer from small to large length scales enabling an overall inverse energy
cascade, whereas positive work exertion allows for a direct energy cascade. The p.d.f. of
the angles exemplarily conditioned onto the positive eddy-viscosity P(δα[b]|ν[b]

T > 0) for
the total field is presented in figure 9(c) and shows that the angle becomes |δα[b]| > π/4
for b ≥ 3 (cf. Xiao et al. 2009). This reveals the negative work exertion of the small-scale
stress τ [b] on the large-scale strain-rate tensor S(0), as depicted in figure 1(b), and leads
to the conclusion that the vortex thinning mechanism facilitates the energy transfer from
small to large length scales for the entire field. The conditional expectation values of the
angles δα[b], δα[b]

c and δα[b]
r ,

E[|δα[b]||(ν[b]
T > 0)],E[|δα[b]

c ||(ν[b]
T,c > 0)],E[|δα[b]

r ||(ν[b]
T,r > 0)], (6.3)

are determined to measure the shift of the maxima towards |δα[b]| > π/4 for increasing
b-values in figure 9(d) and are also used to determine the alignment tendencies of coherent
and residual parts. The absolute values |δα[b]| instead of the original angle δα[b] are
considered, because the p.d.f.s in figure 9(c) are symmetric. As a result, figure 9(d) shows
that the negative work exertion is present within the residual parts for b ≥ 3 as the angles
become |δα[b]

r | > π/4. Although E[|δα[b]
c ||(ν[b]

T,c > 0)] increases for larger b, the angles

for the coherent structures remain at |δα[b]
c | < π/4 independent of the scale locality. This

means that the coherent part even has the tendency that the coherent band-pass filtered
stress tensors τ

[b]
c exert positive instead of negative work on the coherent large-scale

strain-rate tensor S(0)c . Thus, energy within coherent structures is not transferred from
the small-scale stress to the large-scale strain-rate due to the weak contributions of the
thinning mechanism.

Lastly, the VGS term Z[b]
VGS is dependent on the angles δβ[b] between the contractile

direction of the large-scale strain-rate S(0) and the vorticity gradients ∇ω[b]. These angles
approach zero δβ[b] → 0 for decreasing scale locality (increasing b), as presented in
figure 9(e) (cf. Xiao et al. 2009), which shows the contribution Z[b]

VGS for the total field. This
quantifies the presence of the vorticity isoline deformation along the stretching direction of
the large-scale strain-rate field, as depicted in figure 1(b) for the total field. The alignment
angles δβ[b]

c/r between the purely coherent/residual vorticity gradients ∇ω[b]
c/r and the purely

coherent/residual contractile direction of the strain-rate tensor S(0)c/r are used to measure
the effect of VGS in the coherent and residual parts of the flow respectively. The following
expected values

E[δβ[b]],E[δβ[b]
c ],E[δβ[b]

r ], (6.4)

for the total, coherent and residual fields are illustrated in figure 9( f ). The expected
value for the residual angle E[δβ[b]

r ] decreases for large scale separations (increasing b),
indicating the presence of the VGS in the residual part and thus is another indicator of
the thinning mechanism. For the coherent part E[δβ[b]

c ] is close to π/4 for all values of b.
This implies the physical picture that the coherent large-scale strain-rate tensor S(0)c is not
distorting the vorticity isolines, which ultimately leads to a shape preservation of coherent
structures.

In conclusion, the small cascade efficiency of coherent structures is caused by their
shape preserving nature determined by the depletion of Z[b]

SR,c and Z[b]
VGS,c terms independent

of the scale separations b in combination with the positive work exertion of the small-scale
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stresses on the large scale strain-rate, as captured by the Z[b]
DSR,c term. In contrast, the

higher flux efficiency in the residual parts of the flow is caused by the enhanced thinning
mechanism quantified by the Z[b]

SR,r and Z[b]
VGS,r contributions and the negative work exertion

captured in the Z[b]
DSR,r term.

7. Conclusions

The present investigation deals with the nonlinear dynamics of coherent and residual
structures in pseudospectral DNS of two-dimensional Navier–Stokes turbulence forced at
small scales. This involves the application of three commonly applied coherence detection
schemes based on the OW criterion, on the VM, and on LCSs to identify and to isolate the
respective flow components. Among these threshold-based detection methods, the VM
technique and the LCS approach are gauged by using statistical properties of detected
structures to improve comparability of the detection results. Using this setup, (i) the
performance of the employed detection methods is discussed in relation to each other,
(ii) the coherent and residual contributions to the cross-scale energy flux of the inverse
turbulent cascade have been analysed in spectral Fourier as well as in configuration space
to study their role for the characteristics and for the dynamics of the respective parts of the
flow.

We have found that (i) under application of the chosen gauge criterion and in comparison
with the VM scheme the OW method exhibits a bias towards largest-scale and most
energetic structures. In contrast, the LCS scheme shows an increased susceptibility for
small-scale coherence as compared with the VM method. Both tendencies can largely be
neutralised by adjusting the free parameters of the VM and the LCS methods to yield the
same scale-dependency of the vortex number density as the OW specification.

With respect to the role of detected coherent structures for turbulence dynamics, (ii),
we find that they are responsible for a pollution of the phenomenologically expected
spectral scaling of the kinetic energy spectrum E(k) ∼ k−5/3 at largest spatial scales.
This finding is supported by the largely unaffected k−5/3-scaling observed in the
energy spectrum of the residual (incoherent) fraction of the turbulent fluctuations. The
observation suggests the possible use of coherence detection and decomposition in
DNS of homogeneous turbulence for the reduction of the large-scale condensation of
inversely cascading quantities for physical systems that feature inverse cascades, e.g.
two-dimensional Navier–Stokes turbulence or magnetohydrodynamic turbulence.

The application of a spatial scale-filter approach for the analysis of the nonlinear
dynamics of coherent and residual parts of the turbulent flow indicates a high nonlinear
activity within coherent structures. The finding shows that coherent structures in
two-dimensional Navier–Stokes turbulence are in general dynamically sustained while
the spatial structure of the dynamics yields a shape-preserving depletion of the nonlinear
cross-scale flux with regard to the entire structure. This is in agreement with the observed
coherent Fourier cross-scale energy fluxes and the low flux efficiency due to the high
misalignment tendencies of coherent strain-rate and subgrid stress tensors. The shape
preservation of coherent structures in this case is verified by employing the MSG
expansion of the coherent spatial cross-scale energy fluxes that exhibits a clear depletion of
the deformation processes that are scale-flux generating. These findings suggest to employ
the depletion of the MSG contributions of SR and VGS as markers for structural coherence
in two-dimensional turbulent flows.

The inverse cascade is instead driven by a combination of (i) interactions entirely
among residual fluctuations and of (ii) nonlinear interactions between coherent structures
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and residual fluctuations. The former contribution is strongest at small scales while
the latter dominates at large scales. This suggests that two different physical processes
are responsible for the respective energy fluxes. For the first contribution the dominant
physical process has recently been introduced as vortex thinning. This is in line with
the enhanced alignment properties of the residual strain-rate and subgrid stress tensors,
yielding a high flux efficiency. The second contribution is the dominant flux contribution
and stays on a relatively high and roughly constant level throughout the inverse flux region.
We abstain from ascribing this flux contribution to more specific physical dynamics as
multiple factors may be determining its characteristics due to the heterogeneous character
of the interacting strain-rate and stress tensor fields. Further work is presently being
pursued along these directions.
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Appendix A. Technical details

A.1. Vorticity decomposition
After thresholding according to one of the investigated coherence criteria in the fashion of
(2.4) and (2.5), the non-zero scalar values of the vorticity field are clustered. All adjacent
neighbouring non-zero pixels (maximum of four neighbours for each pixel) are grouped
into separately countable and connected clusters. Then, clusters whose number of pixels
are below the forcing area of Af = π(�f /2)2, with �f = 2π/kf the forcing length scale, are
excluded and discarded from the coherent field. After that, a 5 × 5 smooth Gaussian filter
is applied to avoid regularity issues caused by sharp boundaries. This leads to the coherent
vorticity field ωsmooth

c . The residual field is obtained by subtraction:

ωr = ω − ωsmooth
c . (A1)

A.2. Efficient FTLE calculation
From a technical viewpoint, integrating larger amounts of Lagrangian tracers to
sufficiently resolve a turbulent flow in space and time requires substantial computational
resources. Thus, we utilise an efficient numerical technique, as suggested by Finn &
Apte (2013), to simultaneously calculate the flowmap F t

t0 forward and backward in
time by employing a Lagrangian and a semi-Lagrangian scheme, respectively. The
forward-in-time/Lagrangian scheme advects passive tracers for an integration time T
according to the underlying velocity field, which generate the forward-in-time flowmap,
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F t0+T
t0 . The backward-in-time/semi-Lagrangian scheme, introduced by Leung (2011), is

based on the solution of level-set equations and constructs the backward-in-time flowmap,
F t0−T

t0 , by tracking coordinates on an Eulerian grid.
For an increased temporal resolution of the FTLE fields, a flowmap composition

method, proposed by Brunton & Rowley (2010), is applied as

F t0+T
t0 = IF t0+Nh

t0+(N−1)h ◦ . . . ◦ IF t0+2h
t0+h ◦ F t0+h

t0 , (A2)

where ◦ is the composition operator, N the number of substeps, h = 100 the flowmap
substep and I the interpolation operator. A second-order Runge–Kutta integration scheme
is applied for particle integration and a cubic interpolation scheme, suggested by Staniforth
& Côté (1991), is used for the interpolation operator and the mapping of particles between
grid points.

A.3. MSG flux derivation
The multi-gradient nature of the approach arises from a Taylor expansion

δu(b,m)(r; x) =
m∑

p=1

1
p!
(r · ∇)pu(b)(x) (A3)

of the filtered velocity increments δu(b)(r; x) = u(b)(x + r)− u(b)(x) with separation
vector r, which is subject to the filtering operation given by equation (4.11). The filtered
subgrid stress tensor τ (b) can then be entirely expressed by the Taylor expanded velocity
increments instead of the original increments δu(b)(r). This yields (cf. Eyink 2006a)

τ (b,m) =
∫

Gl(r)δu(b,m)(r)δu(b,m)(r) d2r

−
∫

Gl(r)δu(b,m)(r) d2r
∫

Gl(r)δu(b,m)(r) d2r, (A4)

where τ (b,m) is a multi-scale and multi-gradient expression for the stress.
It can be shown that the MSG expanded stress converges as limm→∞ τ (b,m) = τ (b) in

the L1-norm. Nevertheless, for increasing scale indices b, which corresponds to adding
finer-scale structures, a growing amount of space gradients of higher-order, m, is required
to approximate τ (b,m) ≈ τ (b). Therefore, a coherent-subregions approximation (CSA)
approach is suggested by Eyink (2006a) enabling the approximation of the MSG stress
by low-order gradients m. As a result, the CSA corrected MSG stress is obtained, which
is more accurately approximated as τ

(b,m)
∗ ≈ τ (b,m) with fewer gradients m. According

to Eyink (2006b) and Xiao et al. (2009), the best approximation with regard to the
original cross-scale flux term is reached for expansions up to the second-order in gradients
m = 2. For the sake of brevity we define τMSG∗ = τ

(b,2)
∗ and ZMSG∗ = Z(b,2)∗ , which are the
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MSG-CSA stress and cross-scale flux, respectively, expanded to second order, giving

ZMSG
∗ = −S(0) : τMSG

∗

=
nb∑

b=0

⎡
⎢⎢⎢⎢⎣− C̄[b]

2
2
�2

bω
[b](S(0) : S̃[b])︸ ︷︷ ︸
Z[b]

SR

+ C̄[b]
4
8
�4

b(

ν
[b]
T︷ ︸︸ ︷

∇ω[b] · ∇α[b])(S(0) : S[b])︸ ︷︷ ︸
Z[b]

DSR

− C̄[b]
4

16
�4

b(

γ
[b]
T︷ ︸︸ ︷

∇ω[b] · ∇ ln σ [b])(S(0) : S̃[b])︸ ︷︷ ︸
Z[b]

DSM

+ C̄[b]
4

32
�4

b(∇ω[b])TS(0)(∇ω[b])︸ ︷︷ ︸
Z[b]

VGS

⎤
⎥⎥⎥⎥⎦

−(∇ψ(nb)∗ )TS(0)(∇ψ(nb)∗ )︸ ︷︷ ︸
Z
(nb)
FSF

, (A5)

with the fluctuation stream function ψ(nb)∗ (cf. Eyink 2006b) and the coefficients C̄[b]
p (cf.

appendix C in Eyink 2006a). The flux contribution from the fluctuation stream function
(FSF) Z(nb)

FSF is similarly interpreted as a VGS but considered much smaller in magnitude
due to cancellations from spatial averaging. In addition, it possesses a positive mean as
shown by Xiao et al. (2009), thus a further analysis with regard to the inverse cascade
mechanism is neglected for this term.

Appendix B. Sensitivity of energy injection rate, KLB theory and finite-size effects

The present coherent structure analysis is based on DNS of the two-dimensional
Navier–Stokes equations. In this section, we briefly discuss the choice of system
parameters, with regard to the dynamics of structure formation and turbulence statistics.

In contrast to other studies (see Babiano et al. 1987; Maltrud & Vallis 1993; Borue
1994; Danilov & Gurarie 2001; Vallgren 2011; Burgess & Scott 2018), the present work
does not employ a hyperviscous dissipation term to avoid the accompanying unphysical
distortion of the spatial structure of the flow. Although this shortens the scaling-range of
the enstrophy cascade, the resulting spectral extent still suffices for our purposes, as shown
by the spectra and enstrophy fluxes in figure 2(c,d), and figure 10. We have found no further
implications for other diagnostics relevant in the context of the present investigation.

The formation of structures is dependent on the energy injection rate εI and therefore we
vary its rate for fixed viscosity ν and large-scale friction values (k0,ω, σ 2

ω, αω), which also
affects the ratio of energy dissipated at largest scales with rate εα and at viscous scales with
rate εν . Due to the unavoidably limited spectral bandwidth of the numerical simulations, it
is not possible to fulfil both requirements of the KLB picture at the same time, namely
a ratio of εα/εI = 1, such that all the injected energy is dissipated at large-scales, in
combination with an exact power-law ∼ k−5/3 for the energy scaling-range. Even DNS
at significantly higher numerical resolution (see e.g. Boffetta & Musacchio 2010) exhibit
smaller deviations from the asymptotic scaling exponent. We observe, that simultaneously
only one of the two characteristics is approximately realisable with sufficient accuracy.
Therefore, three simulation runs are performed, as listed in table 2. Next to numerical
resolution and the large-scale damping required for quasi-stationarity of the flow, the
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Figure 10. Kinetic energy spectra E(k) of runs 2 and 3 with varying kinetic energy injection rates (a) with inset
showing the compensated spectra E(k)k5/3ε

−2/3
I , where the black dashed line indicates a value of CE = 6.69

predicted by the TFM closure of Kraichnan (1971). Normalised cross-scale kinetic energy ZE(k)/εI (b) and
enstrophy fluxes ZΩ(k)/ηI (c) from runs 2 and 3, respectively.

Run εI εα/εI εν/εI Re[105] Teddy

run 1 13.05 0.67 0.33 7.87 0.1
run 2 3.5 0.6 0.4 4.36 0.2
run 3 0.88 0.47 0.53 2.34 0.4

Table 2. Simulation parameters of the two-dimensional hydrodynamic turbulence system with a resolution of
40962, forcing wavenumber kf = 200, large-scale friction factor αω = 500, centre of Gaussian damping profile
k0,ω = 0.1, variance of the Gaussian σ 2

ω = 1, viscosity ν = 5 × 10−5 and timestep dt = 5 × 10−6.

large-scale driving, i.e. the energy injection rate εI , exerts an important influence on the
system.

According to figure 2(c), run 1 with the highest energy injection rate exhibits the
strongest deviation from the k−5/3 scaling, but the best developed normalised cross-scale
energy ZE(k)/εI and enstrophy fluxes ZΩ(k)/ηI (figure 2d) close to values of −1 and 1
in the energy and enstrophy inertial ranges, respectively. Run 3 with the lowest energy
injection rate in figure 10 is the closest to fulfil the power-law but displays weaker
nonlinear fluxes. Although claims exist that relate the large-scale steepening of the energy
spectrum to the large-scale damping leading to the formation of large-scale coherent
vortices at largest scales (see Borue 1994; Danilov & Gurarie 2001), other studies show
that vortex formation already occurs on smaller scales and is not entirely an artifact
due to hypofriction effects (see Babiano et al. 1987; Vallgren 2011; Burgess & Scott
2017). Therefore, it appears to be plausible that the formation of coherent structures in
configuration space is an inherent property of two-dimensional turbulence not captured by
the wavenumber-based KLB phenomenology. This structure formation property has the
tendency to pollute the scaling of the energy spectrum, which is further discussed in § 5.

With decreasing energy injection rate the vorticity field has less distinct coherent
features as shown in figure 2(b) and figure 11(a,b), where single vortex structures become
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Figure 11. (a,b) Vorticities of runs 2 and 3 from a 10242 region, which is 6.25 % of the total physical domain.
The colourbar is normalised to ω/max |ω| for a better visual comparison of structures from varying injection
rates. (c) The kurtosis of the vorticity p.d.f.s from runs 1–3 are denoted as μ̃4.

less intense and gradually dissolve into the residual background, similarly observed by
Burgess & Scott (2017). At the same time the p.d.f. of the vorticity becomes flatter with
increasing injection rates according to figure 11(c), where the increasing values at the tails
of the p.d.f.s are associated with the large vorticity values in the visible vortex cores. For
the present analysis run 1 is used, due to the most visible presence of coherent structures
and the stronger spectral cross-scale flux in the inverse cascade regime compared with the
other DNS. However, the remaining DNS, runs 2 and 3, also lead to qualitatively similar
results. This suggests that the similarity scaling is not the determining factor for the inverse
cascade dynamics of coherent structures.

The large-scale damping certainly has a strong and intended effect on the large-scale
energetics that naturally extends over a limited spectral range into the smaller-scale
dynamics. The high level of isotropy of the damping mechanism, however, is an effort to
avoid additional severe nuisances such as violent and random artificial straining or other
unwanted anisotropic processes. Although comparison with similar works without applied
large-scale damping suggests that the damping does not lead to even more severe artefacts
with regard to coherence dynamics as already inflicted by the finite size of the system.
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Such unwanted side-effects, in particular with regard to the higher-order MSG results,
cannot, of course, be fully ruled out. Furthermore, the effect of numerical resolution, as
observed in test simulations with a monotonically decreasing number of collocation points
down to 2562 reveals that the three-regime signature of the vortex number density already
becomes less discernible at a resolution of 20482. The qualitative results obtained via the
MSG expansion, in contrast, remain unchanged and observable for all tested resolutions.
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ROWLEY, C.W., MEZIĆ, I., BAGHERI, S., SCHLATTER, P. & HENNINGSON, D.S. 2009 Spectral analysis of

nonlinear flows. J. Fluid Mech. 641, 115–127.
RUTGERS, M.A. 1998 Forced 2D turbulence: experimental evidence of simultaneous inverse energy and

forward enstrophy cascades. Phys. Rev. Lett. 81, 2244–2247.
SCHMID, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.

656, 5–28.
SCOTT, R.K. 2007 Nonrobustness of the two-dimensional turbulent inverse cascade. Phys. Rev. E 75, 046301.
STANIFORTH, A. & CÔTÉ, J. 1991 Semi-Lagrangian integration schemes and their application to

environmental flows. Mon. Weath. Rev. 119 (9), 2206–2223.
TAIRA, K., BRUNTON, S.L., DAWSON, S.T.M., ROWLEY, C.W., COLONIUS, T., MCKEON, B.J.,

SCHMIDT, O.T., GORDEYEV, S., THEOFILIS, V. & UKEILEY, L.S. 2017 Modal analysis of fluid flows:
an overview. AIAA J. 55, 4013–4041.

TOWNE, A., SCHMIDT, O.T. & COLONIUS, T. 2018 Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867.

VALLGREN, A. 2011 Infrared Reynolds number dependency of the two-dimensional inverse energy cascade.
J. Fluid Mech. 667, 463–473.

WEISS, J. 1991 The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D
48, 273–294.

XIAO, Z., WAN, M., CHEN, S. & EYINK, G.L. 2009 Physical mechanism of the inverse energy cascade of
two-dimensional turbulence: a numerical investigation. J. Fluid Mech. 619, 1–44.

YADAV, N., CAMERON, R.H. & SOLANKI, S.K. 2021 Vortex flow properties in simulations of solar plage
region: evidence for their role in chromospheric heating. Astron. Astrophys. 645, A3.

YOSHIMATSU, K., KONDO, Y., SCHNEIDER, K., OKAMOTO, N., HAGIWARA, H. & FARGE, M. 2009
Wavelet-based coherent vorticity sheet and current sheet extraction from three-dimensional homogeneous
magnetohydrodynamic turbulence. Phys. Plasmas 16, 082306.

ZHOU, J., ADRIAN, R.J., BALACHANDAR, S. & KENDALL, T.M. 1999 Mechanisms for generating coherent
packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396.

963 A28-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.313

	1 Introduction
	2 Physical model and flow decomposition
	3 Coherence specifications
	3.1 Okubo--Weiss criterion (OW)/Q-criterion
	3.2 Vorticity magnitude 
	3.3 Lagrangian coherent structures
	3.4 Determining the threshold: vortex scaling

	4 Diagnostic methods for the inverse cascade
	4.1 Spectral flux
	4.2 Spatial flux distribution
	4.3 MSG flux expansion

	5 Numerical methods and parameters
	5.1 Structure detection

	6 Relation of coherent structures to the inverse cascade process
	6.1 Cross-scale flux efficiency
	6.2 Coherent shape preservation and residual thinning mechanism

	7 Conclusions
	A Appendix A. Technical details
	A.1 Vorticity decomposition
	A.2 Efficient FTLE calculation
	A.3 MSG flux derivation

	B Appendix B. Sensitivity of energy injection rate, KLB theory and finite-size effects
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


