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This study investigates the correlation between the fluctuating wall heat flux, and the
distribution and transport of Reynolds shear stress and turbulent heat flux in compressible
boundary layers at Mach number 5.86 and friction Reynolds number 420, with a relatively
weaker and a stronger wall cooling imposed. As illustrated from the probability density
functions of the wall-heat-flux perturbations, with increasing wall cooling, the extreme
wall heat flux is intensified and tends to be more negatively skewed. To examine the role
of the extreme events in the transport of the momentum and heat, conditional analysis
of the extreme positive and negative wall-heat-flux-perturbation events is conducted. In
most regions of the boundary layer, the positive events are predominantly associated
with an increase in Reynolds shear stress and a decrease in turbulent heat flux. Joint
probability density functions of velocity and wall-heat-flux perturbations in the near-wall
region indicate that the extreme positive events tend to be more correlated with ejections,
which is particularly evident in the stronger wall-cooling case. To further shed light
on the underlying mechanisms of the connections between wall heat flux and transport
budgets, a transport equation for turbulent heat flux is derived, in a similar manner to
that for Reynolds shear stress. The energy balance is inspected, with conditional analysis
applied to budget terms and mean flow properties so as to quantify the correlation between
wall-heat-flux fluctuations and energy evolution.

Key words: compressible turbulence, turbulent boundary layers

1. Introduction

The characterization of Reynolds shear stress and turbulent heat flux in compressible
turbulent boundary layers is of particular importance for aerodynamic design and thermal
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protection of high-speed vehicles. In contrast to the incompressible case, the coupled
interaction of fluid compressibility and wall heat transfer in compressible turbulent
boundary layers presents a more complex challenge in formulating flow characteristics,
including the mean and fluctuations of velocities and temperature, and their correlations.
To date, numerous studies have been devoted to exploring the flow dynamics in
compressible boundary layers over isothermal walls (Duan, Beekman & Martin 2010; Xu
et al. 2021b; Cogo et al. 2022).

The presence of wall heat transfer has a significant impact on the velocity dilatation and
affects the flow dynamics in compressible turbulent boundary layers, as does the Mach
number (Wenzel, Gibis & Kloker 2022). To distinguish the influence of Mach number and
the wall temperature condition, Cogo et al. (2023) pointed out that it is not appropriate to
compare cases at a fixed wall-to-recovery temperature ratio with different Mach numbers,
which results in significantly distinct near-wall dynamics of temperature fluctuations. To
recover a similar flow pattern at different Mach numbers, they highlighted other definitions
of wall-cooling parameter, such as the diabatic parameter Θ = (Tw − T∞)/(Tr − T∞)

(Zhang et al. 2014) and the Eckert number Ec = (γ − 1)M2∞T∞/(Tr − Tw) (Wenzel et al.
2022), where Tw and T∞ denote the temperature at the wall and in the free stream, Tr
is the recovery temperature, M∞ is the free stream Mach number and γ is the specific
heat ratio. When the wall temperature decreases (denoting wall cooling), the turbulent and
fluctuating Mach numbers increase rapidly, signifying enhanced compressibility effects
(Duan et al. 2010; Shadloo, Hadjadj & Hussain 2015; Zhang, Duan & Choudhari 2018),
and near-wall streaks and hairpin vortices become more organized and coherent (Liang
& Li 2015). Taking advantage of Helmholtz decomposition, Yu & Xu (2021) split the
velocity fluctuations into solenoidal and dilatational components in hypersonic channel
flows over cold walls, and found that the dilatational components gradually dominate the
vertical motions and tend to reduce the skin friction as the wall temperature decreases. Fan
& Li (2023) investigated the effects of wall cooling on kinetic and internal energy budgets
in hypersonic turbulent boundary layers. They observed that the wall cooling strengthens
the spatial and interscale transport of turbulent kinetic energy while suppressing that of
turbulent internal energy, with the leading mechanisms shifted further away from the
wall in inner units. Additionally, with wall cooling, the signs of conductive and turbulent
heat transfer are reversed in the wall-normal direction within the boundary layer. At this
turning point, temperature fluctuations are damped and a minor peak appears in the viscous
sublayer, which results in a decorrelation of velocity and temperature (Cogo et al. 2023),
and consequently challenges the validity of traditional modelling approaches based on
mapping to an equivalent incompressible flow (Fan, Li & Pirozzoli 2022; Wenzel et al.
2022).

Further, the wall-bounded turbulence is characterized by bursting motions, resulting
in dramatic deviations in instantaneous heat transfer at the wall compared with its mean
value. As a result, strong (extreme) perturbations in wall heat transfer interact strongly
with the coherent structures within the boundary layer, e.g. the wall-heat-flux fluctuations
are coupled with the near-wall velocity streaks (Kim & Moin 1989; Dong et al. 2022).
Nonetheless, relevant research regarding the causal relationship between wall-heat-flux
fluctuations and the flow field is very scarce in the open literature. Tong et al. (2022)
compared the frequency spectra and space–time correlation of the fluctuating wall heat
flux with those of wall shear stress. They discovered that the wall heat flux contains more
energy in the higher frequencies and propagates downstream faster than the wall shear
stress. Furthermore, they examined the conditionally averaged velocity and temperature
fluctuations associated with extreme negative and positive events of wall-heat-flux
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fluctuations, to identify the underlying generation mechanisms of these events. In another
study, Zhang et al. (2023) found a high correlation between extreme heat-transfer events
and the high-/low-speed streaks and the alternating positive and negative structures in
hypersonic turbulent boundary layers, observed through the wall-heat-flux field.

To more comprehensively uncover the dependence of the flow statistics, specifically
Reynolds shear stress and turbulent heat flux, on the mean wall heat flux and their
intercorrelation with the fluctuating wall heat flux, budget analysis of energy transport
equations is used, which offers deeper insight into the mechanisms by which the structure
of wall turbulence evolves. Similar to the Reynolds stress transport equation, Kawata &
Tsukahara (2022) derived the transport equations for the temperature-related statistics
to reveal the production, dissipation, and transport of turbulent energy and heat flux
in turbulent plane Couette flow. Subsequently, each term in the transport equations is
spectrally decomposed to unravel the nonlinear multi-scale interaction in terms of the
spatial transport and interscale transfer. In contrast to the turbulent kinetic energy transfer
from large to small scales, Kawata & Alfredsson (2018) discovered an inverse transfer of
Reynolds shear stress from small to large scales in plane Couette flow. With a detailed
spectral analysis of the kinetic energy budget equations in incompressible turbulent
channel flows at high Reynolds numbers, Lee & Moser (2019) identified the flow of
energy in the wall-normal direction, in scale and among components at all length scales.
In the regime of compressible flows, Praturi & Girimaji (2019) further derived the spectral
evolution equation for the kinetic energy and pressure fields, taking into account the effect
of density variation, and examined the role of pressure dilatation and interscale transfer in
decaying turbulence. Furthermore, to characterize the evolution process of internal energy,
its transport equations for the mean and fluctuating fields were derived by incorporating
a pressure-based variable (Miura & Kida 1995). A mathematical framework was then
developed to quantitatively describe the exchange and interactions between internal and
kinetic energy (Mittal & Girimaji 2019), with the budget terms in the internal evolution
vanishingly small relative to those in the kinetic evolution (Xu et al. 2021a). In this
sense, Fan et al. (2022) proposed formulating the turbulent internal energy transport
equation based on the sound-speed-like quantity, so that it can be directly analogized with
the kinetic energy transport equation. Considering that this sound-speed-like variable is
proportional to the local sound speed, or alternatively the square root of temperature, it
can be generally used to describe temperature-related statistics, e.g. the turbulent heat flux
which is the focus of the present study. Hence, by incorporating this variable, the transport
equation for turbulent heat flux can be derived, providing a quantitative description of the
evolution of heat transfer in compressible turbulent boundary layers.

In general, extensive research has been conducted to reveal the compressibility and
heat transfer effects on mean-flow and fluctuation statistics (Huang, Duan & Choudhari
2022; Cogo et al. 2023), flow organizations (Pirozzoli & Bernardini 2011; Cogo et al.
2022), and energy evolution (Zhang et al. 2018; Xu et al. 2021b). Special focus has
been given to the compressibility transformation, which maps the mean velocity and
temperature profiles of compressible flows to their incompressible counterparts, regardless
of the wall thermal condition (Griffin, Fu & Moin 2021; Hasan et al. 2023; Huang et al.
2023). However, as for the generation and characteristics of wall-heat-flux fluctuations
in the evolution of turbulence, to the best of the authors’ knowledge, very few studies
can be found in the open literature. Hence, the objective of this research is to enhance
our understanding of the relationship between the wall-heat-flux fluctuations, and the
distribution and transport of Reynolds shear stress and turbulent heat flux across the
boundary layer in varying wall-temperature scenarios. This paper is outlined as follows.
In § 2, the transport equations for Reynolds stress and turbulent heat flux are formulated.
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Section 3 introduces the direct numerical simulation (DNS) database of two hypersonic
turbulent boundary layers. In § 4, we investigate the role of mean and fluctuating wall heat
flux in the distribution of Reynolds shear stress and turbulent heat flux and their transport
budgets, by means of conditional sampling. Finally, concluding remarks are given in § 5.

2. Transport equations

In this section, the transport equations for Reynolds stresses and turbulent heat flux are
given. A detailed derivation is shown in Appendix A. For compressible turbulent boundary
layers, the transport equation for Reynolds stress 〈ρu′′

i u′′
j 〉 is formulated as

∂〈ρu′′
i u′′

j 〉
∂t

+
∂〈ρu′′

i u′′
j 〉{uk}

∂xk

= Pρuiuj + Dt
ρuiuj

+ Dp
ρuiuj

+ Dν
ρuiuj

+ Πp
ρuiuj

− ερuiuj + Mρuiuj . (2.1)

The terms on the right-hand side of (2.1) are defined as production (Pρuiuj), turbulent
diffusion (Dt

ρuiuj
), pressure diffusion (Dp

ρuiuj), viscous diffusion (Dν
ρuiuj

), pressure strain
(Πp

ρuiuj), viscous dissipation (ερuiuj) of Reynolds stress, and the mass contribution
associated with the effect of density variation (Mρuiuj). Their expressions are as follows:

Pρuiuj = −
(

〈ρu′′
j u′′

k 〉
∂{ui}
∂xk

+ 〈ρu′′
i u′′

k 〉
∂{uj}
∂xk

)
; (2.2a)

Dt
ρuiuj

= −
∂〈ρu′′

i u′′
j u′′

k 〉
∂xk

; (2.2b)

Dp
ρuiuj

= −
(〈

∂p′u′′
j

∂xi

〉
+
〈
∂p′u′′

i
∂xj

〉)
; (2.2c)

Dν
ρuiuj

=
(〈

∂τ ′
iku′′

j

∂xk

〉
+
〈
∂τ ′

jku′′
i

∂xk

〉)
; (2.2d)

Πp
ρuiuj

=
(〈

p′ ∂u′′
j

∂xi

〉
+
〈
p′ ∂u′′

i
∂xj

〉)
; (2.2e)

ερuiuj =
(〈

τ ′
ik

∂u′′
j

∂xk

〉
+
〈
τ ′

jk
∂u′′

i
∂xk

〉)
; (2.2f )

Mρuiuj = 〈u′′
i 〉
(

−∂〈p〉
∂xj

+ ∂〈τjk〉
∂xk

)
+ 〈u′′

j 〉
(

−∂〈p〉
∂xi

+ ∂〈τik〉
∂xk

)
, (2.2g)

where t is time, ρ is density, xk (k = 1, 2, 3) denotes the streamwise, wall-normal
and spanwise directions, uk (k = 1, 2, 3) are the corresponding velocity components,
and p is pressure. Here, τij is the viscous stress calculated by μ[(∂ui/∂xj + ∂uj/∂xi) −
2
3δij∂uk/∂xk], with μ being the dynamic viscosity and δij being the Kronecker delta.
Additionally, 〈·〉 and {·} are the Reynolds- and Favre-averaging operators, and the single
and double prime represent the turbulent fluctuations with respect to the Reynolds and
Favre average, respectively.
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In a similar manner, the transport equation for turbulent heat flux can also be obtained.
For this to happen, a sound-speed-like variable φ is first introduced. It can be expressed as

φ =
√

CvT = c
((γ − 1)γ )1/2 , (2.3)

where T denotes temperature, c represents the speed of sound, Cv is the specific heat
at constant volume and γ is the specific heat ratio. Instead of the local temperature, φ

actually reflects the square root of it. In such a way, the formulation of the internal energy
becomes e = ρφ2, which directly resembles the role of velocity in the kinetic energy, being
k = 1/2ρu2

k . Consequently, the present definition of φ provides a major advantage in the
interpretation of the turbulent energy budgets. With this definition, the internal energy
transport equations share a full structural similarity with those of kinetic energy, allowing
us to illuminate more neatly the mechanisms of energy exchange (Fan et al. 2022). Hence,
the variable φ is also used herein to represent the turbulent heat flux, which is defined by
〈ρu′′

i φ
′′〉. We also give the transport equation as (see Appendix A for detailed derivation)

∂〈ρu′′
i φ

′′〉
∂t

+ ∂〈ρu′′
i φ

′′〉{uk}
∂xk

= Pρuiφ + Dt
ρuiφ

+ Wp
ρuiφ

+ Wν
ρuiφ

+ Wq
ρuiφ

+ Mρuiφ.

(2.4)

The terms on the right-hand side are expressed as

Pρuiφ = −
(

〈ρu′′
kφ

′′〉∂{ui}
∂xk

+ 〈ρu′′
i u′′

k 〉
∂{φ}
∂xk

)
, (2.5a)

Dt
ρuiφ

= −∂〈ρu′′
i φ

′′u′′
k 〉

∂xk
, (2.5b)

Wp
ρuiφ

= −
〈
u′′

i

(
p∂uk/∂xk

2φ

)′〉
−
〈
φ′′ ∂p′

∂xi

〉
, (2.5c)

Wν
ρuiφ

=
〈
u′′

i

(
τjk∂uj/∂xk

2φ

)′〉
+
〈
φ′′ ∂τ ′

ik
∂xk

〉
, (2.5d)

Wq
ρuiφ

= −
〈
u′′

i

(
∂qk/∂xk

2φ

)′〉
, (2.5e)

Mρuiφ = 〈u′′
i 〉
(〈

−p∂uk/∂xk

2φ
+ τjk∂uj/∂xk

2φ
− ∂qk/∂xk

2φ

〉)
+ 〈φ′′〉

(
−∂〈p〉

∂xi
+ ∂〈τik〉

∂xk

)
,

(2.5f )

where qk is the heat conduction calculated by qk = −K∂T/∂xk and K is the thermal
conductivity coefficient. In (2.5a)–(2.5f ), Pρuiφ is interpreted as the production of
turbulent heat flux, Dt

ρuiφ
is turbulent diffusion, Wp

ρuiφ
, Wν

ρuiφ
and Wq

ρuiφ
are the

contribution of pressure work, viscous action and heat conduction, and Mρuiφ is associated
with the variation of density and temperature across the boundary layer.

In this paper, attention will be only paid to the dominant elements in the Reynolds stress
and turbulent heat flux tensor, i.e. −〈ρu′′

1u′′
2〉 and 〈ρu′′

2φ
′′〉, which are of vital significance

in the momentum and heat/mass transport in heat-conducting turbulence. Hereafter, we
also use x, y and z to denote the streamwise, wall-normal and spanwise directions, and use
u, v and w to represent the corresponding velocities, for brevity. Hence, the two elements
are also known by −〈ρu′′v′′〉 and 〈ρv′′φ′′〉, respectively.
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Case M∞ Reτ Tw/Tr Reθ Reδ2 H12 −Bq

cold1 5.86 419 0.76 10,864 1842 12.84 0.0146
cold2 5.86 425 0.25 2,122 1074 8.19 0.1336

Table 1. Flow properties at the considered locations.

3. Direct numerical simulation database of hypersonic turbulent boundary layers

Two DNSs of hypersonic turbulent boundary layers are performed at the free stream
Mach number 5.86, using a finite differencing solver, STREAmS (Supersonic TuRbulEnt
Accelerated navier-stokes Solver), which was developed by Bernardini et al. (2021).
Detailed settings and grid resolutions for the DNS can be retrieved from Fan & Li
(2023), where validation of the DNS data was carefully conducted in comparison to the
corresponding cases of Zhang et al. (2018) and Huang et al. (2022).

In the cases, flow stations are selected to align the friction Reynolds number Reτ at
approximately 420, where Reτ = ρwuτ δ99/μw with the subscript w denoting the variables
at the wall, δ99 the 99 % boundary-layer thickness at the considered location and uτ

the local friction velocity. In compressible flows, due to the rapid variations of the
thermodynamic properties across the boundary layer, one single Reynolds number is
insufficient to characterize the state of the flow (Lele 1994). Other frequently used
Reynolds numbers, including Reθ (= ρ∞u∞θ/μ∞) and Reδ2 (= ρ∞u∞θ/μw) are given
in table 1. Here, θ denotes the momentum thickness and the subscript ∞ denotes the free
stream values. Furthermore, Patel et al. (2015) exploited a semilocal Reynolds number Re

τ

(= Reτ

√
(〈ρ〉/ρw)/(〈μ〉/μw)), which varies as a function of the wall-normal distance,

to develop the research framework of semilocal scaling (Huang, Coleman & Bradshaw
1995). The Re

τ distribution across the turbulent boundary layer for the present two
cases will be shown in § 4.1. The choice of the most appropriate definition of Reynolds
number is usually subjective, depending on the researchers’ preference and research
objective. Shadloo et al. (2015) investigated the effects of choosing different definitions
of Reynolds numbers for compressible boundary layers, including Reτ , Reθ and Reδ2, on
turbulent statistics and found that Reτ performs best in collapsing the inner-layer turbulent
velocity fluctuations in the semilocally scaled coordinates. More importantly, the present
choice of matching Reτ for the two cases is principally motivated by a need to limit the
computational cost.

Two wall thermal conditions are used, with the wall-to-recovery temperature ratio Tw/Tr
being 0.76 (cold1) and 0.25 (cold2) to represent the weaker and stronger wall-cooling
intensity. Here, Tr is the nominal recovery temperature determined by Tr = T∞[1 + r(γ −
1)M2∞/2], where r = 0.89. Lower Tw/Tr indicates stronger wall-cooling intensity, since
more heat is drawn out through the wall. As seen in the last column in table 1, the wall
heat flux coefficient −Bq = −qw/(ρwCpuτ Tw) (where Cp is the specific heat at constant
pressure) in the cold2 case is approximately an order of magnitude larger than that in
cold1. More information regarding the shape factor H12 (= δ∗/θ , where δ∗ represents the
displacement thickness) is also given in table 1.

4. Results and discussion

In this section, we first examine the features of mean thermodynamic properties
and turbulent statistics in both hypersonic turbulent boundary layers under scrutiny.
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Figure 1. Profiles of (a) temperature 〈T〉/T∞, (b) density 〈ρ〉/ρ∞, (c) viscosity 〈μ〉/μw and (d) semilocal
Reynolds number Re

τ , as a function of y/δ99, in the hypersonic turbulent boundary layers under two
wall-cooling conditions.

The correlation between fluctuating wall heat flux and Reynolds shear stress and turbulent
heat flux is then investigated across the boundary layer by means of conditional statistics,
as well as their budgets including the production, pressure work and turbulent transport.

4.1. Mean thermodynamic properties
The thermodynamic properties across the boundary layer are first examined in figure 1,
under different wall-cooling conditions. It is shown that, in both cases, the mean
temperature gradient changes sign in close vicinity of the wall, which consequently
reverses the direction of conductive heat transfer. As the wall-cooling intensity increases,
the wall-normal location of the maximum mean temperature moves away from the wall,
i.e. from y/δ99 ≈ 0.005 in the cold1 case to 0.04 in the cold2 case. Moreover, considerable
differences are seen in the magnitude and gradient of mean temperature in the two cases.
As depicted in figures 1(b) and 1(c), with the increase of temperature, the mean density
decreases and the mean viscosity increases. To distinguish the effect of Reynolds number
from that of the mean thermal properties on the turbulent statistics and structures, a
semilocal friction Reynolds number, Re

τ , was proposed and used as a governing parameter
for flow comparison (Patel et al. 2015). The variation of this semilocal Reynolds number
across the boundary layer is plotted in figure 1(d). In alignment with the trends of mean
density, Re

τ decreases towards the wall, reaching a minimum close to the wall. As the wall
is approached, a small increase is observed (see inset in figure 1d). With the weaker and
stronger cooling exerted on the wall, the Re

τ profiles show a clear difference in gradient
for the two different cases, indicating that wall heat flux impacts not only the thermal
properties of the flow but also the turbulent characteristics (Shadloo et al. 2015).
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Figure 2. Profiles of (a,c) Reynolds shear stress and (b,d) turbulent heat flux in the hypersonic turbulent
boundary layers under two wall-cooling conditions. The dashed lines in panels (b) and (d) represent the value
of zero.

4.2. Turbulent statistics
The wall-normal distributions of Reynolds shear stress and turbulent heat flux are shown in
figure 2, where both the classical inner scaling (y+) and the semilocal scaling (y∗) (Huang
et al. 1995) are used. The superscript + denotes the normalization with wall units, namely
the wall density ρw, the friction velocity uτ = √

τw/ρw and the viscous length scale δν =
νw/uτ , where τw is the wall shear stress and νw denotes the kinematic viscosity coefficient
at the wall. The superscript ∗ denotes the normalization with semilocal units based on
the local density and viscosity, that is, the semilocal velocity scale u∗

τ = √
τw/〈ρ〉 and the

semilocal length scale δ∗
ν = 〈ν〉/u∗

τ . Here, 〈ν〉 is the local mean kinematic viscosity. The
variables −〈ρu′′v′′〉∗ and 〈ρv′′φ′′〉∗ are normalized by 〈ρ〉u∗2

τ , which actually amounts to
ρwu2

τ .
In the inner scaling, as shown in figure 2(a,b), with the decrease of the wall-to-recovery

temperature ratio (i.e. increase in wall cooling), −〈ρu′′v′′〉+ is found to be reduced for
y+ < 100, whereas it remains almost unchanged for y+ > 100. This indicates that the
wall-temperature effects on the momentum transport are considerably attenuated in the
outer region. A different phenomenon is seen in the wall-normal distribution of turbulent
heat flux, which is decreased throughout the boundary layer in the cold2 case. In particular,
near the wall, 〈ρv′′φ′′〉+ becomes negative with stronger wall cooling, which is associated
with the direction of heat conduction (Fan et al. 2022; Fan & Li 2023). However, in
figure 2(c), the semilocal scaling better collapses the inner peak location of the Reynolds
shear stress, whereas in figure 2(d), the profiles of turbulent heat flux have peaks at
different y∗ for different wall-cooling intensities, as the peaks are located at an outer-layer

999 A52-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.902


Correlations between wall heat flux and turbulent statistics

x/δin

0

2

4

z/
δ i
n

–0.02

0

0.02

(a)

40 42 44 46 48 50 40 42 44 46 48 50
x/δin

0

2

4

–0.05

0

0.05

(b)

Figure 3. Instantaneous fields of wall-heat-flux fluctuations, for cases (a) cold1 and (b) cold2. Here, δin
denotes the boundary-layer thickness at the inflow station. The dashed boxes indicate the alternating positive
and negative structures.

position which is more associated with the outer scales. In general, considering the
coupling effects of the rapid variations of thermodynamic properties in compressible
turbulent boundary layers, the semilocal scaling is shown to be more appropriate to
describe the wall-normal distributions of turbulent statistics (Huang et al. 1995; Zhang
et al. 2018). Hence, we use the semilocal scaling (y∗) in the following discussion.

To more comprehensively learn the correlation between wall heat flux and the
distribution of −〈ρu′′v′′〉∗ and 〈ρv′′φ′′〉∗ across the boundary layer, further attention
is paid to the role of Bq-perturbations (B′

q), which interact with the instantaneous
dynamical/thermodynamical process and are highly connected to the statistical
variations in the momentum/heat transport consequently. Figure 3 displays snapshots of
instantaneous wall-heat-flux fluctuations (B′

q). Two kinds of structures are visualized: first,
elongated streaks and second, the alternating positive and negative structures (APNSs),
similar to the observations in the study by Zhang et al. (2023). The travelling-wave-like
APNSs, as marked by the dashed boxes, are closely associated with the velocity dilatation
(Xu et al. 2021b) and tend to dominate the B′

q-events due to the high compressibility of the
cases under scrutiny. As the wall-cooling intensity increases, the structures become larger
in both streamwise and spanwise directions.

Figure 4 quantifies the probability density functions (p.d.f.s) of B′
q, with their skewness

calculated by S(B′
q) = 〈B′3

q 〉/〈B′2
q 〉3/2 and annotated. In the cold1 case, the p.d.f. profile is

slightly negatively skewed with S(B′
q) = −0.43, even though this is hard to discern. As

the wall-cooling intensity increases, this type of asymmetrical distribution becomes clear
with the value of S(B′

q) decreasing to −0.60, and the extreme wall heat flux is intensified
in the tails. As a consequence, the negative B′

q-events are stronger in intensity, but fewer in
number than the positive ones. This phenomenon is consistent with the finding by Zhang
et al. (2023) in the Mach number 8 case. (It is worth noting that the p.d.f. plot in their
paper is in contrast to figure 4. This is because they defined qw analogous to wall shear
stress in (3.1a,b) which is opposite to our definition qw = −K∂T/∂y|w.)

The connection between B′
q and the globally averaged Reynolds shear stress and

turbulent heat flux is investigated, by means of d〈−ρu′′v′′〉∗/dB′
q and d〈ρv′′φ′′〉∗/dB′

q,
in figures 5 and 6. These B′

q-wise derivatives bear the advantage that their integrals with
respect to B′

q directly amount to the value of −〈ρu′′v′′〉∗ and 〈ρv′′φ′′〉∗ at all wall-normal
locations (Agostini & Leschziner 2019). Hence, they can quantify the contribution of
−〈ρu′′v′′〉∗ and 〈ρv′′φ′′〉∗ within a specific band of dB′

q to their respective total. From
figure 5, the local quantity peaks mostly around B′

q = 0, which is straightforwardly
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Figure 4. Probability density function of the wall-heat-flux fluctuations. The blue and red regions denote the
extreme 2 % negative and positive B′

q-events.
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Figure 5. Map of the Reynolds-shear-stress derivative d〈−ρu′′v′′〉∗/dB′
q for cases (a) cold1 and (b) cold2.

ascribed to the large population of B′
q-events there. Nevertheless, skewness to the positive

events is observed in the map in figure 5(b) in the region y∗ < 100. Consistent with the
wall-normal profile of −〈ρu′′v′′〉∗, the magnitude of d〈−ρu′′v′′〉∗/dB′

q is small near the
wall, with a significant percentage of it related to motions at the relatively large wall
thermal perturbations. A similar phenomenon is found in the map of d〈ρv′′φ′′〉∗/dB′

q (in
figure 6), with an exception that the contribution is mostly distributed in the outer region
where the B′

q-wise derivatives exhibit approximate symmetry with regards to B′
q = 0 in

both cases. However, as the population of events within a specific band of dB′
q varies

with the intensity of fluctuations (see the p.d.f. in figure 4), the magnitude of B′
q-wise

derivatives does not directly reflect the correlation of a single B′
q-event with the local

properties. To this end, the variation of local mean quantities under the condition of B′
q is

investigated in the next section.

4.3. Conditional sampling
The average of Reynolds shear stress and turbulent heat flux conditioned on the B′

q-events
is further examined in this section. The conditional mean quantities, −〈ρu′′v′′〉∗|B′

q
and
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Figure 6. Map of the turbulent-heat-flux derivative d〈ρv′′φ′′〉∗/dB′
q for cases (a) cold1 and (b) cold2.
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Figure 7. (a,b) Map of the conditional average of Reynolds shear stress, −〈ρu′′v′′〉∗|B′
q
, for cases (a) cold1

and (b) cold2. (c) Profiles of the averaged Reynolds shear stress conditioned on the extreme 2 % negative and
positive B′

q-events. The black solid lines in panels (a,b) denote the positive level, the black dashed lines denote
the negative and the orange dashed line denotes 0.

〈ρv′′φ′′〉∗|B′
q
, are expressed as

−〈ρu′′v′′〉∗|B′
q

= −〈ρuv〉∗|B′
q
+ 〈ρ〉∗|B′

q
{u}∗|B′

q
{v}∗|B′

q
, (4.1a)

〈ρv′′φ′′〉∗|B′
q

= 〈ρvφ〉∗|B′
q
− 〈ρ〉∗|B′

q
{v}∗|B′

q
{φ}∗|B′

q
. (4.1b)

With (4.1a), the −〈ρu′′v′′〉∗|B′
q

is quantified at all wall-normal locations in figure 7.
Remarkable differences are observed between the left and right sides of the map in the
near-wall region, indicating that positive and negative B′

q-events have distinct roles in
the production of Reynolds shear stress. In particular, negative Reynolds shear stress
is observed with negative B′

q-events close to the wall. Whereas further away from the
wall, the connection between −〈ρu′′v′′〉∗|B′

q
and B′

q gradually weakens as −〈ρu′′v′′〉∗|B′
q

barely changes with B′
q at large wall-normal distances. An enhanced view of the

distinctive properties is further shown in the profiles of the averaged Reynolds shear
stress conditioned on the extreme 2 % negative and positive B′

q-events (blue and red
regions in figure 4). In figure 7(c), in the near-wall region, the presence of positive
wall-heat-flux perturbations is associated with the stronger generation of Reynolds shear
stress when introducing additional heat into the fluid from the surface. In contrast, in the
region y∗ > 80, the difference associated with the extreme positive and negative B′

q-events
is almost indiscernible. This again confirms that the interaction between wall-heat-flux
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Figure 8. (a,d) Joint p.d.f. of u′′/u∞ and B′
q, (b,e) joint p.d.f. of v′′/u∞ and B′

q, and (c, f ) pre-multiplied joint
p.d.f. of u′′/u∞ and v′′/u∞, for cases (a,b,c) cold1 and (d,e, f ) cold2 at y∗ = 8. The black solid lines in panels
(a,b,d,e) represent the conditional averages of the global velocity perturbations, 〈u′′/u∞〉|B′

q
and 〈v′′/u∞〉|B′

q
.

The contours in panels (c, f ) show fluctuations conditioned on the overall (black), extreme 2 % negative (blue)
and extreme 2 % positive (red) B′

q-events.

perturbations and Reynolds-shear-stress distribution is strong close to the wall, and is
gradually attenuated further away from it (say, y∗ > 80 for cases under scrutiny).

To gain clearer insight into the correlation between B′
q and the turbulent motions

responsible for Reynolds shear stress, figure 8 plots the joint p.d.f.s of the fluctuations of
streamwise and wall-normal velocities at a representative near-wall location, y∗ = 8, with
respect to B′

q. It is observed that negative B′
q-events tend to be more closely associated with

the positive u′′-motions and more closely associated with the negative v′′ in figure 8(a,b).
This phenomenon is more evidently exhibited under the condition of stronger wall
cooling in figure 8(d,e). Stronger B′

q is in alignment with stronger turbulent dynamical
motions. The extreme negative and positive B′

q-events are identified, to characterize their
corresponding motions at the wall-normal location y∗ = 8. As shown in figure 8(c), under
the condition of weaker wall cooling, the pre-multiplied joint p.d.f. of u′′/u∞ and v′′/u∞
conditioned on the overall B′

q-events (denoted by black solid lines) primarily manifests
the strong sweep and ejection events in the near-wall cycle. The extreme 2 % positive
B′

q-events (red lines) tend to be more correlated with ejections, whereas the extreme
2 % negative B′

q-events (blue lines) tend to be related to the sweep events. When the
wall-cooling intensity increases, this trend is more pronouncedly presented, as seen in
figure 8( f ). In the self-sustaining cycle, the linear lift-up of streaks is associated with
the even (varicose) instability mode, which is correlated with the wall-normal gradients
of the streamwise velocity. However, the push-over of streaks is more connected to the
odd (sinuous) mode, relying on the spanwise shear (Swearingen & Blackwelder 1987;
Lozano-Durán et al. 2021). Hence, it suggests that the positive B′

q-events may correspond
to the development of the even mode, which results in active transient growth of
streamwise perturbations through a strong wall-normal shear of the inflectional streamwise
velocity, while the negative B′

q-events may correspond to the development of the odd
mode.

999 A52-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.902


Correlations between wall heat flux and turbulent statistics

0

0.2

0.4

0.6

–0.1

0

0.1

0.2

0.3

0.4

0

0.2

0.4

0.6 neg. cd1

pos. cd1

neg. cd2

pos. cd2

–0.02 0 0.02

B′
q

–0.05 0 0.05

B′
q

100 102 104

y∗
100

101

102

103

y∗

(a)

100

101

102

103

y∗

(b) (c)

〈ρ
v
′′ φ

′′ 〉* | B
′ q

Figure 9. (a,b) Map of the conditional average of turbulent heat flux, 〈ρv′′φ′′〉∗|B′
q
, for cases (a) cold1 and

(b) cold2. (c) Profiles of the averaged turbulent heat flux conditioned on the extreme 2 % negative and positive
B′

q-events.

The conditional average of turbulent heat flux, 〈ρv′′φ′′〉∗|B′
q
, is shown in figure 9. Similar

to the observations in the distribution of the conditional average of Reynolds shear stress,
the positive and negative B′

q-events play distinguishing roles in the distribution of turbulent
heat flux. For instance, as shown in figure 9(a,b), the negative extreme B′

q is in good
alignment with the amplification of turbulent heat flux even in the region further away
from the wall (e.g. at y∗ approximately 100), indicating that the negative wall events
correspond to the enhanced thermodynamic perturbations there. This phenomenon is more
straightforwardly displayed in the profiles of the averaged turbulent heat flux conditioned
on the extreme 2 % negative and positive B′

q-events, as shown in figure 9(c). Differences
between the contributions of positive and negative B′

q-events are clearly seen in the region
even away from the wall, where the majority of thermal energy is produced (Fan & Li
2023). This is different from the finding in the map of −〈ρu′′v′′〉∗|B′

q
, where the averaged

quantities conditioned on the positive and negative extreme events almost converge for
y∗ > 80, implying that the effect of wall temperature on the thermodynamic structures
would be more outstretched in the wall-normal direction.

In a similar manner, figure 10 delineates the joint p.d.f.s of the velocities and
wall-heat-flux perturbations at y∗ = 8, to reveal the correlation between the dynamical
motion and thermal quantity. In both cases, B′

q is slightly negatively correlated with φ′′,
while positively correlated with v′′ at the selected height (shown by the black solid lines
in figure 10a,b,d,e). It thus leads to differences in the φ′′–v′′ correlations conditioned on
the overall, extreme 2 % negative and positive B′

q-events. In the cold1 case, in figure 10(c),
a relatively larger population is seen in Quarter 1 (where φ′′ > 0 and v′′ > 0) and Quarter
3 (where φ′′ < 0 and v′′ < 0), indicating that φ′′ and v′′ are mostly positively correlated
with each other yielding positive turbulent heat flux, as shown in figures 2(d) and 9(c).
Nevertheless, a negative correlation of φ′′ and v′′ appears, with the negative B′

q-events
preferring the downward motions while the positive ones preferring the upward motions.
When there is stronger heat flux at the wall (see figure 10f ), the situation differs in that
events are more evidently scattered in Quarter 2 (where φ′′ < 0 and v′′ > 0) and Quarter
4 (where φ′′ > 0 and v′′ < 0). This is associated with the sign reversal of temperature
gradient within the turbulent boundary layer. At y∗ = 8, the positive thermal structures
tend to be carried towards the lower-temperature (lower) layers and the negative thermal
structures to the higher-temperature (upper) layers (Pirozzoli & Bernardini 2011; Fan, Li
& Sandberg 2023). The positive v′′ motions conditioned on the positive B′

q-events are
again accentuated in figure 10( f ), indicating that the receipt of heat flux from the wall
preferentially corresponds to the lift-up of turbulent motions.
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Figure 10. (a,d) Joint p.d.f. of φ′′/φ∞ and B′
q, (b,e) joint p.d.f. of v′′/u∞ and B′

q, and (c, f ) pre-multiplied
joint p.d.f. of φ′′/φ∞ and v′′/u∞, for cases (a,b,c) cold1 and (d,e, f ) cold2 at the wall-normal location y∗ = 8.
The black solid lines in panels (a,d) track the conditional average 〈φ′′/φ∞〉|B′

q
.
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Figure 11. Profiles of budget terms in the transport equation for Reynolds shear stress, normalized with
semilocal units, for cases (a) cold1 and (b) cold2. Here, Φν∗−ρuv = Dν∗−ρuv − ε∗−ρuv represents the viscous action
and Φ

p∗
−ρuv = Dp∗

−ρuv + Π
p∗
−ρuv denotes the velocity-pressure-gradient correlation.

4.4. The correlation between B′
q and the transport budgets

The Reynolds shear stress and turbulent heat flux evolve in space. To elucidate the
interaction of wall heat flux and the evolution process, budgets in the transport equations
for Reynolds shear stress and turbulent heat flux are examined in detail.

4.4.1. Evolution of Reynolds shear stress
Figure 11 shows the one-dimensional profiles of the budget terms from (2.1) in semilocal
units, as a function of y∗. The budget variables are normalized by 〈ρ〉u∗3

τ /δ∗
ν . The term

of mass contribution associated with the density variation, i.e. M∗−ρuv , is neglected due to
its relatively trivial magnitude for the present cases. Figure 11 shows that the Reynolds
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Figure 12. (a,b) Map of the conditional average of pre-multiplied Reynolds-shear-stress production,
y∗P∗−ρuv |B′

q
, for cases (a) cold1 and (b) cold2. (c) Profiles of the averaged pre-multiplied production conditioned

on the extreme 2 % negative and positive B′
q-events.

shear stress is largely produced in the inner region (y∗ < 50), with the peak of the
production term (P∗−ρuv) located at y∗ ≈ 17 for both cases. The correlation between
velocity and pressure gradient, denoted by Φ

p∗
−ρuv = Dp∗

−ρuv + Π
p∗
−ρuv , yields negative

results, and plays a significant role in diffusing the Reynolds shear stress in space and
exchanging it among components (Lee & Moser 2019). Regardless of the wall thermal
condition, the semilocal scaling is able to well collapse the inner peak location of
Φ

p∗
−ρuv , preventing the wall-normal shift in classical inner units (Zhang et al. 2018; Cogo

et al. 2023). The imbalance between P∗−ρuv and Φ
p∗
−ρuv is consequently compensated for

by turbulent diffusion (Dt∗−ρuv) and viscous action (Φν∗−ρuv = Dν∗−ρuv − ε∗−ρuv), with the
turbulent diffusion mildly larger in peak magnitude in both cases. When the wall cooling
is intensified, a negative peak of Dt∗−ρuv appears in a region very close to the wall (e.g.
y∗ ≈ 4, see figure 11b), which is probably associated with the stronger conduction of heat
in this region. In the following discussion, attention will be paid to the major process
of production (P∗−ρuv), pressure work (Φp∗

−ρuv) and turbulent diffusion (Dt∗−ρuv), and their
connection with the wall-heat-flux-perturbation events.

Figures 12(a) and 12(b) show the conditional average of pre-multiplied Reynolds-shear-
stress production, under the two different wall-cooling conditions. A similar phenomenon
is seen in both cases, that stronger B′

q-events are correlated with a more noticeable
Reynolds shear stress generation, particularly when the instantaneous heat-flux
perturbations at the wall are positive. This is consistent with the observations in figure 7,
and can be more straightforwardly displayed by the conditionally averaged quantities
based on the extreme events in figure 12(c). The difference between the roles of extreme
positive and negative B′

q-events is found mainly in the inner-layer cycle. The production of
Reynolds shear stress is more strongly correlated with the positive extreme events, except
in the region y∗ < 10 in the cold2 case. To identify the underlying flow characteristics,
the two predominant terms that contribute to P∗−ρuv , namely the wall-normal Reynolds
stress (〈ρv′′v′′〉∗) and the gradient of streamwise velocity (d{u}∗/dy∗) according to (2.2a),
are investigated in the wall-normal coordinate. To make it consistent with the scaling of
budgets in figure 11, the velocity gradient (d{u}∗/dy∗) is semilocally scaled by u∗

τ /δ
∗
ν .

Figure 13 plots the profiles of the 〈ρv′′v′′〉∗|B′
q

and d{u}∗/dy∗|B′
q

conditioned on the
extreme 2 % negative and positive B′

q-events, respectively, for both cases. It is observed
that in the region y∗ < 500 for the cold1 case and y∗ < 200 for the cold2 case, the
wall-normal Reynolds stress is weakened in the presence of positive B′

q-events, indicating
that instantaneous wall heating (B′

q > 0) corresponds to the attenuated wall-normal fluid
motions. Beyond that, the positive and negative curves almost collapse onto each other.
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Figure 13. Profiles of (a) the averaged wall-normal Reynolds stress and (b) the gradient of the Favre averaged
streamwise velocity, conditioned on the extreme 2 % negative and positive B′

q-events.
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Figure 14. (a,b) Map of the conditional average of pre-multiplied velocity-pressure-gradient correlation,
y∗Φp∗

−ρuv |B′
q
, for cases (a) cold1 and (b) cold2. (c) Profiles of the averaged y∗Φp∗

−ρuv conditioned on the extreme
2 % negative and positive B′

q-events.

The plot of d{u}∗/dy∗|B′
q

in figure 13(b) demonstrates that under the condition of positive
B′

q-events, the mean velocity gradient is diminished near the wall, whereas it is enhanced
in the layer 10 < y∗ < 100 in contrast to the negative B′

q-events. In this sense, it suggests
that the increment of P∗−ρuv in this region is shear-induced under the condition of positive
extreme events.

The conditional average of pre-multiplied velocity-pressure-gradient is examined in
figure 14(a,b). Similar to the findings for production, stronger B′

q-events tend to correspond
to a stronger physical process of pressure work. For both cold1 and cold2 cases,
positive/negative B′

q-events are tendentiously in alignment with negative/positive Φ
p∗
−ρuv

close to the wall. The sign reverses along the wall-normal direction, with different
distributions under the condition of various B′

q-events. As is more clearly shown in the
profiles of y∗Φp∗

−ρuv conditioned on the extreme events in figure 14(c), the negative Φ
p∗
−ρuv

appears in a region nearer to the wall in the presence of positive thermal events than
negative events.

For the conditional average of pre-multiplied turbulent diffusion, as mapped in
figure 15(a), the B′

q is in slight association with the distribution of turbulent diffusion
in the cold1 case, as manifested by the almost collapsed contribution of extreme negative
and positive events in figure 15(c). With stronger wall cooling, as presented in figure 15(b),
the negative B′

q-events tend to be related to the amplified diffusion process near the wall,
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Figure 16. Profiles of budget terms in the transport equation for turbulent heat flux, normalized with
semilocal units, for cases (a) cold1 and (b) cold2.

leading to a net transport of Reynolds stress from this region to other regions. Further away
from the wall, the intercorrelation of the turbulent diffusion and the B′

q-events is weakened
progressively.

4.4.2. Evolution of turbulent heat flux
The wall-normal distributions of the budget terms in (2.4) are depicted in figure 16. The
contribution of density and temperature variation to the turbulent-heat-flux evolution,
M∗

ρvφ , is excluded due to its relatively small magnitude compared with the other terms,
for the cases under scrutiny. In a similar manner to the transport of Reynolds shear stress,
the production of 〈ρv′′φ′′〉∗ is majorly expended in pressure work. The turbulent motions,
viscous action and heat conduction serve to transport thermal energy across the boundary
layer so as to ensure the balance of the system. A particularly interesting feature is observed
in the cold2 case, that the production term (P∗

ρvφ) is negative in the region beneath y∗ ≈ 10,
where the mean temperature exhibits a maximum. This is consistent with the near-wall
profile of 〈ρv′′φ′′〉∗ in figure 2(d), as the wall-normal motions from higher-temperature
to lower-temperature regions always communicate positive φ fluctuations (Pirozzoli &
Bernardini 2011). Consequently, heat conduction is enhanced via stronger wall cooling
and plays a considerable role in redistributing the thermal energy especially in y∗ < 5. To
reveal the correlation of 〈ρv′′φ′′〉∗ transport and the fluctuation events of wall heat flux,
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q-events.

conditional averages of production (P∗
ρvφ), pressure work (Wp∗

ρvφ) and turbulent diffusion
(Dt∗

ρvφ) on B′
q-events are of major interest.

Figure 17 plots the conditional average of y∗P∗
ρvφ , showing that the interaction of B′

q and
production exists mainly at y∗ < 200. The larger generation of turbulent heat flux tends to
be preferentially in correspondence with the negative events, in most of this region. This is
partly owing to the stronger wall-normal motions under the condition of instantaneous wall
cooling (B′

q < 0, seen in figure 13), as the wall-normal Reynolds stress is one of the main
contributing factors to production formulated in (2.5a). An exception occurs in the viscous
sublayer in the cold2 case. For y∗ < 4, the profile of y∗P∗

ρvφ conditioned on the extreme
2 % negative B′

q-events is slightly lower than that conditioned on the positive events, as
shown by the red and blue dashed lines in figure 17(c). To explain this phenomenon,
profiles of another contributing factor {φ}/φw and its wall-normal gradient d{φ}∗/dy∗,
conditioned on the extreme 2 % B′

q-events, are shown in figure 18. Herein, d{φ}∗/dy∗
denotes the gradient normalized by u∗

τ /δ
∗
ν . For both cases, it is observed that the extreme

negative events correspond to a higher local temperature, which is proportional to φ2,
for y∗ < 500 for the case cold1 and y∗ < 15 for cold2. Hence, the temperature variation
(gradient) is relatively faster (larger) close to the wall, in the presence of negative B′

q-events
than positive B′

q-events, as shown in figure 18(b), leading to a larger production in absolute

999 A52-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.902


Correlations between wall heat flux and turbulent statistics

–3

–2

–1

0

1

2

3
neg. cd1
pos. cd1

neg. cd2
pos. cd2

100

101

102

103

y∗

(a)

100

101

102

103

y∗

(b)

–0.02 0 0.02

B′
q

–0.05 0 0.05

B′
q

(c)

–2

–1

0

1

2

–2

y∗
 W

p∗
 | B

′ q
ρ
v
φ

–1

0

1

100 101 102 103 104

y∗

Figure 19. (a,b) Map of the conditional average of pre-multiplied pressure work, y∗Wp∗
ρvφ |B′

q
, for cases (a)

cold1 and (b) cold2. (c) Profiles of the averaged y∗Wp∗
ρvφ conditioned on the extreme 2 % negative and positive

B′
q-events.

–0.02 0 0.02
100

101

102

103

y∗

–2

–1

0

1

2

3
(a)

100

101

102

103

y∗

(b) (c)

–0.05 0 0.05
–1

0

1

2

3

100 101 102 103 104
–1

y∗
 D

t∗ 
 | B

′ q
ρ
v
φ

0

1

2
neg. cd1
pos. cd1
neg. cd2
pos. cd2

B′
q B′

q y∗

Figure 20. (a,b) Map of the conditional average of pre-multiplied turbulent diffusion of turbulent heat flux,
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−ρvφ conditioned on the extreme
2 % negative and positive B′

q-events.

magnitude which amounts to the smaller negative y∗P∗
ρvφ delineated by the blue dashed

curve in figure 17(c).
As for the correlation of wall-heat-flux fluctuations and the contribution of pressure

work in the transport of turbulent heat flux across the boundary layer, the conditionally
averaged distribution of y∗Wp∗

ρvφ is given in figure 19. In general, in the context of the
extreme B′

q-events, the pressure work is enhanced in an inner region y∗ < 100, but with
different phenomena observed in the two cases. As shown in figure 19(c), for the case
cold1, the absolute magnitude of y∗Wp∗

ρvφ conditioned on the negative events is amplified in
most regions, which is mainly ascribed to the sound-speed-pressure-gradient correlation,
i.e. the second term on the right-hand side of (2.5c) (the decomposed plots are not shown
for brevity). Conversely, for the cold2 case, the bias to the contribution of extreme negative
or positive events is not evident throughout the boundary layer.

At last, an approximate symmetry of y∗Dt∗
ρvφ|B′

q
with regards to B′

q = 0 is observed in
figure 20(a), suggesting that the turbulent diffusion of turbulent heat flux is not sensitive to
the fluctuations of wall heat flux with a weaker wall cooling. The profiles of the averaged
y∗Dt∗

−ρvφ conditioned on the extreme negative and positive B′
q-events almost collapse

(solid lines in figure 20c). This is similar to the finding in the turbulent diffusion of
Reynolds shear stress. As for the case cold2, the turbulent diffusion associated with the
negative events is enhanced near the wall in figure 20(b), and tends to converge to that
under the condition of positive events away from the wall.
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5. Conclusions

The correlation between the mean and fluctuating wall heat flux and the distribution
and transport of Reynolds shear stress/turbulent heat flux is thoroughly investigated in
this study. Transport equations are derived rigorously incorporating a sound-speed-like
variable (φ ∝ c), following the previous study on the framework of energy exchange in
compressible turbulent flows. Using the DNS databases of two hypersonic boundary layers
under the condition of a weaker (cold1) and stronger (cold2) wall cooling, we examine the
characteristics of wall-heat-flux perturbations (B′

q) through their instantaneous field and
p.d.f. plot. With the increasing wall-cooling intensity, the extreme B′

q-events become more
intense and the p.d.f. profile of B′

q tends to exhibit a negatively skewed distribution, which
results in stronger negative B′

q-events in intensity but fewer in number.
In the presence of positive B′

q-events, Reynolds shear stress is increased in the near-wall
region of both cases under scrutiny. Through the joint p.d.f.s of velocities and the
wall-heat-flux perturbations, B′

q is found to have a predominantly negative correlation with
u′′ and a positive correlation with v′′ at y∗ = 8. Stronger perturbations in wall heat flux
are associated with stronger dynamical motions. As a consequence, the extreme negative
B′

q-events tend to be more correlated to the sweep events, as is especially observed in
the stronger wall-cooling case, whereas the extreme positive events are correlated with
ejections. However, negative B′

q-events are in good alignment with the amplification of
turbulent heat flux even in the region further away from the wall, suggesting that the
effect of wall temperature on the thermodynamic structures would be extended in the
wall-normal direction. Negative turbulent heat flux emerges near the wall, with a different
underlying mechanism under the condition of positive and negative B′

q-events. In this case,
negative B′

q-events prefer positive φ′′ and negative v′′ (downward motions), and vice versa.
Finally, in the transport of Reynolds shear stress and turbulent heat flux, production is

primarily balanced by pressure work and turbulent diffusion. Conditional analysis reveals
that the instantaneous wall heating (B′

q > 0) is in alignment with the larger production
of Reynolds shear stress which is induced by the enlarged shear, in contrast to the
instantaneous wall cooling (B′

q < 0). However, the positive B′
q corresponds to a smaller

production of turbulent heat flux primarily associated with the attenuation of wall-normal
fluid motions. An exception is found in the viscous sublayer in the cold2 case, where
the relatively slower temperature variation close to the wall causes a comparatively larger
negative production of turbulent heat flux when B′

q > 0.
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Appendix A. Derivation of the transport equation for turbulent heat flux

By applying Reynolds decomposition to the momentum equations in compressible flows,
the primitive and conservative form of the equations for fluctuating velocities can be
obtained:

∂u′′
i

∂t
+ u′′

k
∂u′′

i
∂xk

+ {uk}
∂u′′

i
∂xk

+ u′′
k
∂{ui}
∂xk

− 1
〈ρ〉

∂〈ρu′′
k u′′

i 〉
∂xk

= 1
ρ

∂σ ′
ik

∂xk
−
(

1
〈ρ〉 − 1

ρ

)
∂〈σik〉
∂xk

, (A1)

∂ρu′′
i

∂t
+ ∂ρu′′

k u′′
i

∂xk
+ ∂ρ{uk}u′′

i
∂xk

+ ρu′′
k
∂{ui}
∂xk

− ρ

〈ρ〉
∂〈ρu′′

k u′′
i 〉

∂xk

= ∂σ ′
ik

∂xk
−
(

ρ

〈ρ〉 − 1
)

∂〈σik〉
∂xk

. (A2)

The time derivative of Reynolds stress ρu′′
i u′′

j can be decomposed into

∂ρu′′
i u′′

j

∂t
= ρu′′

i

∂u′′
j

∂t
+ u′′

j
∂ρu′′

i
∂t

. (A3)

Substituting (A1) and (A2) into (A3), and then taking its average, we consequently obtain
the transport equation for the Reynolds stress tensor:

∂〈ρu′′
i u′′
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+
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)
. (A4)

The terms on the right-hand side are elaborated from the perspective of physical processes
in § 2.

Similarly, we can get two forms of equations for the fluctuating φ, based on the energy
equation formulated via a sound-speed-like variable (φ ∝ c, see (12) in Fan & Li 2023),

999 A52-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.902


Y. Fan, M. Kozul, W. Li and R.D. Sandberg

as

∂φ′′
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+ u′′

k
∂φ′′

∂xk
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∂xk
+ u′′
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〉
, (A5)
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f
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〉
, (A6)

where f = −p∂uk/∂xk + τjk∂uj/∂xk − ∂qk/∂xk, for brevity.
With either [ρφ′′ × (A1) + u′′

i × (A6)] or [φ′′ × (A2) + ρu′′
i × (A5)], the time

evolution for ρu′′
i φ

′′ can be obtained. Taking its Reynolds average, we consequently get
the transport equation for turbulent heat flux as

∂〈ρu′′
i φ
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′′u′′
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i

(
f

2φ
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+
〈
φ′′ ∂σ ′

ik
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〉
+ 〈u′′

i 〉
〈

f
2φ

〉
+ 〈φ′′〉∂〈σik〉

∂xk
, (A7)

where the tensor σij = −pδij + τij includes the pressure and viscous stress.
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