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Abstract

The second author has recently introduced a new class of L-series in the arithmetic

theory of function fields over finite fields. We show that the values at one of these

L-series encode arithmetic information of a generalization of Drinfeld modules defined

over Tate algebras that we introduce (the coefficients can be chosen in a Tate algebra).

This enables us to generalize Anderson’s log-algebraicity theorem and an analogue of

the Herbrand–Ribet theorem recently obtained by Taelman.
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1. Introduction

We fix a finite field k with q elements; we denote by p its characteristic. We further set A = k[θ]
(a polynomial ring with coefficients in k in an indeterminate θ) and K = k(θ) (the field of
fractions of A). We also consider the field K∞ = k((1/θ)), the completion of K with respect to
the place at infinity; we write | · | for the absolute value of K∞ normalized by setting |θ| = q.
We denote by C∞ the completion of a fixed algebraic closure of K∞ and we denote by Kac the
algebraic closure of K in C∞. More generally, for any subfield L of C∞, we denote by Lac

the algebraic closure of L in C∞.
Carlitz [Car35] introduced the so-called Carlitz zeta values

ζC(n) :=
∑
a∈A+

a−n ∈ K∞, n > 0, n an integer

as some analogues, up to a certain extent, of the classical zeta values

ζ(n) =
∑
k>0

k−n ∈ R

(n > 1 an integer). In the definition of ζC(n), A+ denotes the set of monic polynomials in A
and provides a kind of substitute of the set of positive integers. The Carlitz zeta values offer
interesting analogies with the classical zeta values. Let us look at the archimedean example of
the divergent series

ζ(1) =
∑
k>1

k−1 =
∏
p

(
1− 1

p

)−1

=∞, (1)

2
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which we have developed as a divergent eulerian product (running over the prime numbers p).
For a commutative ring R and a functor G from R-algebras to R-modules, we denote by Lie(G)
the functor from R-algebras to R-modules defined, for B an R-algebra, by

Lie(G)(B) = Ker(G(B[ε]/(ε2)) → G(B)).

The local factor at p in (1) is(
1− 1

p

)−1

=
p

p− 1
=
|Lie(Gm)(Z/pZ)|
|Gm(Z/pZ)|

,

where |·| denotes here the cardinality of a set. The above cardinalities can also be seen as positive
generators of Fitting ideals of finite Z-modules (the background on Fitting ideals is recalled in
§ 5.3).

In parallel, let C be the Carlitz functor from A-algebras to A-modules (see § 2.1 for the
background on the Carlitz module). Then, for P a prime of A (a prime of A is an irreducible
monic polynomial of A), the module C(A/PA) is a finite A-module and one can easily prove
(in different ways; read Goss [Gos96, Theorem 3.6.3] or Taelman [Tae10, Proposition 1]; see also
Anderson and Thakur’s paper [AT90, Proposition 1.2.1]) that P −1 is the monic generator of the
Fitting ideal of M . For a finitely generated and torsion A-module M , [M ]A denotes the monic
generator of its Fitting ideal. Then

[C(A/PA)]A = P − 1

and

ζC(1) =
∏
P

(
1− 1

P

)−1

=
∏
P

P

P − 1
=
∏
P

[Lie(C)(A/PA)]A
[C(A/PA)]A

. (2)

The tensor powers of the Carlitz module functor introduced by Anderson and Thakur [AT90]
provide a way to interpret the values ζC(n) as well, and this can be viewed as one of the main
sources of analogies between the theory of the Carlitz zeta values and the values of the Riemann
zeta function at integers n > 2.

Carlitz proved that for all n > 0 divisible by q − 1, ζC(n) is, up to a scalar factor of K×

(the multiplicative group of K), proportional to π̃n, where the quantity π̃ is defined [Gos96,
Definition 3.2.7] by

π̃ =
q−1
√
θ − θq

∏
i>1

(
1− θq

i − θ
θqi+1 − θ

)
∈ θ q−1

√
−θ
(

1 +
1

θ
k

[[
1

θ

]])
, (3)

unique up to multiplication by an element of k×; see Goss [Gos96, ch. 3]. We consider the Carlitz
exponential expC (see § 2.1 for the background about this function). Carlitz proved the formula

expC(ζC(1)) = 1. (4)

Knowing that 1 belongs to the domain of convergence of the Carlitz logarithm logC , the
composition inverse of expC (see § 2.1.2) and comparing the absolute values of logC(1), ζC(1), π̃,
we see that the above formula is equivalent to

ζC(1) = logC(1). (5)

Taelman [Tae10] recently exhibited an appropriate setting to interpret the above formula as
an instance of the class number formula. His approach, involving a new type of trace formula

3
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for certain variants of bounded continuous operators, also relies on the formula (2). He did this
in the broader framework of Drinfeld modules defined over the ring of integers R of a finite
extension L of K. Taelman associated, to such a Drinfeld module φ, a finite A-module called
the class module (of φ over L), and a finitely generated A-module called the unit module (of
φ over L). An L-series value L(φ/R) that he also defined is then equal to the product of the
monic generator of the Fitting ideal of the class module times the regulator of the unit module
(see [Tae10, Theorem 1]).

In the case of φ = C, the Carlitz module, and L = K, the L-series value is equal to ζC(1),
the class module is trivial and the regulator of the unit module is logC(1), the Carlitz logarithm
of 1, yielding (4).

1.1 Drinfeld modules
We introduce and discuss a generalization of Drinfeld modules.

Classically, a Drinfeld module φ of rank r is the datum of an injective k-algebra
homomorphism

φ : A → Endk-lin(C∞),

uniquely defined by the image of θ, that is, the value φθ of φ at θ, which is of the form

φθ = θ + α1τ + · · ·+ αrτ
r, (6)

where the parameters α1, . . . , αr are elements of C∞ with αr 6= 0.
The Tate algebra Ts of dimension s is the completion of the polynomial algebra C∞[t1, . . . , ts]

for the Gauss norm (see § 2.2) and we have T0 = C∞.
Observe that the automorphism C∞ → C∞ defined by x 7→ xq extends to a continuous

homomorphism of k[t1, . . . , ts]-algebras τ : Ts → Ts and that k[t1, . . . , ts] = {f ∈ Ts, τ(f) = f}.
We use the k[t1, . . . , ts]-linear automorphism τ of Ts to define Drinfeld A[t1, . . . , ts]-modules

of rank r over Ts; a Drinfeld A[t1, . . . , ts]-module φ of rank r over Ts is an injective k[t1, . . . , ts]-
algebra homomorphism

φ : A[t1, . . . , ts] → Endk[t1,...,ts]-lin.(Ts)

with φθ as in (6) but where the parameters α1, . . . , αr are now allowed to be chosen in Ts and,
of course, αr 6= 0; see § 3.

1.1.1 L-series values in the case of rank one. The L-series values at one can be associated to
Drinfeld A[t1, . . . , ts]-modules defined over A[t1, . . . , ts] by extending the construction of Taelman
in [Tae12a] by using Fitting ideals on the model of the eulerian product (2). Typically, the L-series
values of Taelman are elements of C∞, while our L-series values are elements of Tate algebras of
any dimension.

The construction of these values is explained in § 5.3 in the case of a Drinfeld A[t1, . . . , ts]-
module φ of rank one; we momentarily denote by L(φ) the Taelman L-series value of φ at one
(a slightly different notation will be used later in the text). In this case, and with the unique
parameter α = α1 in A[t1, . . . , ts], the construction of L-series values becomes in fact very explicit.
We consider the maps

ρα : A → k[t1, . . . , ts]

defined by
ρα(b) = Resθ(b, α),

where α is a polynomial of A[t1, . . . , ts]\{0} and where Resθ(P,Q) denotes the resultant of two
polynomials P,Q in θ [Lan02, § IV.8]. We recall that if F is a field and X is an indeterminate

4
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over F , if P (X) =
∑n

i=1 pn−iX
i, Q(X) =

∑m
j=1 qm−jX

j are elements in F [X], then ResX
(P,Q) = (−1)nmqn0

∏m
j=1 P (βj), where β1, . . . , βm are the roots of Q(X) in some algebraic closure

of F [Lan02, § IV.8, Proposition 8.3]. For example, if α = (t1 − θ) · · · (ts − θ), for b ∈ A we get
ρα(b) = b(t1) · · · b(ts). We view the map ρα as a kind of higher dimensional generalization of a
Dirichlet character.

Then we set

L(n, φ) =
∑
b∈A+

Resθ(b, α)b−n =
∏
P

(
1− ρα(P )

Pn

)−1

(7)

(the product is taken over the primes P of A). It is easy to see that this series converges in the
Tate algebra Ts; see § 4. We show in Proposition 5.9 that

L(1, φ) = L(φ).

If α = (t1− θ) · · · (ts− θ), then we recover Goss abelian L-functions by specializing the variables
ti to elements in kac. With our definition of L-series values, we will cover already many L-series
values studied by Goss, as well as in [Pel12, Gos13, Per14] and [AP14]. In § 10, we have included
some further remarks on the link existing between our L-series values and the global L-functions
of Goss, Taguchi and Wan and Böckle and Pink (see [Gos96, Böc02, BP10, TW96]). These
remarks may be of help for the readers to orientate themselves in the literature.

1.2 The main results
The L-series values that we study, being elements of the Tate algebras Ts, have the double status
of ‘numbers’ and ‘functions’. As numbers, the indeterminates t1, . . . , ts are unspecified and the
series L(n, φ) are handled as elements of the ring Ts. As functions, the variables t1, . . . , ts can be
specialized and the analytic properties of the functions L(n, φ) can be used to obtain arithmetic
information, e.g. on Carlitz zeta values.

1.2.1 L-series values as ‘numbers’. Let φ be a Drinfeld A[t1, . . . , ts]-module of rank one
over Ts of parameter α (that is, φθ = θ + ατ) in A[t1, . . . , ts]. The module φ is a global object
defined over A[t1, . . . , ts]. Considering it over Ts means looking at its realization at the place ∞.
We introduce, in § 5.1, the class A[t1, . . . , ts]-module Hφ and the unit A[t1, . . . , ts]-module Uφ
associated to φ. This provides, in a certain way, a generalization of the constructions of Taelman’s
paper [Tae12a]. Note that, while Taelman’s class modules are vector spaces of finite dimension
over k, the class module Hφ is of finite rank over k[t1, . . . , ts]. We said ‘in a certain way’ because
we only deal here with the case of rank r = 1. The general case, however, can be handled as
well, as Demeslay does, in a forthcoming work. In the case of α = (t1 − θ) · · · (ts − θ), the class
modules are ‘generic’ in the sense that they can be used to interpolate Taelman’s class modules
(over the cyclotomic extensions).

In the following, we denote the set of variables {t1, . . . , ts} by ts (or by t when the number
of variables is understood in the context and when there is a real need to simplify the notation).

The k(ts)-vector space
Hφ = k(ts)⊗k[ts]

Hφ

is of finite dimension and endowed with the structure of a module over the ring

k(ts)[θ] = k(ts)⊗k A

that we denote by R to simplify certain formulas (see Corollary 5.10). Let

[Hφ]R ∈ R

5
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be the monic generator of its Fitting ideal. We will see (Proposition 5.4) that the vector space

Uφ = k(ts)⊗k[ts]
Uφ

is a free R-module of rank one, to which we can associate a regulator

[R : Uφ]R .

Then the class number formula for the L-series value L(1, φ) (Theorem 5.11) can be obtained
(the notation will be made more precise later in the text):

L(1, φ) = [Hφ]R [R : Uφ]R .

This result is deduced from Theorem A.3 of the appendix by Demeslay. The originality of
our approach is the use we make of the above class number formula.

The properties of the exponential function expφ associated to φ (§ 3.1) strongly influence the
properties of L(1, φ), Hφ and Uφ. By the results obtained in §§ 5–7, for φ a Drinfeld A[ts]-module
of rank one defined over A[ts] with φθ = θ + ατ with α ∈ A[ts]\{0}, we have that expφ(L(1,
φ)) ∈ Ts belongs in fact to A[ts]. It is a torsion point for the structure of the A[ts]-module
induced by φ if and only if the opposite of the parameter −α ∈ A[ts] is a monic polynomial in
θ of degree r ≡ 1 (mod q − 1). We will see that this latter condition is equivalent to the fact
that the function expφ is surjective, and its kernel has non-trivial intersection with Ts(K∞), the
completion of K∞[ts] for the Gauss norm. Furthermore, by the results of § 7.1.1 and Theorem 7.7,
we have:

If −α is monic as a polynomial in θ, of degree r ≡ 1 (mod q− 1) with r > 2, then expφ(L(1,
φ)) = 0. In the special case of φ of parameter α = (t1−θ) · · · (ts−θ), for s > 2, s ≡ 1 (mod q−1),
we have the formula

L(1, φ) =
π̃Bs

ω(t1) · · ·ω(ts)
,

where Bs ∈ A[ts] is the monic generator of the Fitting ideal of the A[ts]-module Hφ and ω is the
Anderson–Thakur function introduced in [AT90].

We have a few explicit examples of the polynomial Bs. Here are some:

Bq = 1,

B2q−1 = θ −
∑

16i1<···<iq62q−1

q∏
k=1

tik (q > 2).

Let φ be the Drinfeld A[t1]-module of parameter α = t1 − θ; if we set B1 = 1/(θ − t1), by
Lemma 7.1, we have the formula

L(1, φ) =
π̃B1

ω(t1)
.

As a consequence of the class number formula, we shall also mention the log-algebraicity
theorem of Anderson, in the case of the Carlitz module; see [And96, Theorem 3 and Proposition
8(I)] (so, surprisingly, the class number formula implies Anderson’s log-algebraic theorem for the
Carlitz module). In fact, we prove in § 8 a result which can be interpreted as an operator theoretic
version and thus a refinement of [And96, Proposition 8(I)]. We introduce a class of formal series
in infinitely many indeterminates Xi, τ(Xi), . . . , Z, τ(Z), . . . , (i = 1, . . . , r) by setting

Lr(X1, . . . , Xr;Z) =
∑
d>0

( ∑
a∈A+,d

Ca(X1) · · ·Ca(Xr)a
−1

)
τd(Z),

6
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where A+,d denotes the set of monic polynomials of degree d and Ca(Xi) denotes a certain

polynomial in Xi, τ(Xi), . . . , obtained from the action of the Carlitz module evaluated at a on

the indeterminate Xi; for example, Cθ(X1) = θX1 + τ(X1). We have (Theorem 8.1)

expC(Lr(X1, . . . , Xr;Z)) ∈ A[Xi, τ(Xi), . . . , Z, τ(Z), . . . , i = 1, . . . , r].

If we substitute, in the above result, X1 = · · · = Xr = X and τn(X) = Xqn , τn(Z) = Zq
n

for

all n > 0, we recover Anderson’s original result asserting that

expC

(∑
a∈A+

Zq
degθ(a)a−1Ca(X)r

)
∈ A[X,Z].

1.2.2 L-series values as ‘functions’. The evaluation of L-series values is the necessary step

to deduce, from the above results, arithmetic results on the values of Goss abelian L-series.

One of the main novelties of our work is that we are able to study the isotypic components of

Taelman’s class modules in families. Let χ be a Dirichlet character of type s such that s ≡ 1

(mod q − 1) and conductor a ∈ A+ (see § 9.1). Let us denote by ka the subfield of C∞ obtained

by adjoining to k the roots of a, by Ka the ath cyclotomic field and by ∆a the Galois group of

Ka over K. We denote by Ha the Taelman class A-module associated to the Carlitz module and

relative to the extension Ka/K. This is a finite k[∆a]-module. Let eχ be the idempotent element

of ka[∆a] associated to χ. Then the χ-isotypic component

Hχ = eχ(Ha ⊗k ka)

is a finite A[ka]-module endowed with a suitable structure of ka[∆a]-module. The evaluation

map evχ is described in § 9; it is obtained by substituting the variables ti (for i = 1, . . . , s) by

appropriate roots of unity chosen among the roots of the conductor a in kac. By Corollary 9.3,

the Fitting ideal of the A[ka]-module Hχ is generated by evχ(Bs). A similar result is obtained

when the type s satisfies s 6≡ 1 mod q−1; see Theorem 9.7. In § 9.5, we associate to our character

χ certain generalized Bernoulli–Carlitz numbers denoted by BCi,χ−1 . These are elements of the

compositum K(ka) of ka and K in C∞.

Let us write

χ = ϑNP χ̃,

where P is a prime dividing the conductor a of χ (so that a = Pb with P not dividing b), χ̃ is a

Dirichlet character of conductor b, ϑP is the Teichmüller character associated to P and N is an

integer between 0 and qd − 2 with d the degree of P .

Let P be a prime and KP the completion of K at P . If AP is the valuation ring of KP , the

valuation ring of the field KP (ka) is AP [ka]. We obtain a generalization of [Tae12a, Herbrand–

Ribet–Taelman theorem] (Theorem 9.16). Here we suppose that N > 2 if χ̃ = 1:

The AP [ka][∆a]-module eχ(Ha ⊗A AP [ka]) is non-trivial if and only if

BCqd−N,χ̃−1 ≡ 0 (mod P ).

The original result of Taelman [Tae12a, Theorem 1] corresponds to the case in which χ̃ is

the trivial character. Our demonstration of Theorem 9.16 is inspired by the alternative proof of

the Herbrand–Ribet theorem for function fields given in [AT15].

7
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2. Notation and background

The basic list of notation of this paper is the following.

• N: the set of non-negative integers.
• k: a fixed finite field with q elements.
• p: the characteristic of k.
• θ: an indeterminate over k.
• A: the polynomial ring k[θ].
• A+: the set of monic elements in A.
• For n ∈ N, A+,n denotes the set of monic elements in A of degree n.
• K = k(θ): the fraction field of A.
• ∞: the unique place of K which is a pole of θ and v∞ is the discrete valuation on K

corresponding to the place ∞. The valuation v∞ is normalized such that v∞(θ) = −1.
• K∞ = k((1/θ)): the completion of K at ∞.
• C∞: a fixed completion of an algebraic closure of K∞. The unique valuation on C∞ that

extends v∞ will still be denoted by v∞.
• | · |: the absolute value of C∞ defined by |α| = q−v∞(α) for α ∈ C∞.
• Lac: the algebraic closure in C∞ of a field L ⊂ C∞.
• R×: the group of invertible elements of a ring R.
• Frac(R): the fraction field of a domain R.

In all the following, we keep using a set of variables {t1, . . . , ts} for various choices of s > 0.
We recall that this set is denoted by ts or by t if the value of s is understood. For example, k(ts)
denotes the field k(t1, . . . , ts). In particular, we have t0 = ∅ and k(t0) = k. If s = 1, we will often
write t instead of t1 and t1. We will also use the following notation, where R is a k-algebra.

• R[ts]: the ring k[ts]⊗k R. We observe that R[t0] = R.
• Ts: the Tate algebra in the variables t1, . . . , ts with coefficients in C∞. We observe that

T0 = C∞.
• Ts(K∞): the ring Ts ∩K∞[[ts]].
• K(ts)∞: the field k(ts)((1/θ)).
• R: the ring k(ts)[θ] = k(ts)⊗k A (this notation will not be used systematically).

We observe that

K∞[ts] ( Ts(K∞) ( Frac(Ts(K∞)) ( K(ts)∞.

In fact, K(ts)∞ is the completion of the fraction field of Ts(K∞).

2.1 The Carlitz exponential
The Carlitz exponential is the function

expC : C∞ → C∞

defined by

expC(X) =
∑
i>0

Xqi

Di
, X ∈ C∞,

8
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where (Di)i>0 is the sequence of A defined by D0 = 1 and, for i > 1,

Di = (θq
i − θ)Dq

i−1.

This function, k-linear, is entire from the identity |Di| = qiq
i
. In particular, expC is surjective.

The kernel of expC is the A-module π̃A, where π̃ is defined by the infinite product (3);
see [Gos96, Corollary 3.2.9]. We have

|π̃| = qq/(q−1).

We can expand the function expC in a convergent infinite product:

expC(X) = X
∏

a∈A\{0}

(
1− X

π̃a

)
, X ∈ C∞.

We observe that expC induces an isometric k-automorphism of the disk

DC∞(0, qq/(q−1)) = {z ∈ C∞; |z| < qq/(q−1)}.

2.1.1 The Carlitz module. The C∞-algebra of the k-linear algebraic endomorphisms
of Ga,C∞ ,

Endk-lin.(Ga,C∞),

can be identified with the skew polynomial ring C∞[τ ] whose elements are the finite sums∑
i>0 ciτ

i with the ci in C∞, subject to the product rule defined by τx = xqτ for all x ∈ C∞.

If X ∈ C∞ and P =
∑d

i=0 Piτ
i is an element of C∞[τ ], the evaluation of P at X is defined by

setting

P (X) =
d∑
i=0

PiX
qi .

For example, the evaluation of τ at X is τ(X) = Xq.
The Carlitz module is the unique k-algebra homomorphism

C : A → Endk(Ga,C∞)

determined by
Cθ = θ + τ.

If a ∈ A+,d, we denote by Ca the image of a via C. We have

Ca = a0τ
0 + a1τ

1 + · · ·+ ad−1τ
d−1 + τd

with a0 = a and, if X ∈ C∞, we will write, in particular,

Ca(X) = a0X + a1X
q + · · ·+ ad−1X

qd−1
+Xqd .

This endows C∞ with a structure of A-module that will be denoted by C(C∞) and we have

Ca(expC(X)) = expC(aX)

for all a ∈ A and X ∈ C∞. The Carlitz module C allows us to make the exact sequence of k-vector
spaces 0 → π̃A → C∞ → C∞ → 0 induced by expC into an exact sequence of A-modules

0 → π̃A → C∞ → C(C∞) → 0.

9
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2.1.2 The Carlitz logarithm. The Carlitz logarithm is the rigid analytic function defined, for

X ∈ C∞ such that |X| < qq/(q−1), by the convergent series

logC(X) =
∑
i>0

Xqi

li
,

where (li)i>0 is the sequence defined by l0 = 1 and, for i > 1,

li = (θ − θqi)li−1.

The convergence property is due to the fact that |li| = qq((q
i−1)/(q−1)). We then have, for all

X ∈ C∞ such that |X| < qq/(q−1),

|X| = |expC(X)| = |logC(X)| (8)

and
logC(expC(X)) = expC(logC(X)) = X. (9)

2.1.3 The Carlitz torsion. For a ∈ A+, we set

λa = expC

(
π̃

a

)
∈ C∞.

The subfield of C∞,
Ka = K(λa),

a finite extension of K, will be called the ath cyclotomic function field. A reference for the basic
theory of these fields is [Ros02, ch. 12]. Here we recall that Ka/K is a finite abelian extension
unramified outside a and ∞. Its Galois group

∆a = Gal(Ka/K)

is isomorphic to the unit group (
A

aA

)×
.

Then the isomorphism is explicitly given in the following way: if b ∈ A is relatively prime with
a, there exists a unique σb ∈ ∆a such that

σb(λa) = Cb(λa). (10)

2.2 Tate algebras
We use the above conventions and notation. Let s be in N. Let L be an extension of K∞ in C∞
such that L is complete with respect to v∞|L. Let us consider a polynomial f ∈ L[ts], expanded
as a finite sum

f =
∑

i1,...,is∈N
xi1,...,ist

i1
1 · · · t

is
s , xi1,...,is ∈ L.

We set
v∞(f) = inf{v∞(xi1,...,is), i1, . . . , is ∈ N}.

We then have, for f, g ∈ L[ts],

v∞(f + g) > inf(v∞(f), v∞(g)).

10
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Furthermore, we have
v∞(fg) = v∞(f) + v∞(g),

so that v∞ is a valuation, called the Gauss valuation.
Let us set, for f ∈ L[ts], ‖f‖= q−v∞(f) if f 6= 0 and ‖0‖= 0. We have ‖f+g‖6 max{‖f‖, ‖g‖},

‖fg‖ = ‖f‖‖g‖ and ‖f‖ = 0 if and only if f = 0; the function ‖ · ‖ is an L-algebra norm on L[ts]
and an absolute value, called the Gauss absolute value.

We denote by Ts(L) the completion of L[ts] with respect to ‖ · ‖. When s = 1, we also write
T(L) for T1(L) and we observe that T0(L) = L. Equipped with the Gauss norm, Ts(L) is an
L-Banach algebra that can be identified with the set of formal series of f ∈ L[[ts]] such that,
writing

f =
∑

i1,...,is∈N
xi1,...,ist

i1
1 · · · t

is
s , xi1,...,is ∈ L,

we have
lim

i1+···+is→+∞
xi1,...,is = 0.

The Gauss norm of f as above is then given by

‖f‖ = sup{|xi1,...,is |, (i1, . . . , is) ∈ Ns},

and the supremum is a maximum. When L = C∞, we shall write Ts,T instead of Ts(C∞),
T1(C∞). We refer the reader to [FvdP04, ch. 3] for the basic properties of Tate algebras.

We denote by oL the valuation ring of L (whose elements x are characterized by the fact that
|x| 6 1). We denote by mL the maximal ideal of oL whose elements x are such that |x| < 1. Then
the field L = L ∩ kac satisfies L ' oL/mL. We further denote by oTs(L) the subring of elements
f ∈ Ts(L) such that ‖f‖ 6 1 and by mTs(L) the prime ideal of oTs(L) whose elements are the f
such that ‖f‖ < 1. Then we have that

Ts(L) :=
oTs(L)

mTs(L)
' L[ts].

If L/K∞ is a finite extension which is complete, let πL be a uniformizer of L. Then we have
that L = L((πL)), oL = L[[πL]]. In particular,

Ts(L) = L[ts]((πL)).

2.2.1 k[ts]-linear endomorphisms of Ts. We denote by τ the unique k[ts]-linear
automorphism Ts → Ts such that the restriction τ |C∞ is the automorphism of C∞ defined
by x 7→ xq. Explicitly, it can be computed as follows. For f ∈ Ts with

f =
∑

i1,...,is∈N
xi1,...,ist

i1
1 · · · t

is
s , xi1,...,is ∈ C∞,

we set
τ(f) =

∑
i1,...,is∈N

xqi1,...,ist
i1
1 · · · t

is
s .

This is a k[ts]-linear automorphism of Ts. In fact, τ is also an automorphism for the structure
of k[ts]-algebra of Ts. If we set

Tτ=1
s = {f ∈ Ts, τ(f) = f},

11
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we have Tτ=1
s = k[ts]. Observe that

‖τn(f)‖ = ‖f‖qn , n > 0, f ∈ Ts.

With the action of τ on Ts, we have the non-commutative skew polynomial rings Ts[τ ] and
Ts[[τ ]]. The latter is, as a set, constituted of the formal series

∑
i>0 fiτ

i with fi ∈ Ts for all i, and
the elements of the former are the formal series whose sequences of coefficients are eventually
zero. The commutation rule defining the product is given by

τf = τ(f)τ

for f ∈ Ts. Moreover, the ring Ts[τ ] acts on Ts: if P =
∑d

i=0 Piτ
i ∈ Ts[τ ] and f ∈ Ts, then we

set

P (f) =
d∑
i=0

Piτ
i(f) ∈ Ts.

3. Drinfeld A[t1, . . . , ts]-modules over Ts

Definition 3.1. Let r > 1 be an integer. A Drinfeld A[ts]-module over Ts is a homomorphism
of k[ts]-algebras

φ : A[ts] → Ts[τ ]

defined by
φθ = θ + α1τ + · · ·+ αrτ

r

for an integer r > 0 and elements α1, . . . , αr ∈ Ts with αr non-zero. The integer r is the rank of
φ. The vector

α = (α1, . . . , αr) ∈ Trs
is the parameter of φ. If r = 1, we identify the parameter with its unique entry α1.

Given a Drinfeld A[ts]-module φ of rank r over Ts, if M is a sub-k[ts]-module of Ts such that
φθ(M) ⊂M , we denote by φ(M) the k[ts]-module M equipped with the A[ts]-module structure
induced by φ. In particular, we will often work in the module φ(Ts). This notation should not
lead to confusion since φ(A[ts]) will always denote A[ts] equipped with the new module structure,
and not the image of φ in Ts[τ ].

If s 6 s′, then we have the embedding Ts ⊂ Ts′ induced by the inclusion

k[ts] ⊂ k[t1, . . . , ts, ts+1, . . . , ts′ ] = k[ts′ ].

Every Drinfeld A[ts]-module over Ts can be extended in a natural way to a Drinfeld A[ts′ ]-module
over Ts′ of the same rank, which will be denoted again by φ for the sake of simplicity.

Definition 3.2. Let φ, φ′ be two Drinfeld A[ts]-modules over Ts. We say that φ is isomorphic
to φ′ if there exists u ∈ T×s (T×s denotes the multiplicative group of the units of Ts) such that,
in Ts[τ ],

φθu = uφ′θ.

If φ and φ′ are isomorphic Drinfeld modules, they must have the same rank and we shall also
write φ ∼= φ′.

Remark 3.3. When two Drinfeld A[ts]-modules are isomorphic, it is understood that they are
isomorphic over Ts.
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Let φ, φ′ be Drinfeld modules of rank r > 0 over Ts of respective parameters

α = (α1, . . . , αr), α′ = (α′1, . . . , α
′
r) ∈ Ts.

Then the condition φ ∼= φ′ amounts to the existence of u ∈ T×s such that

αiτ
i(u) = α′iu, i = 1, . . . , r.

Remark 3.4. If s = 0, all the Drinfeld A-modules of rank one are isomorphic over C∞ to the
Carlitz module C. This is no longer true for Drinfeld A[ts]-modules of rank one if s > 1; for
example, the Drinfeld modules of rank one of parameters α = 1 (Carlitz module) and α = t
(both defined over T1 = T) are not isomorphic.

From now on, we will be focused on Drinfeld modules of rank one.

Definition 3.5. We will denote by Cs the Drinfeld module of rank one over Ts with parameter

α = (t1 − θ) · · · (ts − θ).

Of course, if s = 0, we get C0 = C, the Carlitz module.

3.1 Exponential and logarithm
Let φ be a Drinfeld A[ts]-module of rank one defined over Ts with parameter α ∈ Ts. We also
set

τα = ατ ∈ Ts[τ ].

Explicitly, for any n > 0, we have

τnα = ατ(α) · · · τn−1(α)τn.

We will be particularly interested in the formal series of Ts[[τ ]]:

expφ =
∑
n>0

1

Dn
τnα ,

logφ =
∑
n>0

1

ln
τnα ,

respectively called the exponential series and the logarithm series associated to φ.
It is easy to show that, in Ts[[τ ]], we have

expφ logφ = logφ expφ = 1, expφ θ = φθ expφ.

A routine computation also shows the identities in Ts[[τ ]]:

φa expφ = expφ a, logφ φa = a logφ for all a ∈ A[ts].

We observe that

‖D−1
n ατ(α) · · · τn−1(α)‖ = ‖α‖(qn−1)/(q−1)q−nq

n
,

so that for all f ∈ Ts, the series

expφ(f) :=
∑
n>0

τnα (f)

Dn
=
∑
n>0

ατ(α) · · · τn−1(α)

Dn
τn(f)
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converges in Ts.1 The k[ts]-linear map

expφ : Ts → Ts

defined by f 7→ expφ(f) is called the exponential function of φ. It is open and continuous, as
the reader can easily check. Also, if α ∈ Ts(K∞), then expφ induces a k[ts]-linear map Ts(K∞)
→ Ts(K∞).

If B is a normed ring with ultrametric norm ‖ · ‖, and if r > 0, we shall denote by DB(0, r)
(respectively DB(0, r)) the set {z ∈ B; ‖z‖ < r} (respectively {z ∈ B; ‖z‖ 6 r}). We notice that,
for all r > 0, the sets DTs(0, r) and DTs(0, r) are k[ts]-submodules of Ts. We observe that

‖l−1
n ατ(α) · · · τn−1(α)‖ = ‖α‖(qn−1)/(q−1)q−q((q

n−1)/(q−1)).

Let us set r = −v∞(α). For all f ∈ Ts such that v∞(f) > (r − q)/(q − 1) (that is, f ∈ DTs(0,
q(q−r)/(q−1))), the series

logφ(f) :=
∑
n>0

τnα (f)

ln

also converges in Ts. The k[ts]-linear map

logφ : DTs(0, q
(q−r)/(q−1)) → Ts

defined by f 7→ logφ(f) is called the logarithm function of φ. As a consequence of the above
discussion, we have the next lemma.

Lemma 3.6. The functions expφ, logφ induce isometric automorphisms of

DTs(0, q
(q−r)/(q−1)),

inverse of each other.

3.1.1 The modules Nα. We denote by u(α) the maximum of the lower integer part of
(r − q)/(q − 1) and zero:

u(α) = max

{
0,

⌊
r − q
q − 1

⌋}
.

Here we assume that α ∈ Ts(K∞). Because this will be needed in the computations of § 5, we
give some elementary properties of the k[ts]-module

Nα = {f ∈ Ts(K∞); v∞(f) > u(α) + 1}.

In particular, we note that Nα = mTs(K∞) if r < 2q − 1.
We observe that we have a direct sum of k[ts]-modules:

Ts(K∞) = A[ts]⊕mTs(K∞).

We notice that u(α) > 0 if and only if r > 2q − 1. The proof of the next lemma is easy and
left to the reader.

1 The reader is warned that we are using the same symbols to denote completely different entities. Indeed, at once,
expφ denotes a formal series of Ts[[τ ]] and a continuous endomorphism of Ts. The same remark can be made for
logφ. This should not lead to confusion and contributes to easily manageable notation.
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Lemma 3.7. For all α such that r = −v∞(α) > 1, we have a direct sum of k[ts]-modules:

mTs(K∞) = Nα ⊕ θ−u(α)〈1, . . . , θu(α)−1〉k[ts]
,

where 〈· · ·〉k[ts]
denotes the k[ts]-span of a set of elements of Ts.

We denote by Mα the module

Mα = θ−u(α)〈1, . . . , θu(α)−1〉k[ts]
(11)

(if r < 2q − 1, we set Mα = {0}). Then, for all α such that r > 1,

Ts(K∞) = A[ts]⊕Mα ⊕Nα. (12)

3.2 An example of expφ injective and not surjective

We shall consider here the case of α = t ∈ T and describe some properties of the associated

exponential function expφ, given by

expφ =
∑
i>0

ti

Di
τ i.

This map expφ : T → T is obviously injective. Moreover, it is not surjective. To see this, let us

extend expφ to C∞[[t]]. For z =
∑

n>0 cnt
n, cn ∈ C∞, we set

expφ(z) =
∑
n>0

expφ(cn)tn ∈ C∞[[t]].

Then expφ : C∞[[t]] → C∞[[t]] is k[[t]]-linear. We have the following result.

Lemma 3.8. Let y be an element of C∞. There exists a unique formal series x =
∑

i>0 xnt
n

∈ C∞[[t]] such that expφ(x) = y. Furthermore, let ε ∈ R be such that

|y| = q(q−ε)/(q−1).

Then, for all n > 0,

|xn| = q(q−qnε)/(q−1).

In particular, x ∈ T if and only if |y| < qq/(q−1).

Proof. Let x =
∑

i>0 xit
i ∈ C∞[[t]] be such that expφ(x) = y. Then

x0 = y

and, for n > 1,

xn = −(xq
n

0 D−1
n + xq

n−1

1 D−1
n−1 + · · ·+ xqn−1D

−1
1 ).

One can then prove that |xn| = q(q−qnε)/(q−1) by induction on n. 2
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3.3 Entire operators
Let

f =
∑
i1,...,is

fi1,...,ist
i1
1 · · · t

is
s

be an element of Ts (the coefficients fi1,...,is lie in C∞). We say that f is an entire function if

lim
i1+···+is→+∞

v∞(fi1,...,is)

i1 + · · ·+ is
= +∞.

The subset Es of entire functions of Ts is a subring containing the subring of polynomials C∞[ts].
Observe that τ(Es) ⊂ Es.

Let us consider a sequence of entire functions (Fn)n>0 and an operator

F =
∑
n>0

Fnτ
n ∈ Es[[τ ]].

We say that F is an entire operator if limn→∞ v∞(Fn)q−n = +∞. In particular, for all f ∈ Ts,
F (f) =

∑
n>0 Fnτ

n(f) converges in Ts.

Lemma 3.9. Let F =
∑

n>0 Fnτ
n be an entire operator. Then F (Es) ⊂ Es.

Proof. With i we shall denote here a multi-index (i1, . . . , is) whose entries are non-negative
integers. We denote by |i| the integer i1 + · · · + is and, if i, j are such multi-indices, then i + j

denotes their component-wise sum. We also write ti for the monomial ti11 · · · tiss . Hence, we have
f =

∑
j fjt

j . We expand each entire function Fn in series

Fn =
∑
i

Fn,jt
j ,

where, by hypothesis, lim|i|→+∞ (v∞(Fn,i)/|i|) = +∞. Now we verify easily that F (f) =∑
k ckt

k ∈ Ts, where

ck =
∑
i+j=k

∑
n>0

Fn,if
qn

j .

Since
v∞(ck) > inf

i+j=k,n>0
(v∞(Fn,i) + qnv∞(fj))

and since

lim
n→∞

v∞(Fn)q−n = lim
|i|→+∞

v∞(fi)|i|−1

= lim
|j|→+∞

v∞(Fn0,j)|j|−1

= +∞

for all n0 ∈ N, we get lim|k|→+∞ v∞(ck)|k|−1 = +∞ and thus F (f) ∈ Es. 2

Let α be an element of Es. Then ατ(α) · · · τ i−1(α) is also entire for all i and

lim
i→∞

v∞(ατ(α) · · · τ i−1(α)D−1
i )q−i = +∞.

Therefore, we deduce from Lemma 3.9 the following proposition, which will be of some help later
on in this paper.
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Proposition 3.10. Let φ be a Drinfeld A[ts]-module of rank one over Ts and let α be its
parameter. Let us assume that α ∈ Es. Then

expφ(Es) ⊂ Es.

4. L-series values

In this section, we consider a Drinfeld A[ts]-module φ of rank one over Ts with parameter
α ∈ A[ts]\{0}. We are going to associate to such a parameter α an L-series value.

4.1 Definition of L-series values
Let α be an element of A[ts]\{0}. In a fixed algebraic closure k(ts)

ac of k(ts), we can find elements
x1, . . . , xr and β ∈ k[ts]\{0} so that, in k(ts)

ac[θ],

α = β(x1 − θ) · · · (xr − θ). (13)

We define

ρα : A → k(ts)
ac

by ρα(0) = 0 and

ρα(a) = βdegθ(a)a(x1) · · · a(xr), a ∈ A\{0}.

An alternative way to write it is

ρα(a) = Resθ(a, α) ∈ k[ts],

where Resθ(P,Q) denotes the resultant of two polynomials in the indeterminate θ.2 In particular,
with P a prime of A (we recall that a prime of A is a monic irreducible element in A+), ρα(P ) = 0
if and only if P divides α in A[ts].

If a, b ∈ A, then ρα(ab) = ρα(a)ρα(b) and, if α1, α2 are polynomials of A[ts], then

ρα1α2(a) = ρα1(a)ρα2(a), a ∈ A.

Definition 4.1. Let φ be the Drinfeld A[ts]-module of rank one of parameter α ∈ A[ts] and let
n > 1 be an integer. The L-series value at n associated to φ is the unit of norm one of Ts(K∞)
defined by (7).

By [AP14, Lemma 4], we also have that L(−n, φ) :=
∑

d>0

∑
a∈A+,d

ρα(a)an converges in Ts
for n > 0 and is in fact in A[ts]. Note that the above definition is not invariant under isomorphism
of Drinfeld A[ts]-modules.

Remark 4.2. We can also associate L-series values L(n, φ) ∈ k(ts)((1/θ)) to Drinfeld k(ts)[θ]-
modules of rank one defined over k(ts)[θ]. In the sequel, we will also work with such modules
and L-series values, but the most interesting examples discussed here will arise from the case of
A[ts]-modules defined over A[ts].

The value L(1, φ) will be one of the main objects of interest of the present paper.

2 We recall that if P = P0θ
d + P1θ

d−1 + · · · + Pd and Q = Q0θ
r + Q1θ

r−1 + · · · + Qr are polynomials with
roots respectively ζi and xj , then, for the resultant Resθ(P,Q), we have the identity Resθ(P,Q) = P r0

∏
iQ(ζi)

= (−1)drQd0
∏
j P (xj).
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4.2 Examples
4.2.1 Examples with s = 0. If s = 0 and α = 1, we have φ = C and

L(n, φ) = L(n,C) = ζC(n),

where ζC(n) is, for n > 0, the Carlitz zeta value

ζC(n) =
∑
a∈A+

a−n ∈ 1 + θ−1k[[θ−1]].

If α ∈ A\{0}, then we can write α = βpν11 · · · pνmm with β ∈ k× for primes p1, . . . , pm of respective
degrees d1, . . . , dm so that

∑
i diνi = r = degθ(α); we have, for a ∈ A+,

ρα(a) = βdegθ(a)
m∏
i=1

di∏
j=1

a(ζi,j)
νi ,

where ζi,1, . . . , ζi,di are the zeros of pi in kac for all i. This implies, in the case β = 1 (that is,
α ∈ A+), that the series L(n, φ) is the special value of a Dirichlet L-series:

L(n, φ) =
∑
a∈A+

a−n
m∏
i=1

di∏
j=1

a(ζi,j)
νi ∈ K∞.

4.2.2 Case of α = t. It is understood here that s = 1, so that we are in T = T1. This case
directly refers to the example of the Drinfeld module φ treated in 3.2. We have then

L(n, φ) =
∑
d>0

td
∑

a∈A+,d

a−n ∈ T ∩K[[t]]

if n > 0. It is easy to see that

L(1, φ) =
∑
i>0

ti`−1
i = logφ(1) ∈ T.

We have that the series
L(−j, φ) :=

∑
d>0

td
∑

a∈A+,d

aj

defines an element of A[t] for j > 0 and

L(−j, φ) = z(t−1,−j),

where the function z is defined as in Goss’ book [Gos96, Remark 8.12.1]. In [Gos96] Goss computes
recursively the polynomial z(t−1,−j) ∈ A[t] for all j > 0.

4.2.3 Case in which α = (t1 − θ) · · · (ts − θ).
Definition 4.3. We will denote by Cs the Drinfeld module of rank one over Ts with parameter

α = (t1 − θ) · · · (ts − θ).

We notice that C0 = 0, the Carlitz module.

We have

L(n,Cs) = L(χt1 · · ·χts , n) =
∑
a∈A+

χt1(a) · · ·χts(a)

an
∈ Ts(K∞)×

with L(χt1 · · ·χts , n) the functions studied in [AP14] and where for all a ∈ A,χti(a) = a(ti). The
case s = 1 and α = t− θ yields the functions L(χt, n) of [Pel12].
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4.2.4 A further example. We shall also trace a connection with the Goss zeta functions,
especially the functions considered by Goss in [Gos13]; see also [AP14, § 2.1]. We recall, from
[AP14, § 2.1], the definition of the L-series L(χt1 · · ·χts , x, y) with (x, y) in the topological group
C×∞ × Zp denoted by S∞ therein:

L(χt1 · · ·χts , x, y) =
∑
k>0

x−k
∑

a∈Ak,+

χt1(a) · · ·χts(a)〈a〉−y,

where 〈a〉 is the 1-unit a/θdegθ(a), and its p-adic exponentiation by −y is well defined. For fixed
(x, y) ∈ S∞, the above series is a well-defined unit element of Ts. Thanks to [AP14, Proposition 6],
we know that the above series in Ts also defines an entire function Cs∞ → C∞.

We have, for β ∈ k×,

L(χt1 · · ·χts , β−1θn, n) =
∑
k>0

βkθ−kn
∑

a∈Ak,+

χt1(a) · · ·χts(a)θkna−n

=
∑
k>0

βk
∑

a∈Ak,+

χt1(a) · · ·χts(a)a−n.

This equals L(n,Cs) if β = 1.

5. The class number formula

In this section, the integer s > 0 is fixed. Hence, we more simply write ts = t = {t1, . . . , ts}.
We introduce the class module and the unit module associated to a given Drinfeld A[t]-module

of rank one of parameter α ∈ A[t]\{0}. We then give a class number formula which relates L(1, φ)
to these objects.

5.1 Class and unit modules
Let φ be a Drinfeld A[t]-module of rank one with parameter α ∈ A[t]\{0}. Recall that r =
−v∞(α) ∈ N. The definitions below are inspired by Taelman’s work [Tae12a, Tae12b].

5.1.1 The class module. We define the class module Hφ as the quotient of A[t]-modules:

Hφ :=
φ(Ts(K∞))

expφ(Ts(K∞)) + φ(A[t])
,

where we recall that φ(A[t]) is the k[t]-module A[t] equipped with the A[t]-module structure
induced by φ.

5.1.2 The unit module. It is the A[t]-submodule of Ts(K∞) defined by

Uφ := {f ∈ Ts(K∞); expφ(f) ∈ A[t]}.

Lemma 5.1. For all r > 1, the exponential function expφ : Ts(K∞) → Ts(K∞) induces an
injective homomorphism of k[t]-modules:

Ts(K∞)

Uφ ⊕Nα
→

Ts(K∞)

A[t]⊕Nα

whose cokernel is Hφ.
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Proof. This is plain by the fact that expφ restricted to DTs(0, q
(q−r)/(q−1)) is an isometric

isomorphism (Lemma 3.6) and the fact that exp−1
φ (A[t]) ∩ Ts(K∞) = Uφ. 2

If M is a finitely generated k[t]-module, we will use the term rank of M for its generic rank,

that is, dimk(t)M ⊗k[t] k(t).

Corollary 5.2. For all Drinfeld modules φ as above, Hφ is a finitely generated k[t]-module of

rank 6 u(α).

Remark 5.3. We have constructed a short exact sequence of A[t]-modules

0 →
Ts(K∞)

Uφ ⊕Nα
→

φ(Ts(K∞))

φ(A[t])⊕Nα
→ Hφ → 0. (14)

On the other hand, there is an isomorphism of k[t]-modules between Mα (the module defined

in (11)) and
Ts(K∞)

A[t]⊕Nα
.

Therefore, the k[t]-modules Ts(K∞)/(Uφ ⊕Nα) and Hφ are finitely generated, and their ranks

add up to u(α), which is the rank of Mα. This tells us in particular that Uφ is non-zero. If

r < 2q − 1, we have that Hφ = {0}.

5.2 Modules over R
We observe that Ts(K∞) ⊂ K(t)∞ and3 that τ extends to a continuous homomorphism of

k(t)-algebras again denoted by τ : K(t)∞ → K(t)∞. If M ⊂ Ts(K∞) is a k[t]-module, we denote

by k(t)M ⊂ K(t)∞ the k(t)-module generated by M . We also set, for φ as above,

Uφ = k(t)Uφ, Hφ = k(t)⊗k[t] Hφ.

The vector spaces Uφ,Hφ are k(t)[θ]-modules. From here to the end of this section, we are going

to make an extensive study of modules over k(t)[θ], so that we denote this ring by R.

Proposition 5.4. The following properties hold.

(1) The R-module Uφ is free of rank one.

(2) We have

Uφ = {f ∈ K(t)∞, expφ(f) ∈ R}.

Proof. (1) Since Uφ is non-trivial, there exists an element f ∈ Uφ with ‖f‖ > 0 minimal. Indeed,

by the fact that expφ induces an isometric isomorphism of DTs(0, q
(q−r)/(q−1)), Uφ is discrete,

that is, Uφ ∩mn
K(t)∞

= {0} for n big enough.

Let g be another element of Uφ. Then, since K(t)∞ = R⊕mK(t)∞ , there exists a polynomial

h of R such that g = hf + b, where b ∈ K(t)∞ is such that ‖b‖ < ‖f‖. Since Uφ is an R-module,

we get b ∈ Uφ, so that b = 0. This means that Uφ is free of rank one.

(2) Observe that k(t)Ts(K∞) is dense in K(t)∞; thus,

K(t)∞ = k(t)Ts(K∞) + m
u(α)+1
K(t)∞

.

3 We recall that K(t)∞ = k(t)((1/θ)).
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It is clear that Uφ ⊂ {f ∈ K(t)∞, expφ(f) ∈ R}. Now let f ∈ K(t)∞ be such that expφ(f)

∈ R. We can write f as a sum g + h, where g ∈ k(t)Ts(K∞) and h ∈ m
u(α)+1
K(t)∞

. We get

expφ(h) = expφ(f)− expφ(g) ∈ k(t)Ts(K∞).

This implies that

expφ(h) ∈ k(t)m
u(α)+1
Ts(K∞) = m

u(α)+1
K(t)∞

∩ k(t)Ts(K∞).

Therefore, h ∈ k(t)m
u(α)+1
Ts(K∞) and thus f ∈ k(t)Ts(K∞). We conclude that f ∈ Uφ. 2

Corollary 5.5. The A[t]-module Uφ is free of rank one.

Proof. By Proposition 5.4, we have Uφ = fR with f ∈ Ts(K∞). Without loss of generality, we
can also suppose that if h divides f in Ts(K∞) with h ∈ k[t], then h ∈ k×. Clearly, Uφ ⊃ fA[t].
Let us consider now an element g of Uφ. We have that g ∈ fR and we can write g = af/δ,
where a ∈ A[t] and δ ∈ k[t]\{0}. This means that δ divides af in Ts(K∞), which is a unique
factorization domain. So, δ must divide a in A[t] and we get g ∈ fA[t]. 2

5.3 Local factors of the L-series values
Let R be a unitary commutative ring. Let M be a finitely generated R-module. As Fitting ideal
of M we mean the initial Fitting ideal as defined in [Lan02, ch. XIX]. By [Lan02, ch. XIX,
Corollary 2.9], if M is a finite direct sum of cyclic modules,

M =

n⊕
i=1

R

ai
, ai an ideal of R,

then

FittR(M) = a1 · · · an.

Let θ be an indeterminate over a field F . We write R = F [θ], and we consider an R-module
M which also is an F -vector space of finite dimension. Let eθ be the endomorphism of M induced
by the multiplication by θ. Then we write

[M ]R = detR(Z − eθ|M)|Z=θ ∈ R

for the characteristic polynomial of eθ, where the indeterminate Z is replaced with θ. This is a
monic polynomial in θ of R = F [θ] and it is the monic generator of FittR(M).

Let α be an element of R\{0} (we recall that R = k(t)[θ]) and let us consider the Drinfeld
R-module of rank one and parameter α, that is, the injective homomorphism of k(t)-algebras

φ : R→ Endk(t)-lin.(K(t)∞)

given by φθ = θ + ατ . For all a ∈ A, the resultant ρα(a) = Resθ(a, α) is a well-defined element
of k(t) making the series (and the corresponding eulerian product)

L(n, φ) =
∑
a∈A+

ρα(a)a−n =
∏
P

(
1− ρα(P )

Pn

)−1

, n > 0

convergent in K(t)∞.
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Lemma 5.6. Let P be a prime of A of degree d. Then the following congruence holds in R[τ ]:

φP ≡ ρα(P )τd (mod PR[τ ]).

Proof. We recall that τα = ατ . Let a ∈ A+ be of degree d. We expand in R[τα]:

φa =
d∑
i=0

(a)iτ
i
α,

where it is easy to see that (a)0 = a. From the relation φaφθ = φθφa we get, by induction on
i = 1, . . . , d− 1,

(a)i =
τ((a)i−1)− (a)i−1

θqi − θ
and (a)i ∈ A for i = 0, . . . , d with (a)d = 1 (so these are the coefficients of the classical Carlitz

multiplication by a). Since a prime P of degree d does not divide θq
i − θ if i < d, we get, for

i = 0, . . . , d− 1, (P )i ≡ 0 (mod PR). This implies that

φP ≡ τdα ≡ ατ(α) · · · τd−1(α)τd (mod PR[τ ]).

Now we observe that, if ζ1, . . . , ζd are the roots of P in kac and if ζ is one of these roots,

ρα(P ) = Resθ(P, α)

=
d∏
j=1

α|θ=ζj

= ατ(α) · · · τd−1(α)|θ=ζ
≡ ατ(α) · · · τd−1(α) (mod PR). 2

If L is a ring with an endomorphism σ, we denote by Lσ=1 the subring {x ∈ L, σ(x) = x}.

Lemma 5.7. Let L be a field and let σ ∈ Aut(L). We set F = Lσ=1. Let r > 0 be an integer
strictly less than the order of σ and let a0, . . . , ar−1 be r elements in L. Then

V =

{
x ∈ L;σr(x) +

r−1∑
i=0

aiσ
i(x) = 0

}
is an F -vector space of dimension not exceeding r.

Proof. A sketch of the proof will be enough, as this is essentially well known; see [vdPS03, § 1.2].
Let n > 1 be an integer and let A be a matrix with entries in L. Let v1, . . . , vr be vectors of Ln

such that σ(vi) = Avi, i = 1, . . . , r. Then, by the proof of [vdPS03, Lemma 1.7], if the vectors
v1, . . . , vr are linearly dependent over L, they are also linearly dependent over F . This implies
that the F -vector space W = {v ∈ Ln, σ(v) = Av} satisfies

dimF (W ) 6 n.

Let A be the companion matrix of the equation

σr(x) +
r−1∑
i=0

aiσ
i(x) = 0
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(see [vdPS03, p. 8]). Let W = {v ∈ Lr, σ(v) = Av}. Then the map V 7→ W ,

x 7→ t(x, σ(x), . . . , σr−1(x))

(the sign t(·) means transposition), is an isomorphism of F -vector spaces. 2

Lemma 5.8. Let φ be a Drinfeld R-module of rank one over K(t)∞ with parameter α ∈ R\{0}.
Let P be a prime of A of degree d. Then we have an isomorphism of R-modules:

φ

(
R
PR

)
∼=

R
(P − ρα(P ))R

.

Proof. By Lemma 5.6, we have

(P − ρα(P )).φ

(
R
PR

)
= {0}.

We set L = R/PR. Then τ induces an automorphism of L and Lτ=1 = k(t), so that τ ∈
Gal(L/k(t)) is of order d. Also, φ induces a morphism of k(t)-algebras φ : R→ L[τ ]. For a in R,
we set Ker(φa) = {x ∈ L;φa(x) = 0}. We write b = P − ρα(P ). We notice that d = dimk(t)(L) =
degθ(b) and L = Ker(φb). We have, by Lemma 5.7, for all a ∈ R, dimk(t)(Ker(φa)) 6 degθ(a).
This implies (see for example [Gos96, proof of Theorem 6.3.2]) that we have an isomorphism of
R-modules Ker(φb) ∼= R/bR. 2

Let P be a prime of A. By Lemma 5.8, we have[
φ

(
R
PR

)]
R

= P − ρα(P ).

The L-series attached to φ/R, denoted by L(φ/R), is the infinite product running over the
primes P of A: ∏

P

[
R
PR

]
R

[
φ

(
R
PR

)]−1

R
. (15)

Proposition 5.9. Let φ be a Drinfeld A[t]-module of rank one of parameter α ∈ A[t]\{0}. The
product L(φ/R) in (15) converges in K(t)∞ and we have

L(φ/R) = L(1, φ).

Proof. We have, by Lemma 5.8, that the quotient

[R/PR]R
[φ(R/PR)]R

is equal to

P

P − ρα(P )
=

(
1− ρα(P )

P

)−1

.

The factors of the infinite product defining L(φ/R) agree with the eulerian factors of L(1, φ).
Since the product L(1, φ) converges in K(t)∞, this implies that the product L(φ/R) converges
to L(1, φ) in K(t)∞. 2
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5.4 The class number formula

An element

f =
∑
i>i0

fiθ
−i ∈ K(t)∞\{0}, fi ∈ k(t), fi0 6= 0,

is monic if the leading coefficient fi0 is equal to one. We shall write

[R : Uφ]R

(R = k(t)[θ]) for the unique monic element f in K(t)∞ such that Uφ = fR, the existence of

which is guaranteed by Proposition 5.4(1).

5.4.1 Estimating the dimension of Vφ. Let us consider the following R-module:

Vφ =
φ(K(t)∞)

φ(R) + expφ(K(t)∞)
.

Just as in the proof of Proposition 5.4(2), we see in fact that for all n > 1,

K(t)∞ = k(t)Ts(K∞) + mn
K(t)∞

.

For all n big enough, expφ induces an isometric automorphism of mn
K(t)∞

(for instance, it suffices

to take n > u(α) + 1). Therefore, for such a choice of n, we have the isomorphism of k(t)-vector

spaces:

Vφ =
k(t)Ts(K∞) + mn

K(t)∞

R + expφ(k(t)Ts(K∞)) + mn
K(t)∞

∼=
k(t)Ts(K∞)

R + expφ(k(t)Ts(K∞))
.

This implies that we have an isomorphism of R-modules:

Vφ ' Hφ ⊗k[t] k(t) = Hφ. (16)

Note that dimk(t)(Hφ) 6 u(α) by Corollary 5.2. This yields the following result.

Corollary 5.10. The R-module Vφ is a finite-dimensional k(t)-vector space of dimension at

most u(α).

5.4.2 The formula. The next theorem directly follows from Theorem A.3, proved in the

appendix by Florent Demeslay, by means of Proposition 5.9 and the isomorphism (16).

Theorem 5.11 (The class number formula). Let φ be a Drinfeld A[t]-module of rank one of

parameter α ∈ A[t]\{0}. The following equality holds in K(t)∞:

L(1, φ) = [Hφ]R [R : Uφ]R .

Let φ be a Drinfeld A[t]-module of rank one over Ts with parameter α ∈ A[t]\{0}. The

following corollary to the class number formula will be crucial.

Corollary 5.12. Let φ be a Drinfeld A[t]-module of rank one of parameter α ∈ A[t]\{0}. We

have

expφ(L(1, φ)) ∈ A[t].
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Proof. By definition, [R : Uφ]RR = Uφ and, obviously, [Hφ]R ∈ R. Thus,

L(1, φ) ∈ Uφ.

By Proposition 5.4(2), expφ(L(1, φ)) ∈ R. At once, by construction, L(1, φ) ∈ Ts(K∞), so that
expφ(L(1, φ)) ∈ Ts(K∞). But then

expφ(L(1, φ)) ∈ R ∩Ts(K∞) = A[t]. 2

Remark 5.13. If α is as in (13) and 0 6 r 6 q − 1 (r = −v∞(α)), we have that L(1, φ) − 1 ∈
mTs(K∞) (see § 3.1.1). Since expφ is an isometric automorphism of DTs(0, q

(q−r)/(q−1)), we also
get expφ(L(1, φ))− 1 ∈ mTs(K∞) but R ∩mTs(K∞) = {0}. We have obtained the identity

expφ(L(1, φ)) = 1. (17)

This can be rewritten as
L(1, φ) = logφ(1) (18)

because 1 = ‖1‖ < q(q−r)/(q−1) thanks again to the hypothesis on r. Similar formulas have been
observed by Perkins in [Per14].

5.4.3 The circular unit module. This is the sub-A[t]-module

U cφ = L(1, φ)A[t] ⊂ Uφ.

Proposition 5.14. Let φ be a Drinfeld A[t]-module of rank one of parameter α ∈ A[t]\{0}. The
modules Uφ/U

c
φ and Hφ are finitely generated k[t]-modules of equal rank at most u(α).

Proof. By Lemma 3.7, we have a direct sum of k[t]-modules:

Ts(K∞) = θ−u(α)U cφ ⊕Nα.

Then we have an exact sequence of k[t]-modules:

0 →
Uφ
U cφ

→
θ−u(α)U cφ ⊕Nα

U cφ ⊕Nα
→

Ts(K∞)

Uφ ⊕Nα
→ 0. (19)

Observe that the k[t]-module in the middle is free of rank u(α). Thus, Uφ/U
c
φ is a finitely

generated torsion-free k[t]-module of rank not bigger than u(α).
Recall from Remark 5.3 that expφ induces an exact sequence of finitely generated k[t]-

modules:

0 →
Ts(K∞)

Uφ ⊕Nα
→

Ts(K∞)

A[t]⊕Nα
→ Hφ → 0.

Since there is an isomorphism of k[t]-modules,

θ−u(α)U cφ ⊕Nα

U cφ ⊕Nα

∼=
Ts(K∞)

A[t]⊕Nα
,

the modules Uφ/U
c
φ and Hφ have the same rank over k[t]. 2

Remark 5.15. In particular, we obtain Uφ = U cφ if r < 2q − 1.
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We deduce, from Theorem 5.11 (with R = k(t)[θ], Hφ = k(t)⊗k[t]Hφ and Ucφ = k(t)U cφ), the
following corollary.

Corollary 5.16. Let φ be a Drinfeld A[t]-module of rank one of parameter α ∈ A[t]\{0}. We
have

[Hφ]R = [Uφ : Ucφ]R .

Proof. We have

[R : Uφ]R = [R : RL(1, φ)]R

[
Uφ

RL(1, φ)

]−1

R
.

Then, by Theorem 5.11, we obtain [
Uφ

RL(1, φ)

]
R

= [Hφ]R . 2

Remark 5.17. Observe that, by Corollary 5.5 and since L(1, φ) ∈ Ts(K∞)×, the k[t]-module
Uφ/U

c
φ is free. Therefore, by Corollary 5.16, we have

[Hφ]R ∈ A[t] ∩ Ts(K∞)×.

To proceed further, we need a precise characterization of the Drinfeld A[t]-modules of rank
one whose exponential function is injective. This is in fact closely related to the non-surjectivity
of expφ and will be investigated in the next section.

6. Uniformizable Drinfeld modules of rank one

Again in this section, the integer s is fixed so that we can write t instead of ts. In this section,
we consider general Drinfeld A[t]-modules of rank one defined over Ts. If Φ ∈ Ts[τ ], we set

TΦ=1
s = {g ∈ Ts,Φ(g) = g}.

This is a k[t]-submodule of Ts. Observe that in the case where φ = C is the Carlitz module
over Ts (this is equivalent to α = 1; note that this does not impose any constraint on s), then
expC : Ts → Ts is a surjective homomorphism of k[t]-modules. Furthermore,

Ker(expC) = π̃A[t]

and
Tτ=1
s = k[t].

We are going to study a class of Drinfeld A[t]-modules of rank one defined over Ts which have
similar properties.

Definition 6.1. Let φ be a Drinfeld A[t]-module of rank one over Ts. We say that φ is
uniformizable if expφ is surjective on Ts.
Proposition 6.2. Let φ be a Drinfeld A[ts]-module of rank one over Ts and let α ∈ Ts\{0} be
its parameter. Recall that τα = ατ ∈ Ts[τ ]. The following conditions are equivalent:

(1) φ is uniformizable;

(2) Tτα=1
s 6= {0};

(3) α ∈ T×s ;

(4) φ is isomorphic to the Carlitz module over Ts.
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Proof. We begin by proving that (3) implies (4). Since α ∈ T×s , there exists x ∈ C×∞ such that
v∞(α− x) > v∞(α). Observe that

v∞

(
τ i(α)

xqi
− 1

)
> qi(v∞(α− x)− v∞(α)).

Thus, the product
∏
i>0(xq

i
/τ i(α)) converges in T×s . Now let us choose an element γ ∈ C×∞ such

that
γq−1 = x.

We set

ωα = γ
∏
i>0

(
xq

i

τ i(α)

)
∈ T×s . (20)

At first sight, these functions depend on the choice of x, but it is easy to show that they are
defined up to a scalar factor of k×. We also notice that, for α1, α2 ∈ T×s ,

ωα1α2 ∈ k×ωα1ωα2 , α1, α2 ∈ T×s .

Then
τ(ωα) = αωα. (21)

This implies that, in Ts[τ ], we have
Cθωα = ωαφθ,

that is, φ and C are isomorphic.
In fact, it is also easy to show that (4) implies (3). Indeed, assuming that the Drinfeld

module of rank one φ is isomorphic to C, we see directly that the parameter α of φ must satisfy
τ(u)/u = α for a unit u of Ts, but this implies that α is a unit as well.

Next, we prove that (4) implies (1). By hypothesis, there exists ϑ ∈ T×s such that, in Ts[[τ ]],

ϑτα = τϑ.

We get, in Ts[[τ ]],
expφ = ϑ−1 expC ϑ.

Since expC is surjective on Ts, we obtain that expφ is also surjective.
We prove that (1) implies (2). Let us then suppose that expφ is surjective. The map Ts → Ts

defined by f 7→ φθ(f) is surjective. Explicitly, for all f ∈ Ts, there exists g ∈ Ts such that

ατ(g) + θg = f.

Recall that we have set λθ = expC(π̃/θ). Since λθ 6= 0 and Cθ(λθ) = expC(π̃) = 0, we have
λq−1
θ = −θ. Therefore,

ατ

(
g

λθ

)
− g

λθ
=

f

λqθ
= − f

λθθ
.

This implies that the map τα − 1 is surjective on Ts.
Furthermore, there exists x ∈ C∗∞ such that ‖αxq−1‖ = 1. Observe that

x−1(τα − 1)x = ταxq−1 − 1.

Hence, we can assume, without loss of generality, that ‖α‖ = 1. Let us suppose, by contradiction,
that Tτα=1

s = {0}. Then the map f 7→ τα(f)−f is an isomorphism of k[t]-modules which satisfies
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‖ατ(f)− f‖ < 1 if and only if ‖f‖ < 1 and ‖ατ(f)− f‖ > 1 if and only if ‖f‖ > 1. In particular,
this map induces an automorphism of the k[t]-module {f ∈ Ts : ‖f‖ = 1}.

Reducing modulo mTs , the above map induces the k[t]-linear endomorphism of kac[t] given
by f 7→ ατ(f)− f , where α 6= 0 is the image of α by the reduction map in kac[t] and f ∈ kac[t].
One can easily verify that this endomorphism is not an automorphism.

This constitutes a contradiction with the assumption that Tτα=1
s = {0}.

We finally prove that (2) implies (3). Let g be a non-zero element of Tτα=1
s . By ατ(g) = g,

we deduce that ατ(α) · · · τn−1(α)τn(g) = g for all n. If α were not a unit, this would contradict
the finiteness of the number of irreducible factors of g. 2

Remark 6.3. The following observation will be extensively used in the rest of this paper. Let φ
be a uniformizable Drinfeld A[t]-module of rank one over Ts of parameter α ∈ T×s . Then the
function expφ induces an exact sequence of A[t]-modules:

0 →
π̃

ωα
A[t] → Ts → φ(Ts) → 0,

where ωα is defined as in (20). In this case, the module Tτα=1
s is obviously given by

Tτα=1
s =

1

ωα
k[t].

Definition 6.4. Let φ be a Drinfeld A[t]-module of rank one over Ts. Then Ts is an A[t]-module
via φ. Thus, if f ∈ A[t]\{0}, we define the A[t]-module of f -torsion φ[f ] by

φ[f ] = {g ∈ Ts, φf (g) = 0}.

Corollary 6.5. Let φ be a Drinfeld A[t]-module of rank one over Ts of parameter α ∈ Ts\{0}.
The following assertions are equivalent:

(1) φ is uniformizable;

(2) Tτα=1
s is a k[t]-module of rank one;

(3) for all f ∈ A[t] ∩ T×s , we have an isomorphism of A[t]-modules:

φ[f ] ' A[t]

fA[t]
;

(4) there exists f ∈ A[t] ∩ T×s such that φ[f ] 6= {0}.

Proof. The equivalence of the properties (1) and (2) is already covered by the proof of
Proposition 6.2 and by Remark 6.3.

We show that (1) implies (3). By Remark 6.3, we have that

Ker(expφ) =
π̃

ωα
A[t].

Notice also that expφ is surjective so that if f ∈ A[t] ∩ T×s , we also have that

exp−1
φ (φ[f ]) =

π̃

fωα
A[t].

It is obvious that (3) implies (4); it remains to show that (4) implies (1). Let α be the parameter
of φ and let us assume that for some f ∈ A[t] ∩ T×s , we have φ[f ] 6= {0}; let g ∈ Ts\{0} be such
that φf (g) = 0.
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We can write, in Ts[τ ],

φf =
d∑
i=0

ciτ
i
α =

d∑
i>0

α · · · τ i−1(α)ciτ
i,

where, for i = 0, . . . , d, ci ∈ A[t], and c0 = f, cd ∈ k×. We get

d∑
i=1

α · · · τ i−1(α)ciτ
i(g) = −fg.

Since f ∈ T×s , we get g = αg1, g1 ∈ Ts\{0}. Thus (we recall that Ts is a unique factorization

domain),
d∑
i=1

τ(α) · · · τ i(α)ciτ
i(g1) = −fg1.

Therefore, g1 = τ(α)g2, and ατ(α) divides g in Ts. Thus, for any n > 1, α · · · τn(α) divides g in

Ts. Therefore, α ∈ T×s and φ is uniformizable by Proposition 6.2. 2

Remark 6.6. The definition of uniformizable A[t]-module is motivated by Anderson’s

result [And86, Theorem 4]. It is an interesting question to characterize higher rank ‘uniformizable’

Drinfeld modules over Ts, that is, Drinfeld modules over Ts which have surjective associated

exponential function.

6.1 The elements ωα
Let α ∈ Ts(K∞)×. Then there exists γ ∈ Ts(K∞)× monic (as a power series in θ−1) such that

α = ργ for some ρ ∈ k×.

The function ωα defined in (20) is determined up to a factor in k×. Let x = ρθr with

r = −v∞(α). Then ‖α− x‖ < ‖α‖. Therefore,

ωα = ρ̃λrθ
∏
i>0

(
τ i(α)

ρθrqi

)−1

, (22)

where ρ̃ ∈ kac is such that ρ̃q−1 = (−1)rρ. From this, it is apparent that

ωα ∈ ρ̃λrθTs(K∞)×

and that

‖ωα‖ = qr/(q−1). (23)

Remark 6.7. Observe that ωα is defined up to the multiplication by an element in k×. When

ρ = (−1)r, we choose ρ̃ = 1. From now on, we will always use this normalization.

The proof of the next lemma is easy and left to the reader.

Lemma 6.8. Let α be in Ts(K∞)×. The following conditions are equivalent:

(1) π̃/ωα ∈ Ts(K∞);

(2) if r = −v∞(α), then r ≡ 1 (mod q − 1) and −α is monic.
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6.2 Examples
If s = 1 and α = t− θ, we have an important example

ωα = ω = λθ
∏
i>0

(
1− t

θqi

)−1

∈ λθT(K∞). (24)

This function, introduced in Anderson and Thakur’s paper [AT90, Proof of Lemma 2.5.4, p. 177],
was also used extensively in [Pel12, AP14]. For general s, it is important also to consider the
function ωα associated with the choice of α = β(t1 − θ) · · · (ts − θ), β ∈ k×. In this case,

ωα = β̃ω(t1) · · ·ω(ts), (25)

where β̃q−1 = β.

7. Uniformizable Drinfeld modules of rank one defined over A[t1, . . . , ts]

In this section, we fix φ, a uniformizable Drinfeld A[ts]-module of rank one defined over A[ts].
By Proposition 6.2, its parameter α lies in A[ts] ∩ T×s and we have a factorization α = β
(x1 − θ) · · · (xr − θ) with x1, . . . , xr ∈ k(ts)

ac, β ∈ k× and r = −v∞(α) ∈ Z>0.

7.1 The torsion case
In this subsection, we assume that β = 1 and r ≡ 1 (mod q − 1). If r = 0, then q = 2 and
L(1, φ) = ζC(1); in this case expC(ζC(1)) = 1 is a torsion point for the Carlitz module. We begin
with the case r = 1. We then have α = x− θ with x ∈ k[ts], so that ρα(a) = a(x) for a ∈ A and,
in particular, ρα(θ) = x.

Lemma 7.1. If β = 1, r = 1 and α = x− θ, x ∈ k[ts], we have the identity

L(1, φ)ωα =
π̃

θ − x
.

Proof. We recall that λθ = expC(π̃/θ) and that we have the infinite product (3) which converges
to π̃. This shows that

θλθ
π̃

=
∑
i>0

π̃q
i−1

Diθq
i−1
∈ K∞.

Observe that for i > 1,

v∞

(
π̃q

i−1

Diθq
i−1

)
= qi

(
i− 1

q − 1

)
+

1

q − 1
> 0.

Therefore,
θλθ
π̃
≡ 1

(
mod

1

θ
k

[[
1

θ

]])
.

We recall that ωα = λθ
∏
i>0(1− x/θqi)−1. We get

(x− θ)ωαπ̃−1 =
−θλθ
π̃

∏
i>1

(
1− x

θqi

)−1

≡ −θλθ
π̃
≡ −1 (mod mTs(K∞)).

Hence, if we write
F = (x− θ)L(1, φ)ωαπ̃

−1,
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where L(1, φ) =
∑

a∈A+
(a(x)/a), we have

F ≡ −1 (mod mTs(K∞)).

Now, we have that expφ(L(1, φ)) = 1 (Remark 5.13); thus,

expφ((x− θ)L(1, φ)) = φx−θ(expφ(L(1, φ))) = φx−θ(1) = x− φθ(1) = 0.

Therefore, (x − θ)L(1, φ) ∈ Ker(expφ) = (π̃/ωα)A[ts], so that F ∈ A[ts]. But v∞(F + 1) > 0,
which implies that F = −1. 2

The above lemma implies [Pel12, Theorem 1].

Proposition 7.2. Let φ be the Drinfeld A[ts]-module of rank one of parameter α = (x1 −
θ) · · · (xr−θ) ∈ A[ts] with x1, . . . , xr ∈ k(ts)

ac, r > 1, r ≡ 1 (mod q−1). The following properties
hold.

(1) If r > q, then Uφ = (π̃/ωα)A[ts] and expφ(Uφ) = 0.

(2) The module Hφ is a free k[ts]-module of rank u(α). Moreover, Uφ/U
c
φ is isomorphic to Hφ

as a k[ts]-module.

Proof. (1) By Lemma 6.8 and the identity (23), we see that ‖π̃/ωα‖ = qu(α), so that

Ts(K∞) =
π̃

ωα
A[ts]⊕Nα. (26)

Let f be in Uφ and let us write f = f1 +f2 with f1 ∈ (π̃/ωα)A[ts] and f2 ∈ Nα. Since f1 is in the
kernel of expφ, we have expφ(f) = expφ(f2) ∈ Nα. Since expφ induces an isometric automorphism
of Nα, the condition expφ(f) ∈ A[ts] yields f2 = 0. This means that Uφ = (π̃/ωα)A[ts], as
expected.

(2) By (26), Nα = expφ(Ts(K∞)) and therefore is an A[ts]-module via φ. We have

Hφ =
φ(Ts(K∞))

φ(A[ts])⊕ φ(Nα)
.

In particular, Hφ, as a k[ts]-module, is isomorphic to A[ts]θ
−u(α)/A[ts] and hence is free of rank

u(α). Finally, in (19), the third arrow maps to zero so that Uφ/U
c
φ
∼= Hφ as a k[ts]-module. 2

We deduce the next corollaries.

Corollary 7.3. Let α be as in (13) with β = 1 and r = q. Let φ be the Drinfeld A[ts]-module
of rank one with parameter α. Then the following formula holds:

L(1, φ) = − π̃

ωα
.

Corollary 7.4. If β = 1, r ≡ 1 (mod q − 1) and r > q, then

L(1, φ) ∈ A[ts]
π̃

ωα
.

Remark 7.5. The results of Lemma 7.1 and Corollary 7.4 also justify the terminology torsion
case because expφ(L(1, φ)) is a torsion point for φ. And, by Lemma 6.8, for φ a uniformizable
Drinfeld A[ts]-module of rank one defined over A[ts], expφ(L(1, φ)) is a torsion point for φ if and
only if r ≡ 1 (mod q − 1) and β = 1.
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The terminology is also suggested by the behavior of the higher Carlitz zeta values ζC(n) =∑
a∈A+

a−n. In [AT90], Anderson and Thakur constructed a point zn ∈ Lie(C⊗n)(K∞) with last
entry Π(n− 1)ζC(n) such that Expn(zn) = Zn, where Π denotes the Carlitz factorial (see § 9.4),
Expn denotes the exponential function of C⊗n and Zn is a certain A-valued special point of C⊗n

explicitly constructed in [AT90]. We have that Zn is a torsion point for C⊗n if and only if q − 1
divides n (see Anderson and Thakur [AT90, Corollary 3.8.4] and Yu [Yu91, Corollary 2.6]).

The methods of [AP14, Theorem 4] can probably be used to show that, more generally,
π̃−nL(n, φ)ωα is rational if and only if r ≡ n (mod q − 1) and −α is monic. It would be nice to
see if these are also related to torsion points for the tensor powers of the modules φ as in [AT90]
in the case s = 0.

7.1.1 The polynomials Bφ. If α is as in (13) with r = −v∞(α) such that r ≡ 1 (mod q− 1),
r > q, by Corollary 7.4, we have that

Bφ := (−1)(r−1)/(q−1)L(1, φ)ωαπ̃
−1 ∈ A[ts]. (27)

We also set, for r = 1,

Bφ =
1

θ − x
,

where x ∈ k[ts] is the unique root of α as a polynomial in θ.
The polynomials Bφ ∈ k[ts][θ] have already been studied in [AP14] in the case of α = (t1 −

θ) · · · (tr − θ) with r = s. If r = q, we can even deduce the exact value of Bφ (see Corollary 7.3):
Bφ = 1. More generally, we have the following result for r > 1.

Lemma 7.6. The polynomial Bφ ∈ k[ts][θ] is a monic polynomial of degree u(α) = (r − q)/(q − 1)
in the indeterminate θ.

Proof. Let us write

Bφ =
m∑
i=0

aiθ
i,

where ai ∈ k[ts] and am 6= 0. We have that v∞(π̃−1L(1, φ)ωα) = v∞(Bφ) = (q − r)/(q − 1), which
implies that

m =
r − q
q − 1

and

am ∈ k×.

To compute am, it suffices to compute the leading coefficient of the expansion of π̃−1L(1, φ)ωα
as a series of k(ts)((θ

−1)). This computation is easy and left to the reader. 2

The importance of the polynomials Bφ is dictated by the next theorem.

Theorem 7.7. Let r > q; then

FittA[ts]
(Hφ) = BφA[ts].

Proof. Since Hφ is free of rank u(α) (Proposition 7.2(2)), we have that FittA[ts]
(Hφ) = FA[ts],

where

F = detk[ts]
(Z − φθ|Hφ)|Z=θ,
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and F has degree u(α) as a polynomial in θ. Again, by Proposition 7.2(1), we have Uφ =
(π̃/ωα)A[ts] and

[R : Uφ]R =

[
R :

π̃

ωα
R
]
R

= (−1)(r−1)/(q−1) π̃

ωα

(in the notation of § 5.2), because (−1)(r−1)/(q−1)π̃/ωα is monic. It remains to apply
Corollary 5.16. 2

We presently do not know much about the irreducible factors of the polynomials Bφ. However,
if α = (t1 − θ) · · · (ts − θ) (that is, if φ = Cs) with s ≡ 1 (mod q − 1), more can be said.

Lemma 7.8. If s ≡ 1 (mod q − 1), s > q, then BCs has no non-trivial divisor in A.

Proof. In this case, we have ωα = ω(t1) · · ·ω(ts) and L(1, Cs) = L(χt1 · · ·χts , 1) in the notation
of [AP14]. We can evaluate at t1 = · · · = ts = ζ ∈ k and, by the fact that s ≡ 1 (mod q − 1),
L(1, Cs)|ti=ζ =

∑
a∈A+

(a(ζ)/a). By using Lemma 7.1, we obtain∑
a∈A+

a(ζ)

a
=

π̃

(θ − ζ)ω(ζ)
.

Therefore,

BCs |ti=ζ = π̃−1L(1, Cs)ωα|ti=ζ = ω(ζ)r−1(θ − ζ)−1 = (θ − ζ)(r−q)/(q−1) ∈ A.

Now, if a ∈ A\{0} divides BCs in A[ts], then a divides (θ − ζ)(r−1)/(q−1) for all ζ ∈ k, so that
a ∈ k×. 2

Proposition 7.9. Let us suppose that s > 2q − 1 and s ≡ 1 (mod q − 1). Then the A-module
HCs is torsion free and not finitely generated.

Proof. Proposition 7.2 asserts that HCs is a k[ts]-module free of rank (s− q)/(q − 1) > 1. Thus,
the assertion that the A-module HCs is torsion free is a consequence of Lemma 7.8. Now it is a
general fact that a non-trivial k[ts, θ]-module M cannot be simultaneously free of finite rank over
k[ts] and over A if s > 1. Let us suppose by contradiction that M is a non-trivial k[ts, θ]-module
which is free of finite rank as a module over k[ts] and over A = k[θ]. Then EndA(M) would be
isomorphic to Matn×n(k)[θ] as an A-module. For 1 6 i 6 s, the actions on M of ti and of θ
commute and, for all i, the multiplication by ti defines an element Ti ∈ EndA(M). Since M is
free over k[ts], we deduce that if i 6= j, Ti and Tj are algebraically independent over k. This is
not possible. Now, for s as in our hypotheses, the module HCs is finitely generated over k[ts] and
non-trivial. Hence, it is not finitely generated over A. 2

7.2 The non-torsion case
In this subsection, we consider the Drinfeld module Cs (recall that this is the Drinfeld A[ts]-
module of rank one with parameter (t1 − θ) · · · (ts − θ)) and we assume that s 6≡ 1 (mod q − 1),
s > 2q − 1. Let M be the A-torsion submodule of HCs . This also is an A[ts]-module, and we
know that it is a finitely generated k[ts]-module (Corollary 5.2). Moreover, we have the following
result.

Proposition 7.10. The A[ts]-submodule M is a torsion k[ts]-module.

Proof. We must show that M ⊗k[ts]
k(ts) = {0}. By the isomorphism (16), it is enough to show

that [HCs ]R has no divisors in A, where R = k(ts)[θ]. By Proposition 5.4(1), we know that
UCs = k(ts)UCs is an R-module free of rank one. The class number formula, Theorem 5.11,
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yields that
[HCs ]RUCs = RL(1, Cs).

Let a ∈ A\{0} be a divisor of [HCs ]R . Then a−1L(1, Cs) ∈ UCs . By Proposition 5.4(2), we have
that expCs(a

−1L(1, Cs)) ∈ R. Since we also have, at once, expCs(a
−1L(1, Cs)) ∈ Ts(K∞), we

obtain that
expCs(a

−1L(1, Cs)) ∈ A[ts].

We claim that this is impossible unless a ∈ k×. To see this, we appeal to Proposition 3.10, which
says us that expCs(a

−1L(1, Cs)) extends to an entire function in s variables.
It is here that we use the particular shape of the parameter α. Indeed, α vanishes at ts = θ.

The evaluation at ts = θ in expCs(a
−1L(1, Cs)) yields an entire function in s − 1 variables

t1, . . . , ts−1. Since

expCs(a
−1L(1, Cs)) =

∑
k>0

∑
i+j=k

ατ(α) · · · τ i−1(α)

aqiDi

∑
b∈A+,j

χt1(b) · · ·χts(b)
bqj

, (28)

evaluating at ts = θ gives

expCs(a
−1L(1, Cs))|ts=θ = a−1L(0, Cs−1) ∈ a−1k[ts−1] ∩Rs−1,

where Rs−1 = k(ts−1)[θ] and Cs−1 is the Drinfeld module of rank one of parameter

α′ = (t1 − θ) · · · (ts−1 − θ).

If by contradiction a 6∈ k×, then a−1k[ts−1] ∩Rs−1 = {0} and

expCs(a
−1L(1, Cs))|ts=θ = L(0, Cs−1) = 0.

However, L(0, Cs−1) 6= 0. Indeed, by hypothesis, s− 1 6≡ 0 (mod q − 1) and, by [Gos96, p. 278,
line 4], we have

L(0, Cs−1)|t1=···=ts−1=θ = ζC(1− s) ∈ A\{0},

which yields a contradiction. Therefore, a ∈ k×. 2

8. On the log-algebraicity theorem of Anderson

We first recall Anderson’s log-algebraicity theorem for the Carlitz module (cf. [And96, Theorem
3]; see also [And96, Proposition 8]). Let Y, z be two indeterminates over C∞. Let

τ : C∞[Y ][[z]] → C∞[Y ][[z]]

be the map f 7→ f q. Anderson proved that for n ∈ N,

expC

(∑
d>0

∑
a∈A+,d

Ca(Y )n

a
zq
d

)
∈ A[Y, z].

It turns out that the class number formula (Theorem 5.11) implies a refined version of Anderson’s
log-algebraicity theorem in the case of the Carlitz module, as we will explain below.

We consider, for r ∈ N, and for all 1 6 j 6 r, i ∈ N, ‘symbols’ X1, . . . , Xr, Z, τ(X1), . . . ,
τ(Xr), . . . , τ

i(Xj), . . . . Let us consider the polynomial ring in infinitely many indeterminates

Br = C∞[X1, . . . , Xr, τ(X1), . . . , τ(Xr), τ
2(X1), . . . , τ2(Xr), . . .].
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We extend the action of τ to Br by setting

τ(τm(X)) = τm+1(X)

with X = X1, . . . , Xr, and τ(c) = cq for c ∈ C∞. We use the ring Br (and the so far unused
indeterminate Z) to construct yet another ring, non-commutative, denoted by Ar. This is the
set of infinite series ∑

i>0

ciτ
i(Z)

with the coefficients ci ∈ Br, the sum being the usual one and the product being given by the
following rule. For

F =
∑
i>0

fiτ
i(Z), G =

∑
j>0

gjτ
j(Z),

we set

F ·G :=
∑
k>0

( ∑
i+j=k

fiτ
i(gj)

)
τk(Z).

Note that the action of τ on Br extends to an action of τ on Ar by setting

τ(τ i(Z)) = τ i+1(Z).

We identify A[X1, . . . , Xr, Z, τ(X1), . . . , τ(Xr), τ(Z), . . .] with the subring of Ar consisting of
elements

∑
i>0 ciτ

i(Z), where the sequence of coefficients ci ∈ A[τ i(Xj); 1 6 j 6 r, i > 0] ⊂ Br is
ultimately 0. The series

Lr(X1, . . . , Xr;Z) =
∑
d>0

( ∑
a∈A+,d

Ca(X1) · · ·Ca(Xr)a
−1

)
τd(Z)

defines an element of Ar. Let expC =
∑

i>0D
−1
i τ i be the operator associated to Carlitz’s

exponential. Obviously,

Sr(X1, . . . , Xr;Z) := expC(Lr(X1, . . . , Xr;Z))

is an element of Ar. But more is true.

Theorem 8.1. We have that

Sr(X1, . . . , Xr;Z) ∈ A[X1, . . . , Xr, Z, τ(X1), . . . , τ(Xr), τ(Z), . . .].

Proof. Let φ be the Drinfeld A[tr+1]-module of rank one whose parameter is

α′ = tr+1(t1 − θ) · · · (tr − θ) ∈ A[tr+1].

For i = 1, . . . , r + 1, there is a unique homomorphism of C∞-algebras

ti : Ar → Ar
defined by the following table of multiplication, for m ∈ N.

ti.τ
m(Xj) = τm(Xj) i 6= j

ti.τ
m(Z) = τm(Z) i 6= r + 1

ti.τ
m(Xi) = τm(Cθ(Xi)) i 6 r

tr+1.τ
m(Xi) = τm(Xi) i 6 r

tr+1.τ
m(Z) = τm+1(Z)
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(We notice on the way the identity τm(Cθ(Xi)) = τm+1(Xi)+θq
m
τm(Xi).) We can endowAr with

the structure of a K[tr+1]-algebra. The underlying K[tr+1]-module structure can be described
as follows. If f ∈ Ar and if g ∈ K[tr+1] has expansion

g =
∑

i1,...ir+1∈N
gi1,...,ir+1t

i1
1 · · · t

ir+1

r+1 , gi1,...,ir+1 ∈ K,

then we have

g.f =
∑

i1,...,ir∈N
gi1,...,ir(t

i1
1 .f) · · · (tir+1

r+1 .f).

We deduce, from the above multiplication table, the identity, for 1 6 i 6 r, j > 0 and m1, . . . ,
mr ∈ N,

tji .(τ
m1(X1) · · · τmr(Xr)) = τm1(X1) · · · τmi−1(Xi−1)τmi(Cθj (Xi))τ

mi+1(Xi+1) · · · τmr(Xr).

Thus,

(a(t1) · · · a(tr)).τ
m(X1 · · ·Xr) = τm(Ca(X1) · · ·Ca(Xr)), a ∈ A.

In fact, the action of K[tr+1] extends to an action of K[tr][[tr+1]] in the following way. If F =∑
i>0 Fit

i
r+1 ∈ K[tr][[tr+1]], we set

F.(X1 · · ·XrZ) =
∑
i>0

Fit
i
r+1 . (X1 · · ·XrZ) =

∑
i>0

Fi . (X1 · · ·Xrτ
i(Z)) ∈ Ar.

We observe that

L(1, φ) =
∑
n>0

∑
a∈A+,n

a(t1) · · · a(tr)

a
tnr+1 ∈ Tr+1 ∩K[tr][[tr+1]].

Therefore, the multiplication L(1, φ) . (X1 · · ·XrZ) is well defined and we have

L(1, φ) . (X1 · · ·XrZ) = Lr(X1, . . . , Xr;Z).

We also recall that

expφ = 1 +
∑
i>1

α′ · · · τ i−1(α′)

Di
τ i.

This defines an element of Ar again denoted by expφ and, for all F ∈ Ar, we have expφ ·F =
expφ(F ), which justifies that we are using the same notation for a series of Ar and a series of
K[tr+1][[τ ]]. We claim that

expC(Lr(X1, . . . , Xr;Z)) = (expφ(L(1, φ))) . (X1 · · ·XrZ).

Indeed, if we choose 1 6 i 6 r and integers m1, . . . ,mi−1,mi+1, . . . ,mr, n ∈ N, we have, for j > 1,
that the element of Ar

((ti − θ) · · · (ti − θq
j−1

)) . (τm1(X1) · · · τmi−1(Xi−1)Xiτ
mi+1(Xi+1) · · · τmr(Xr)τ

n(Z))

is equal to

τm1(X1) · · · τmi−1(Xi−1)τ j(Xi)τ
mi+1(Xi+1) · · · τmr(Xr)τ

n(Z).
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This implies that for i > 1,

α′τ(α′) · · · τ i−1(α′) . (X1 · · ·XrZ) = τ i(X1 · · ·XrZ),

from which we deduce the claim.
But Corollary 5.12 implies that

expφ(L(1, φ)) ∈ A[tr+1];

thus, we can conclude that

Sr(X1, . . . , Xr;Z)

= expC(Lr(X1, . . . , Xr;Z)) ∈ A[X1, . . . , Xr, Z, τ(X1), . . . , τ(Xr), τ(Z), . . .]. 2

The above theorem implies a multivariable version of Anderson’s log-algebraicity theorem.

Corollary 8.2. Let r > 0 be an integer and let Y1, . . . , Yr, z be r+ 1 indeterminates over C∞.
Let τ : C∞[Y1, . . . , Yr][[z]] → C∞[Y1, . . . , Yr][[z]], f 7→ f q. Then

expC

(∑
d>0

∑
a∈A+,d

Ca(Y1) · · ·Ca(Yr)
a

zq
d

)
∈ A[Y1, . . . , Yr, z].

Proof. Let ψ : Ar → C∞[Y1, . . . , Yr][[z]] be the morphism of C∞-algebras given by: for m ∈ N,
ψ(τm(Xi)) = Y qm

i , 1 6 i 6 r, and ψ(τm(Z)) = zq
m

. Then

for all f ∈ Ar, ψ(τ(f)) = τ(ψ(f)).

The corollary follows from Theorem 8.1. 2

Remark 8.3. Even though it only applies to the Carlitz module, Theorem 8.1 has an advantage
if compared to Anderson’s original result [And96, Theorem 3], and this one even, if we forget
the occurrence of the distinct variables X1, . . . , Xr. Indeed, these variables can vary in the Tate
algebra Ts, while Anderson’s result holds if the variable is chosen in C∞. Let us assume, for the
sake of simplicity, that X1 = · · · = Xr = X. In [And96, § 4.3], Anderson also provides a table of
special polynomials of small order for small values of q. For example, if q = 3 and r = 4, we have
the formula (cf. [And96, p. 191])

expC

(∑
k>0

Zq
k
∑

a∈A+,k

Ca(X)4

a

)
= ZX4 − Z3X6. (29)

This formula has to be understood with the variables X,Z varying in C∞ so that |Z| is small
enough to ensure convergence. If the variables are chosen in Ts, the formula no longer holds. It
can be proved, with an explicit computation, that, again for q = 3,

S4(X1, . . . , X4;Z) = ZX1 · · ·X4 − τ(Z)(X1X2X3τ(X4)

+X1X2τ(X3)X4 +X1τ(X2)X3X4 + τ(X1)X2X3X4).

If we choose X1 = · · · = X4 = X, then we get

S4(X, . . . ,X;Z) = ZX4 − τ(Z)X3τ(X),

so that, if X,Z ∈ C∞, we recover the original entry of Anderson’s table (29). Of course, further
information about the polynomials S(X1, . . . , Xr;Z) can be made explicit in the same spirit
of [And96, Proposition 8]; we refer the interested reader to a forthcoming work of the authors.
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9. Evaluation at Dirichlet characters

In this section, more involved than the previous ones, we prove a generalization of the Herbrand–

Ribet–Taelman theorem [Tae10]. The difficulties to overcome are due to the evaluations at roots

of unity that we have to control, in order to extract information about the Taelman class modules

associated to cyclotomic function field extensions of K (see below) from the structure of the

‘generic class modules’ HCs studied in § 7.1.1.

We recall that, for a ∈ A+, we have set λa = expC(π̃/a) and we have denoted by Ka = K(λa)

the ath cyclotomic field extension of K. Let P be a prime of A. Then Taelman’s class module

associated to the extension KP /K and to the Carlitz module is the finite-dimensional k-vector

space

H(C/A[λP ]) =
KP ⊗K K∞

expC(KP ⊗K K∞) +A[λP ]
.

We notice that A[λP ] is the integral closure of A in KP . This k-vector space is equipped with a

structure of A-module via C and ∆P = Gal(KP /K) acts on this module. Since ∆P is abelian of

order prime to p, one can study the isotypic components of

H(C/A[λP ])⊗k
A

PA
.

This is precisely what is done in [AT15]. In particular, in [AT15], the authors proved an

‘equivariant class number formula’ and with the help of such a formula they were able to recover

an analogue of the Herbrand–Ribet theorem, which was originally obtained by Taelman by using

different methods of proof (see [Tae12b]).

The basic idea in this section has its origins in [Pel12] and [Tae12b]. Let s > 1 be an integer.

If f ∈ Ts(K∞), we can evaluate f at the points in (kac)s. Now let χ be a Dirichlet character of

type s (see § 9.1); to such a character we can associate a point ζ
χ
∈ (kac)s, and we therefore have

a morphism (see § 9.1.4) of K∞-algebras:

evχ : Ts(K∞) → K∞(χ), f 7→ f(ζ
χ
),

where K∞(χ) is the field obtained by adjoining to K∞ the values of the character χ. For example,

evχ(L(1, Cs)) = L(1, χ),

where we recall that Cs is the Drinfeld A[ts]-module of rank one whose parameter is (t1 −
θ) · · · (ts − θ) and

L(1, χ) =
∑
a∈A+

χ(a)

a
∈ K∞(χ)

is the value at one of the Goss abelian L-functions associated to the character χ.

Let a be the conductor of the Dirichlet character χ. Then we prove (see § 9.1.5) the crucial fact

that the map evχ induces a surjective morphism of A-modules between HCs and the χ-isotypic

component of Taelman’s class module H(C/A[λa]), where A[λa] is the integral closure of A in

the ath cyclotomic function field. This enables us to study isotypic components of Taelman’s

class modules in families with the help of the results obtained in the previous sections and the

recent results in [AP14, AP15, AT15].
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9.1 Setting
Let P be a prime of A of degree d > 1. We recall that KP denotes the P -adic completion of K.
Let CP be the completion of a fixed algebraic closure KP

ac of KP . Since we are going to study
certain congruences modulo P , we choose once and for all a K-embedding

ιP : Kac
→ CP .

We normalize the valuation vP at the place P by setting vP (P ) = 1. We recall that ∆P is the
Galois group of the finite abelian extension K(λP )/K, where λP = expC(π̃/P ), and that there
is an isomorphism (A/PA)× ' ∆P given by b 7→ σb, where σb satisfies (10).

The Teichmüller character is the unique morphism ϑP : ∆P → (kac)× such that, for all
a ∈ A\AP ,

vP (ιP (ϑP (σa))− a) > 1.

Note that there exists a unique element ζP in kac such that vP (θ − ιP (ζP )) > 0. Observe also
that P (ζP ) = 0. Furthermore, for σb ∈ ∆P with b ∈ A\PA, we have ϑP (σb) = b(ζP ).

Then every character χ ∈ ∆̂P = Hom(∆P , (k
ac)×) is a power of ϑP ; we can write

χ = ϑiP , 0 6 i 6 qd − 2. (30)

More generally, if a ∈ A+, we recall (see § 2.1.3) that we have defined Ka = K(λa) and ∆a

= Gal(Ka/K). If a is non-constant and square-free, we can write a = P1 · · ·Pr with P1, . . . , Pr
distinct primes of respective degrees d1, . . . , dr, and we have that ∆̂a

∼= ∆̂P1 × · · · × ∆̂Pr , so that

for every character χ ∈ ∆̂a,
χ = ϑN1

P1
· · ·ϑNrPr , (31)

where the integers Ni are such that 0 6 Ni 6 qdi − 2 for all i. We call a character like χ in (31)
a Dirichlet character4 and its conductor is the product

∏
Ni 6=0 Pi (note that the trivial character

has conductor 1). We define ka as the subfield of kac generated over k by the roots of a (and we
set k1 = k). Observe that if b ∈ A+ (b need not be square-free), any homomorphism ∆b → (kac)×

comes from a Dirichlet character.

9.1.1 Gauss–Thakur sums. If P is a prime of A, the Gauss–Thakur sum associated to a

character χ = ϑq
j

P ∈ ∆̂P is defined (see Thakur [Tha88, § 9.8]) by

g(ϑq
j

P ) = −
∑
δ∈∆P

ϑP (δ−1)q
j
δ(λP ) ∈ kPKP ,

where kPKP is the compositum of kP and KP = K(λP ) in Kac (we have that kP ∩KP = k).

Observe that the Gauss–Thakur sums g(ϑq
j

P ) do not depend on the choice of ιP although they
depend on the choice of a (q−1)th root of θ−θq in order to choose π̃ in (3). Let χ be a character

of ∆̂P . We define g(χ) by using (30) in the following way. We expand i = i0 + i1q+ · · ·+ id−1q
d−1

in base q (i0, . . . , ir ∈ {0, . . . , q − 1}) and, along with this expansion, we define

g(χ) =
d−1∏
j=0

g(ϑq
j

P )ij .

4 In fact, we should call such characters tame Dirichlet characters because the extensions of K associated to such
characters are tamely ramified. However, since this is the only kind of characters to be considered in this section,
we adopt the terminology Dirichlet characters for simplicity.
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Observe that in general g(χ) depends also on the choice of the embedding ιP used to define ϑP .
We recall (see § 6.1) that

ω(t) = λθ
∏
i>0

(
1− t

θqi

)−1

∈ λθT(K∞).

By [AP15, Theorem 2.9], we have

g(ϑq
j

P ) = P ′(ζP )−q
j
ω(ζq

j

P ), j = 0, . . . , d− 1. (32)

Now let χ be a general Dirichlet character whose factorization is of the form χ = ϑN1
P1
· · ·ϑNrPr ,

where P1, . . . , Pr are distinct primes of respective degrees d1, . . . , dr, and where the integers Ni

are such that 0 6 Ni 6 qdi − 2 for all i. We copy below from [AP14, § 2.3] the definition of
the Gauss–Thakur sum associated to such a character. We set a = P1 · · ·Pr. Let us expand in
base q:

Ni =

di−1∑
j=0

ni,jq
j , i = 1, . . . , r, (33)

with ni,j ∈ {0, . . . , q − 1}. For a positive integer N , we denote by `q(N) the sum of the digits

of the expansion in base q of N so that `q(Ni) =
∑di−1

j=0 ni,j . We also set s =
∑

i `q(Ni). The
integer s is called the type of χ. We point out that the type s of χ does not depend on the
embeddings ιPi . Note that the trivial character is the unique Dirichlet character of type zero.
The Gauss–Thakur sum associated to χ is defined as follows:

g(χ) =

r∏
i=1

g(ϑNiPi ) ∈ kaKa,

where kaKa denotes the compositum of ka and Ka = K(λa) in Kac.

9.1.2 ka[∆a]-modules.. For v a place of Ka, let us denote by K̂a,v the completion of Ka at v.
If v divides ∞ and a 6= 1, then

K̂a,v
∼= K∞(π̃).

We set Ka,∞ = Ka ⊗K K∞. We have K1,∞ = K∞ and, if a is non-constant, we have an
isomorphism of K∞-algebras:

Ka,∞ ∼=
∏

v∈S∞(Ka)

K∞(π̃),

where S∞(Ka) is the set of places of Ka dividing∞. There is an action of ∆a on Ka,∞; if σ ∈ ∆a

and x⊗ y ∈ Ka ⊗K K∞, then
σ(x⊗ y) := σ(x)⊗ y.

The operator τ acts on Ka,∞ by exponentiation by q (explicitly, τ(x ⊗ y) = xq ⊗ yq) and the
actions of ∆a and τ commute). We set

Ωa = Ka,∞ ⊗k ka.

We endow Ωa with a structure of ka[∆a]-module by setting (as above), for σ ∈ ∆a and x⊗ y ∈
Ωa = Ka,∞ ⊗k ka,

σ(x⊗ y) = σ(x)⊗ y.
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This action commutes with the ka-linear extension ϕ of the operator τ on Ωa. If x ⊗ y ∈ Ωa,
we have ϕ(x ⊗ y) = τ(x) ⊗ y. If we identify kaK∞ with K∞ ⊗k ka, which is in a natural way a
K∞-subalgebra of Ωa, if x =

∑
i xiθ

−i ∈ ka((θ−1)) = kaK∞, then

ϕ(x) =
∑
i

xiθ
−iq.

9.1.3 Idempotents. Here we assume that a is square-free. We identify kaKa with Ka ⊗k ka,
which is a K-subalgebra of Ωa. We denote by Oa the integral closure of A in Ka; then Oa[ka] =

Oa ⊗k ka is the integral closure of A[ka] = A⊗k ka in kaKa. To a character χ ∈ ∆̂a, as in (31),
we associate an idempotent eχ ∈ ka[∆a], defined as follows:

eχ = |∆a|−1
∑
δ∈∆a

δ−1χ(δ).

By [AP14, Lemma 16], we have

eχ(kaKa) = (kaK)g(χ) and eχ(Oa[ka]) = A[ka]g(χ).

Therefore,

Ωa =
⊕
χ∈∆̂a

eχ(Ωa) and eχ(Ωa) = kaK∞g(χ), χ ∈ ∆̂a. (34)

9.1.4 Evaluation map. Let χ be a Dirichlet character of conductor a =
∏r
i=1 Pi, χ =

ϑN1
P1
· · ·ϑNrPr , 1 6 Ni 6 qdi − 2, where di is the degree of Pi. We recall that the type of χ is

s =
∑

i `q(Ni). Consider an s-tuple of variables

ts = (t1,0,1, . . . , t1,0,n1,0︸ ︷︷ ︸
n1,0

, . . . , t1,d0−1,1, . . . , t1,d0−1,n1,d0−1︸ ︷︷ ︸
n1,d0−1︸ ︷︷ ︸

`q(N1)

, . . . . . . . . . , tr,dr−1,nr,dr−1︸ ︷︷ ︸
nr,dr−1︸ ︷︷ ︸
`q(Nr)

).

We define the C∞-algebra homomorphism ‘evaluation’ at χ,

evχ : Ts → C∞,

by setting

evχ(ti,j,k) = ζq
j

Pi

for all i, j, k (with ζPj = ϑPj (θ)). If we restrict evχ to the subring of Ts whose elements are
symmetric in t1, . . . , ts, then evχ depends only on χ, that is, it does not depend on the choice of
the embeddings ιPi and it does not depend on the order of indexation of the primes Pi. Observe
that, by (32),

g(χ) = g(ϑN1
P1

) · · · g(ϑNrPr )

= P ′1(ζP1)−N1 · · ·P ′r(ζPr)−Nr
r∏
i=1

di−1∏
j=0

ω(ζq
j

Pi
)ni,j

= evχ

( r∏
i=1

di−1∏
j=0

ni,j∏
k=1

P ′i (ti,j,k)
−1ω(ti,j,k)

)
. (35)
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9.1.5 An equivariant isomorphism. We recall that we have introduced, in § 9.1.2, a ka-linear
endomorphism ϕ of Ωa. We choose a Dirichlet character

χ = ϑN1
P1
· · ·ϑNrPr

as in (31) and we expand the integers Ni in base q as in (33);

Ni =

di−1∑
j=0

ni,jq
j .

By (35) and by the functional equation τ(ω) = (t − θ)ω of the function ω of Anderson and
Thakur, we see that

ϕ(g(χ)) =

( r∏
i=1

di−1∏
j=0

(ϑPi(θ)
qj − θ)ni,j

)
g(χ) =

( r∏
i=1

di−1∏
j=0

(ζq
j

Pi
− θ)ni,j

)
g(χ).

We now come back to the identity (34) and we consider the isomorphism

νχ : eχ(Ωa) → kaK∞

defined by νχ(y) = yg(χ)−1. Then

νχ(ϕ(x)) = ϕ̃(νχ(x)),

where

ϕ̃(x) :=

( r∏
i=1

di−1∏
j=0

(ζq
j

Pi
− θ)ni,j

)
ϕ(x).

The Taelman class module associated to the Carlitz module and relative to the extension
Ka/K (see [Tae10] and [AT15]) is defined by

Ha =
C(Ka ⊗K K∞)

expC(Ka ⊗K K∞) + C(Oa)
. (36)

Let Cϕ : ka ⊗k A → Ωa[ϕ] be the homomorphism of ka-algebras defined by

Cϕθ = θ + ϕ.

Let us additionally set

expϕC =
∑
i>0

D−1
i ϕi,

which gives rise to a ka-linear continuous function Ωa → Ωa.
We then have an isomorphism of A[ka]-modules:

Ha ⊗k ka ∼=
Cϕ(Ωa)

expϕC(Ωa) + Cϕ(Oa[ka])
.

Now we consider, with an analogous meaning of the symbols, the ka-linear endomorphisms
Cϕ̃ and expϕ̃C of kaK∞, and the A[ka]-module:

Hχ =
Cϕ̃(kaK∞)

expϕ̃C(kaK∞) + Cϕ̃(A[ka])
.

The previous discussions imply the next lemma.

Lemma 9.1. The map νχ induces an isomorphism of A[ka]-modules

eχ(Ha ⊗k ka) ∼= Hχ.
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9.1.6 Link between HCs and Hχ. We recall that we are examining χ, a Dirichlet character

of conductor a =
∏r
i=1 Pi, χ = ϑN1

P1
· · ·ϑNrPr , 1 6 Ni 6 qdi − 2, where di is the degree of Pi. We

write Ni in base q : Ni =
∑di−1

j=0 ni,jq
j with ni,j ∈ {0, . . . , q − 1}.

With s =
∑r

i=1 `q(Ni) the type of χ, we consider the uniformizable Drinfeld module of rank
one, Cs, with parameter

α =
r∏
i=1

di−1∏
j=0

ni,j∏
k=1

(ti,j,k − θ) (37)

of degree s. We notice that evχ(k[ts]) = ka and that we have a field isomorphism k[ts]/Iχ
∼= ka,

where
Iχ = Ker(evχ) ∩ k[ts]

is the ideal of k[ts] generated by the polynomials Pi(ti,j,k), which yields an isomorphism

A[ts]

IχA[ts]
∼= A[ka] = ka[θ]. (38)

Proposition 9.2. The evaluation map evχ induces an isomorphism of A[ka]-modules:

ψχ :
HCs

IχHCs

→ Hχ.

Proof. The evaluation map evχ : Ts(K∞) → kaK∞ satisfies

evχ(τα(f)) = ϕ̃(evχ(f)), f ∈ Ts(K∞).

In particular, for all b ∈ A[ka], b̃ ∈ A[ts] such that b = evχ(̃b) and f in Ts(K∞), we have (with
φ = Cs)

Cϕ̃b (evχ(f)) = evχ(φ
b̃
(f)) (39)

and
expϕ̃C(evχ(f)) = evχ(expφ(f)). (40)

We consider the composition w = pr ◦ evχ of two surjective k-linear maps:

Ts(K∞) → kaK∞ →
kaK∞

expϕ̃C(kaK∞) +A[ka]
,

where the first map is evχ and the second map pr is the projection. We deduce from (39) that,

with b and b̃ such that b = evχ(̃b),

w(φ
b̃
(f)) = Cϕ̃b (w(f))

for all f ∈ Ts(K∞) and b ∈ A[ts].
Let f be an element of Ts(K∞). We have w(f) = 0 if and only if

evχ(f) ∈ expϕ̃C(kaK∞) +A[ka].

By (40), we have

expϕ̃C(kaK∞) +A[ka] = evχ(expCs(Ts(K∞)) +A[ts]),
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which means that w(f) = 0 if and only if

f ∈ IχTs(K∞) + expCs(Ts(K∞)) +A[ts],

where

IχTs(K∞) =

{∑
i>m

xiθ
−i;xi ∈ Iχ,m ∈ Z

}
.

Now we notice the isomorphism of k-vector spaces:

HCs

IχHCs

=
Ts(K∞)

IχTs(K∞) + expCs(Ts) +A[ts]
,

which shows, with (38), that the map of the proposition is an isomorphism of A[ka]-modules. 2

Corollary 9.3. Let χ be a Dirichlet character of type s > q with s ≡ 1 (mod q − 1) and with
conductor a. Then

FittA[ka](Hχ) = evχ(BCs)A[ka].

Proof. By Theorem 7.7, we get

FittA[ka]

(
HCs

IχHCs

)
= evχ(BCs)A[ka].

We conclude by applying Proposition 9.2. 2

The author of the appendix to the present paper, Florent Demeslay, informed us that, using
ideas similar to that developed in the appendix, he has obtained an equivariant class number
formula for the Carlitz module similar to [AT15, Theorem A] for the extension Ka/K when a is
square-free (the case where a is a prime is treated in [AT15]). By similar arguments as those used
in [AT15], he proved that the above result can also be deduced from such an equivariant class
number formula. Such an equivariant class number formula is a special case of a more general
result concerning L-series of Anderson’s t-modules defined over Tate algebras recently obtained
by Demeslay and using ideas developed in this article (this will appear in a forthcoming work of
Demeslay).

9.2 On the structure of HCs and the isotypic components Hχ

We consider the set Es of all the Dirichlet characters χ of type s, namely, the set of Dirichlet
characters χ which can be written in the form

χ = ϑN1
P1
· · ·ϑNrPr

for distinct primes P1, . . . , Pr and for integers N1, . . . , Nr such that `q(N1) + · · · + `q(Nr) = s
(with r depending on χ). There is a map (depending on the embeddings ιPj )

Es
µs−→ (kac)s

defined by χ 7→ ζ
χ
, where ζ

χ
is the s-tuple with entries ζq

j

Pi
(see § 9.1.4).

Definition 9.4. Let P be a property over Es. We say that P holds for almost all characters of
type s if

µs({χ;P(χ) holds}) ⊃ O,

where O is a non-empty Zariski-open subset of (kac)s.
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Remark 9.5. (1) Let us suppose that s > 1. Observe that if a property P is true for almost all
Dirichlet characters of type s, then it is true for infinitely many Dirichlet characters of type s.
Indeed, there exist infinitely many s-tuples of primes (P1, . . . , Ps) with Pi 6= Pj for i 6= j such
that, given F ∈ k[ts], F (ζP1 , . . . , ζPs) 6= 0, and χ = ϑP1 · · ·ϑPs is of type s.

(2) Definition 9.4 does not depend on the choice of the embeddings ιP for P prime. Indeed,
if µs({χ;P(χ) holds}) ⊃ O, we can always find a non-empty Zariski-open O′ ⊂ O such that
µs({χ;P(χ) holds}) ⊃ O′ for any choice of the embeddings ιP for P prime.

(3) There are such properties P which hold for almost all Dirichlet characters of type s but
which fail for infinitely many such characters. This of course depends on the fact that there are
strictly closed subsets of (kac)s which are infinite. For example, one can consider the property
over E2 determined by the non-vanishing on (kac)2 of the polynomial tq1 − t2 or the polynomial
(tq1 − t2)(tq2 − t1) (in the last case, the property does not depend on the embeddings ιP ).

Let R be a commutative ring and M an R-module. Let f be an element of R. We denote the
f -torsion submodule of M by M [f ] = {m ∈M,f.m = 0}.

Proposition 9.6. Let us suppose that s > 1 and let f be in A+. Then, for almost all Dirichlet
characters of type s, we have Hχ[f ] = {0}.

Proof. We can suppose that s > 2q− 1. By Proposition 7.9, if s ≡ 1 (mod q− 1), then HCs [f ] =
{0}. If s 6≡ 1 (mod q−1), then, by Proposition 7.10, HCs [f ]⊗k[ts]

k(ts) = {0}. Hence, in all cases,

HCs [f ]⊗k[ts]
k(ts) = {0}.

We now consider the exact sequence of k[ts]-modules of finite type (the middle map is the
multiplication by f):

0 → HCs [f ] → HCs → HCs →
HCs

fHCs

→ 0.

Taking the tensor product of the above exact sequence with k(ts), we get

HCs

fHCs

⊗k[ts]
k(ts) = {0}.

In particular, the k[ts]-module of finite type HCs/fHCs is torsion and there exists Ff ∈ k[ts]\{0}
such that FfHCs ⊂ fHCs . It remains to apply Proposition 9.2. 2

We now suppose that s > 1 is such that s 6≡ 1 (mod q− 1). Recall that, by Remark 5.17, the
element

ms = [HCs ]k(ts)[θ]

belongs to A[ts] and is monic as a polynomial in θ.

Theorem 9.7. For almost all characters χ of type s, we have that

FittA[ka](Hχ) = evχ(ms)A[ka],

where a is the conductor of χ.

Proof. Let us denote by M the torsion sub-k[ts]-module of HCs :

M = {m ∈ HCs ; ∃f ∈ k[ts], f.m = 0}.
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We set

H̃Cs :=
HCs

M
.

Note that the k(ts)[θ]-module H̃Cs⊗k[ts]
k(ts) is isomorphic to HCs and therefore its Fitting ideal

over k(ts)[θ] is generated by ms. Since M is a finitely generated and torsion k[ts]-module, we
notice that for almost all Dirichlet characters χ of type s, we have that M ⊂ IχHCs . Thus, for
almost all the Dirichlet characters χ of type s, the A[ts]/IχA[ts]-module

H̃Cs

IχH̃Cs

is well defined. For almost all Dirichlet characters χ of type s, we have that

FittA[ts]/IχA[ts]

(
H̃Cs

IχH̃Cs

)
=

FittA[ts]
(H̃Cs) + IχA[ts]

IχA[ts]
.

But, by Proposition 9.2, for almost all characters χ of type s, we also have an isomorphism of
A[ka]-modules H̃Cs/IχH̃Cs

∼= Hχ. The theorem follows easily. 2

9.3 Pseudo-null and pseudo-cyclic modules
Definition 9.8. Let M be a finitely generated A[ts]-module which also is finitely generated as
a k[ts]-module. We say that M is pseudo-null if

M ⊗k[ts]
k(ts) = {0}.

We say that M is pseudo-cyclic if there exists m ∈M such that M/mA[ts] is pseudo-null.

In this section, we investigate the properties of pseudo-cyclicity and pseudo-nullity for the
modules HCs (that is, in the case of the Drinfeld module Cs of parameter α = (t1−θ) · · · (ts−θ)).
We are concerned with the following questions, which we leave open.

Question 9.9. Is HCs pseudo-cyclic?

Question 9.10. Assuming that s 6≡ 1 (mod q − 1), is HCs pseudo-null?

9.3.1 The torsion case. We are here in the case s ≡ 1 (mod q − 1). Recall that HCs = {0}
for s = 1, q. We can suppose without loss of generality that s > 2q − 1.

Proposition 9.11. The following conditions are equivalent.

(1) HCs is pseudo-cyclic.

(2) For almost all Dirichlet characters χ of type s, Hχ is a cyclic ka[θ]-module, where a is
the conductor of χ.

(3) There exists a Dirichlet character χ of type s such that Hχ is a cyclic ka[θ]-module, where
a is the conductor of χ.

Proof. The first condition implies the second by means of the equivariant isomorphism of
Proposition 9.2. The second condition obviously implies the third. It remains to show that the
third condition implies the first. Write R for k(ts)[θ] and recall that HCs = HCs⊗k[ts]

k(ts). Since
HCs is finitely generated and torsion over R, it is isomorphic to

∏n
i=1R/riR for some r1, . . . , rn
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monic in R. Since FittR(HCs) is generated by
∏n
i=1 ri and AnnR(HCs) by the least common

multiple of r1, . . . , rn, the condition that HCs is pseudo-cyclic is equivalent to

FittR(HCs) = AnnR(HCs).

By Theorem 7.7, the polynomial BCs is the monic generator of FittA[ts]
(HCs) and FittR(HCs) =

BCsR. Let m be the monic generator of AnnR(HCs); observe that m ∈ A[ts] and m divides BCs .
By Corollary 9.3,

AnnA[ka](Hχ) = evχ(BCs)A[ka].

Thus, evχ(BCs) divides evχ(m) and therefore BCs = m. 2

9.3.2 The non-torsion case. Here we suppose that s 6≡ 1 (mod q − 1) and s > 1. We recall
that R = k(ts)[θ].

Proposition 9.12. The following assertions are equivalent:

(1) HCs is pseudo-cyclic;

(2) AnnR(UCs/U
c
Cs
⊗k[ts]

k(ts)) = AnnR(HCs);
(3) for almost all Dirichlet characters χ of type s, the A[ka]-module Hχ is a cyclic module,

where a is the conductor of χ.

Proof. We know that UCs/U
c
Cs

is a cyclic A[ts]-module and we already know that it is of finite
rank over k[ts] and free (see Remark 5.17). By Corollary 5.16,

AnnR

(
UCs
U cCs
⊗k[ts]

k(ts)

)
= FittR

(
UCs
U cCs
⊗k[ts]

k(ts)

)
= FittR(HCs).

Then HCs is pseudo-cyclic if and only if FittR(HCs) = AnnR(HCs). This implies the equivalence
of the first condition and the second condition. That these conditions are also equivalent to the
third condition follows in a way which is very similar to that used in the proof of Proposition 9.11.

2

Remark 9.13. We notice that HCs is pseudo-null if and only if

FittR(HCs) = R.

Thus, HCs is pseudo-null if and only if UCs = U cCs . Moreover, HCs is pseudo-null if and only if
ms = [HCs ]R = 1, which is equivalent, by Theorem 9.7, to the fact that, for almost all Dirichlet
characters χ of type s, we have Hχ = {0}.

9.4 Evaluation of the polynomials BCs

For s > 1 with s ≡ 1 (mod q − 1), to simplify our notation, we write Bs instead of BCs . Note
that B1 = 1/(θ − t).

Let χ be a character of conductor a and of type s; write a = P1 · · ·Pr for distinct primes
P1, . . . , Pr ∈ A, so that χ = ϑN1

P1
· · ·ϑNrPr with Ni 6 qdi − 2, di being the degree in θ of Pi for all i.

We recall that the special value at n > 1 of the Goss–Dirichlet L-series (see [Gos96, ch. 8])
associated to χ is defined by

∀n ∈ Z, L(n, χ) =
∑
m>0

∑ ′

b∈A+,m

χ(σb)b
−n ∈ C∞,

where the sum runs over the elements b which are relatively prime to a.
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In [AP14] and [Pel12], it is shown that these L-series values can be obtained from the
evaluation of L-series values L(n,Cs). More precisely, for all b relatively prime to a,

χ(σb) = evχ(ρα(b))

(α being the parameter of Cs) and therefore we get

L(n, χ) = evχ(L(n,Cs)).

We choose N ∈ N and we expand it in base q as

N =
k∑
j=0

njq
j

(n0, . . . , nk ∈ {0, . . . , q − 1}). We further set

s′ = s+ `q(N).

We then have the evaluation map (we recall that Es is the subalgebra of Ts of entire functions
§ 3.3)

evN : Es′ → Es
defined by replacing the family of variables (t1, . . . , ts, ts+1, . . . , ts+`q(N)) by

(t1, . . . , ts, θ, . . . , θ︸ ︷︷ ︸
n0

, θq, . . . , θq︸ ︷︷ ︸
n1

, . . . , θq
k
, . . . , θq

k︸ ︷︷ ︸
nk

).

If N = 0, this map is obviously the identity map of Es. We shall work, in this subsection, with
the evaluation map evχ,N : Es′ → C∞ defined by

evN,χ = evχ ◦ evN .

In particular,
evN,χ(A[ts+`q(N)]) = A[ka].

If Cs′ is the Drinfeld module of rank one of parameter α = (t1 − θ) · · · (ts′ − θ), then this
evaluation map allows us to obtain the special values of the Dirichlet L-series of Goss from
L(1, Cs′) ∈ Es′ [AP14, Corollary 8]). Indeed, for all j ∈ N,

τ j(L(1, Cs′)) =
∑
n>0

∑
a∈A+,n

a(t1) · · · a(ts′)

aqj
;

thus,

evN (τ j(L(1, Cs′))) =
∑
n>0

∑
a∈A+,n

a(t1) · · · a(ts)

aqj−N

and therefore
evN,χ(τ j(L(1, Cs′))) = L(qj −N,χ).

To N as above, with its expansion N =
∑

i niq
i in base q, we associate the Carlitz factorial

Π(N), defined by

Π(N) =
∏
i>0

Dni
i .

We apply the evaluations evN,χ in two different ways.
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9.4.1 First way to apply evN,χ. Recall that s′ = s+ `q(N) and we assume here that s′ ≡ 1
(mod q−1), s′ > 1. Furthermore, if s = 0 and `q(N) = 1, we assume that N > 2. For a polynomial
a ∈ A, we denote by a′ its derivative in the indeterminate θ. Observe that evN (Bs′) is well defined.
By [AP14, Corollary 8], the function

L(1, Cs′) =
∑
d>0

∑
b∈A+,d

χt1(b) · · ·χts′ (b)b
−1

is in Es′ , that is, entire in the set of variables ts′ (it is denoted by L(χt1 · · ·χts′ , 1) in [AP14]).

Write N =
∑k

i=0 niq
i, ni ∈ {0, . . . , q− 1}, nk 6= 0. We rename the variables ts+1, . . . , ts′ in a way

which is compatible with the expansion of N in base q by writing

(ts+1, . . . , ts′) = (t0,1, . . . , t0,n0 , . . . , tk,1, . . . , tk,nk).

Note that evN (ω(t1) · · ·ω(ts′)
∑

d>0

∑
b∈A+,d

b−1b(t1) · · · b(ts′)) is equal to

evN

(
ω(t1) · · ·ω(ts)

( k∏
i=0

ni∏
j=1

((ti,j − θq
i
)ω(ti,j))

)
× 1∏k

i=0

∏ni
j=1(ti,j − θqi)

(∑
d>0

∑
b∈A+,d

b−1b(t1) · · · b(ts′)
))

.

By [AP14, Lemma 5], L(1, Cs′) vanishes at any point of the form

(t1, . . . , ts, ts+1, . . . , ts+j−1, θ
ql , ts+j+1, . . . , ts′), l > 0, ti ∈ C∞.

Furthermore, an easy computation shows that the function ω(tk) = λθ
∏
i>0(1− (tk/θ

qi))−1 has

a simple pole at θq
l

of residue −π̃qlD−1
l (for all l > 0). Indeed, in T, ω(t) = expC(π̃/(θ − t)) =∑

i>0D
−1
i π̃q

i
/(θq

i − t). Thanks to this residue computation we deduce, with ∆ the differential
operator,

∆ =
∂

∂t0,1
· · · ∂

∂t0,n0

· · · ∂

∂tk,1
· · · ∂

∂tk,nk
,

evN

(
ω(t1) · · ·ω(ts′)

∑
d>0

∑
b∈A+,d

b−1b(t1) · · · b(ts′)
)

= ω(t1) · · ·ω(ts)(−π̃)n0 · · · (−π̃)nkq
k
D−n0

0 · · ·D−nkk

×
[
∆

(∑
d>0

∑
b∈A+,d

b−1b(t1) · · · b(ts)b(t0,1) · · · b(tk,nk)

)]
ti,j=θq

i

= (−1)Nω(t1) · · ·ω(ts)π̃
NΠ(N)−1

×
∑
d>0

∑
b∈A+,d

b−1b(t1) · · · b(ts)[b′(t0,1) · · · b′(tk,nk)]
ti,j=θq

i

= (−1)Nω(t1) · · ·ω(ts)π̃
NΠ(N)−1

∑
d>0

∑
b∈A+,d

b−1b(t1) · · · b(ts)(b′)N .

Recall that

Bs′ = (−1)(s′−1)/(q−1)L(1, Cs′)ω(t1) · · ·ω(ts′)π̃
−1
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(see (27)). Therefore, we get the formula

evN (Bs′) = (−1)N+((s′−1)/(q−1))π̃N−1Π(N)−1ω(t1) · · ·ω(ts)
∑
d>0

∑
b∈A+,d

ρα(b)
(b′)N

b
,

where we notice that the series in the right-hand side, with α the parameter of Cs, is convergent
for the Gauss norm of Ts.

We also have the formula (use (35))

evχ(ω(t1) · · ·ω(ts)) = ϑP1(σP ′1)N1 · · ·ϑPr(σP ′r)
Nrg(χ) = P ′1(ζ1)N1 · · ·P ′r(ζr)Nrg(χ),

where ζi = ζPi . Therefore, composing with evχ now gives the identity

evN,χ(Bs′)

= (−1)N+((s′−1)/(q−1))π̃N−1Π(N)−1ϑP1(σP ′1)N1 · · ·ϑPr(σP ′r)
Nrg(χ)

∑
d>0

∑
b∈A+,d

χ(b)
(b′)N

b
.

9.4.2 Second way to apply evN,χ. Here again s′ ≡ 1 (mod q − 1), s′ > 1. Let us consider an
integer d > 1 such that qd > N . The functions τd(L(1, Cs′)) = L(qd, Cs′) are also entire and we
have

τd(Bs′) = (−1)(s′−1)/(q−1)π̃−q
d
L(qd, Cs′)bd(t1) · · · bd(ts′)ω(t1) · · ·ω(ts′),

where bi = (t− θ)(t− θq) · · · (t− θqi−1
) for i > 0 and b0 = 1. We observe, as in [AP14, § 3.2], that

evN (bd(ts+1) · · · bd(ts′)ω(ts+1) · · ·ω(ts′)) = (−1)N π̃N
k∏
i=0

lniq
i

d−i−1.

Again by (35), we have

evχ(ω(t1) · · ·ω(ts)) = L(qd −N,χ)ϑP1(σP ′1)N1 · · ·ϑPr(σP ′r)
Nrg(χ).

Moreover,
evχ,N (L(qd, Cs′)) = L(qd −N,χ).

Hence, we obtain the formula

evN,χ(τd(Bs′)) = (−1)N+((s′−1)/(q−1))π̃N−q
d
ϑP1(σP ′1)N1 · · ·ϑPr(σP ′r)

Nrg(χ)

×L(qd −N,χ) evχ(bd(t1) · · · bd(ts))
k∏
i=0

lniq
i

d−i−1.

We set

ρN,χ,d :=
evN,χ(τd(Bs′))

ϑN1
P1

(σP ′1) · · ·ϑNrPr (σP ′r)
∈ kaK.

Proposition 9.14. Let s′ = s+ `q(N) ≡ 1 (mod q − 1), s′ > 1. The following properties hold.

(1) If s = 0 and `q(N) = 1, we assume that N > 2. We have

ρN,χ,0 = (−1)N+((s′−1)/(q−1))π̃N−1g(χ)Π(N)−1
∑ ′

d>0

∑
b∈A+,d

χ(b)b′Nb−1.

(2) Let d > 1 be an integer such that qd > N . Then

ρN,χ,d = (−1)N+((s′−1)/(q−1))g(χ)L(qd −N,χ)π̃N−q
d

evχ(bd(t1) · · · bd(ts))
k∏
i=0

lniq
i

d−1−i.

50

https://doi.org/10.1112/S0010437X15007563 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007563


L-series values in Tate algebras

9.5 A refinement of the Herbrand–Ribet–Taelman theorem

As in the previous section, let χ be a Dirichlet character of type s > 0 and conductor a.

Following [AP14, § 2.4], we introduce the generalized Bernoulli–Carlitz numbers BCn,χ−1 by

means of the following generating series:

g(χ)

a

∑
b∈(A/aA)×

χ(b)X

expC(X/a)− σb(λa)
=
∑
i>0

BCi,χ−1

Π(i)
Xi.

If s = 0, when a = 1, we set λa = 0 in the above formula, so that we get in this case

BCi,χ−1 = BCi

for i > 0, where, for n ∈ N, BCn denotes the nth Bernoulli–Carlitz number (see [Gos96, ch. 9,

§ 9.2]).

From [AP14, Proposition 17], we deduce easily the following result.

Lemma 9.15. The following properties hold:

(1) for all i > 0, we have BCi,χ−1 ∈ kaK;

(2) if i 6≡ s (mod q − 1), then BCi,χ−1 = 0;

(3) we have BC0,χ−1 = 0 if s > 1;

(4) if i > 1 is such that i ≡ s (mod q − 1), then

L(i, χ)g(χ) = π̃i BCi,χ−1 Π(i)−1.

We now consider integers s, s′, N with s + `q(N) = s′, s > 1, s′ ≡ 1 (mod q − 1) and a

character χ of type s′ and conductor a = Pb such that

χ = ϑNP χ̃

with P a prime not dividing the conductor b of χ̃ and such that N 6 qd − 2, d being the degree

of P . The valuation ring of the compositum kaKP of ka and KP in CP is the ring AP [ka], where

AP is the valuation ring of KP .

We highlight that the congruences for the above generalized Bernoulli–Carlitz numbers that

will be used in the proof of Theorem 9.16 are well defined thanks to the choice of the embedding

of Kac in CP that we made at the beginning of § 9.1.

9.5.1 An example. We consider the simplest non-trivial case of a character χ of type s′ = 1.

Here the factor χ̃ is the trivial character and therefore s = 0 and N = qi, so that χ = ϑq
i

P with

d − 1 > i > 0. The case i = 0 is somewhat exceptional, so that we assume that i > 0. We have

HC1 = {0}, which implies, by Proposition 9.2, the triviality of H
χq
j , j ∈ N. By Lemma 9.1,

e
χq
j (Ha ⊗k ka) = 0 for all j ∈ N and therefore eχ(Ha ⊗A AP [ka]) = {0}. Now we observe, by

Proposition 9.14(2), that

BCqd−qi l
qi

d−1−i
Π(qd − qi)

= − 1

θqd − θqi
.

In particular, the Bernoulli–Carlitz number BCqd−qi is in this case P -integral and reduces to a

unit modulo P .

51

https://doi.org/10.1112/S0010437X15007563 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007563


B. Anglès, F. Pellarin and F. Tavares Ribeiro

Theorem 9.16 (Refinement of Herbrand–Ribet–Taelman theorem [Tae12b]). Let χ be a
Dirichlet character with conductor a and type s′ ≡ 1 (mod q − 1), s′ > 1. Let P be a prime
dividing a, of degree d, and let us write χ = ϑNP χ̃ with 1 6 N 6 qd − 2 and with χ̃ a Dirichlet
character of conductor prime to P . We further suppose that if s′ = 1, then N is at least 2. The
generalized Bernoulli–Carlitz number BCqd−N,χ̃−1 is P -integral. Furthermore,

eχ(Ha ⊗A AP [ka]) 6= {0}

if and only if
BCqd−N,χ̃−1 ≡ 0 (mod P ).

Proof. We have already considered the case s′ = 1 in § 9.5.1, so we may now suppose that s′ > 2.
We work in kaKP . Note that the Dirichlet character χ̃ is of type s > 0 and that we have the
congruence τd(Bs′) ≡ Bs′ (mod P ). Since, obviously, evN,χ̃(Bs′) ≡ evχ(Bs′) (mod P ), we have
that

eN,χ̃(τd(Bs′)) ≡ evχ(Bs′) (mod P ).

Let us write now χ̃ = ϑN1
P1
· · ·ϑNrPr , where b = P1 · · ·Pr is the conductor of χ̃ (we recall that

N =
∑d−1

i=0 niq
i, ni ∈ {0, . . . , q − 1}). By Proposition 9.14(2), we have

ρN,χ̃,d = (−1)N+((s′−1)/(q−1))Π(qd −N)−1 BCqd−N,χ̃−1 evχ̃(bd(t1) · · · bd(ts))
d−1∏
i=0

lniq
i

d−1−i.

This implies that BCqd−N,χ̃−1 is P -integral. Moreover, BCqd−N,χ̃−1 ≡ 0 (mod P ) if and only if
evχ(Bs′) ≡ 0 (mod P ). We now set

[χ] = {χqi , i > 0}

and we consider the element in A[ka][∆a]:

F =
∑
ψ∈[χ]

evψ(Bs′)eψ.

In fact, we have that F ∈ A[∆a]. We also set

e[χ] =
∑
ψ∈[χ]

eψ ∈ k[∆a].

We deduce from Corollary 9.3 that

Fitte[χ]A[∆a] e[χ](Ha) = Fe[χ]A[∆a].

This implies that

Fitte[χ]AP [ka][∆a] e[χ](Ha ⊗A AP [ka]) = Fe[χ]AP [ka][∆a].

Therefore,

FittAP [ka] eχ(Ha⊗AAP [ka]) = evχ(Bs)AP [ka]. 2

Remark 9.17. Our approach in the above proof finds its origins in [AT15], where an alternative
proof of the Herbrand–Ribet theorem for function fields [Tae12b] is given, based on an equivariant
class number formula and furnishing the description of the Fitting ideals of certain Taelman class
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modules in terms of generalized Bernoulli–Carlitz numbers. Certain congruences modulo P for
these numbers are used to complete the proof. As we have seen in the previous sections, the
‘generic’ class number formula gives, by specialization, the Fitting ideal of these class modules.
In particular, we do not need an equivariant class number formula and, furthermore, again by
a specialization argument, we additionally get congruences for the generalized Bernoulli–Carlitz
numbers.

10. Link with other types of L-series

In this section, we briefly explain the link between our L-series values and the global L-functions
of Goss, Taguchi and Wan and Böckle and Pink (see [Böc02, BP10, TW96]). We also refer
the reader to the recent lecture notes written by Taelman [Tae15]. The notation of this section
slightly differs from the notation of the rest of this paper.

The Carlitz module is usually seen as a functor from A-algebras to A-modules. In fact, it
can also be viewed more naturally as a functor defined over the larger category of τ -modules.
We present this construction.

10.1 The Carlitz functor over τ -modules
We consider a k-algebra A and the ring R = A⊗kA, endowed with the A-linear endomorphism τ
defined by τ(a⊗ b) = aq ⊗ b.

Definition 10.1. A τ -module M is an R-module M of finite type together with an A-linear
endomorphism τM such that, for a ∈ R and m ∈ M , τM (am) = τ(a)τM (m) (we say that τM is
semi-linear). A morphism f : M1 → M2 of τ -modules M1,M2 is a morphism of R-modules which
commutes with the τ -module structures.

We define the Carlitz functor C from the category of τ -modules to the category of R-modules
in the following way. Let M be a τ -module with semi-linear endomorphism τM . Then C(M) is
the R-module having M as underlying A-module, and where the multiplication Cθ by θ is given
by Cθ = θ + τM (depending on M). It is easy to show that this gives rise to a functor. This
functor is faithful, but it is not fully faithful.

Remark 10.2. We can also define the Carlitz functor on certain τ -sheaves.

Essentially, the basic case of this paper is A = k[ts]. But we also considered A = k(ts)
and A, an algebraic extension of k. We have studied the case of M free of rank one, that is,
M = R = A⊗kA, with τM = ατ , with α ∈ R\{0}. Indeed, if M = R = A[ts] and τM = ατ with
α ∈ R\{0}, then C(M) is the structure of A[ts]-module induced on A[ts] by the Drinfeld module
of rank one of parameter α.

Note that this is in apparent conflict with Definition 3.1, where we have defined Drinfeld
modules over Tate algebras (and the parameter varies in Tate algebras). In fact, in the settings
of the present section, Definition 3.1 corresponds, with M as above, to an analytic realization
(at the place infinity) of C(M), just as the Carlitz module structure on C∞ is usually considered
as an analytic realization of the Carlitz module structure C(A) over A.

10.2 Exponential functions
The ring R is equipped with the norm ‖ · ‖ defined by∥∥∥∥∑

i

xi ⊗ yi
∥∥∥∥ = max

i
‖xi‖,
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where the sum is finite and, for all i, the xi ∈ A and the yi are linearly independent over k. Let M
be a τ -module. We suppose that it is endowed with a norm ‖·‖M such that ‖am‖M = ‖a‖‖m‖M ,
where a ∈ R and m ∈ M . Then the exponential function expM is the well-defined, continuous,
open map

expM : M̂ → C(M̂)

with M̂ = M⊗̂AK∞, defined by expM (m) =
∑

i>0D
−1
i τ iM (m). It satisfies

expM (am) = a. expM (m),

where the action of a ∈ R in the right is that given by the module structure of C(M̂). This
notably happens when R = A[ts] and M = Ts ⊃ R with τM = ατ , α ∈ R\{0}, so we recover the
exponential functions of § 3.1.

10.3 L-series values revisited
We consider here a new variable T . Let M be a τ -module which is free of finite rank over R and
P a prime of A. Then the module M/PM is free of finite rank over A. The L-series value at
one of M is

L(M, 1) =
∏
P

det
A[T ]

(1− TτM |M/PM)−1|Tdegθ(P ) 7→P−1 ∈ 1 + θ−1A[[θ−1]].

By [Böc10, Lemma 8.2], we note that for all P , detA[T ](1 − TτM |M/PM)−1 ∈ 1 + T dA[[T d]],

where d is the degree of P . Hence, we can replace T d by P−1 in the above formal series and
we get detA[T ](1− TτM |M/PM)−1|T d=P−1 ∈ 1 + P−1A[[P−1]]. Since for all d there are finitely

many primes P with degree d, the product defining L(M, 1) converges in K∞⊗̂kA to an element
which belongs to 1 + θ−1A[[θ−1]]. This is a variant of the value of the global L-function of M at
one, following Goss, Taguchi and Wan and Böckle and Pink (see [BP10] for the definition of the
global L-function associated to a τ -sheaf).

With such a module M , we have that for all P , C(M/PM) is also free of finite rank over
A (observe that the identity map M → C(M) induces an isomorphism of A-modules between
M/PM and C(M/PM)). The L-value at one of C(M) is

L(C(M), 1) =
∏
P

[M/PM ]R
[C(M/PM)]R

∈ 1 + θ−1A[[θ−1]].

Here [N ]R denotes the monic generator (in θ) of the Fitting ideal of an R-module N which is
free and finitely generated over A. This is essentially the L-series value of Taelman in [Tae12a];
the product converges as a consequence of the next lemma.

Lemma 10.3. Let M be a τ -module which is free of finite rank over R. Then L(M, 1) =
L(C(M), 1).

We omit the proof, as this follows essentially the same lines of various other proofs in our
paper. In particular, if φ is a Drinfeld A[ts]-module of rank one of parameter α ∈ A[ts]\{0},
L(1, φ) = L(C(A[ts]), 1) can also be constructed starting from the Euler factors of the L-series
L(M, 1) of the τ -module M = A[ts] with τM = ατ . In this respect, the L-series values that we
introduce in this paper can be viewed as first examples of an alternative way of defining global
L-functions, which moreover are rigid analytic, in contrast with Goss’ L-functions.
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10.4 The log-algebraic theorem again
As a final remark, we point out that also Theorem 8.1 can be viewed as a statement of integrality
of the value of an exponential function associated to a certain τ -module.

We consider again the algebra Ar of § 8; with the k-endomorphism τM := τ and with the
structure of R-module defined there (with R = A[tr+1]), it becomes a τ -module that we denote
by M. But this is not sufficient to interpret Theorem 8.1.

Now, as we have seen, the structure of A[tr+1]-module extends to a structure of Tr+1-module.
We then have the exponential function expM : M → C(M) and we have proved that

expM(L(1, φ) . [ZX1 · · ·Xr]) = expφ(L(1, φ)) . [ZX1 · · ·Xr],

where φ is the Drinfeld module of rank one of parameter α = tr+1(t1 − θ) · · · (tr − θ), expφ its
exponential function and L(1, φ) its L-series value at one. Of course, this is just a way to rephrase
Theorem 8.1.
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Appendix. A class number formula

Florent Demeslay

We shall work with Drinfeld k(ts)[θ]-modules rather than with A[ts]-modules. We set, from now
on, R = k(ts)[θ]. As we have already seen, the benefit of this assumption comes from the fact
that R is a principal ideal domain. We keep using the same notation adopted in the previous
sections.

Let us choose α ∈ R\{0} and let us consider the Drinfeld R-module of rank one and
parameter α, that is, the injective homomorphism of k(ts)-algebras

φ : R→ Endk(ts)-lin.(K(ts)∞)

given by φθ = θ + ατ , where we recall that τ : K(ts)∞ → K(ts)∞ is the continuous (for the
1/θ-adic topology) morphism of k(ts)-algebras given by τ(θ) = θq. Let M be an R-algebra
together with a k(ts)-endomorphism τM : M → M such that

τM (fm) = τ(f)τM (m), f ∈ R,m ∈M.

We denote by φ(M) the k(ts)-vector space M equipped with the structure of R-module induced
by φ, e.g. for all m ∈ φ(M),

θ.m = ατM (m) + θm.

We recall that we have the exponential function associated to φ, which is a k(ts)-linear
endomorphism of K(ts)∞ defined by

expφ =
∑
i>0

1

Di
τ iα,
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where τα = ατ . Note that expφ is a morphism of R-modules from K(ts)∞ to φ(K(ts)∞). We
recall that if u(α) is the maximum of the integer part of (r − q)/(q − 1) and 0, with r = −v∞(α),

then expφ induces an isometric k(ts)-linear automorphism m
u(α)+1
K(ts)∞

→ m
u(α)+1
K(ts)∞

. Notice that

mK(ts)∞
= (1/θ)k(ts)[[1/θ]].

Observe that a sub-k(ts)-vector space M of Ks,∞ is discrete (for the 1/θ-adic topology) if
and only if there exists an integer n > 1 such that M∩mn

K(ts)∞
= {0} (note that this is equivalent

to the fact that the intersection M ∩mK(ts)∞
is a finite-dimensional k(ts)-vector space).

Lemma A.1. LetM 6= {0} be a sub-R-module ofK(ts)∞. The following assertions are equivalent:

(1) M is discrete;

(2) M is a free R-module of rank one.

Proof. The fact that the property (2) implies the property (1) is clear. Let us prove that the
property (1) implies the property (2). Let f be a non-zero element of M . Then R ⊂ f−1M and
f−1M is discrete in K(ts)∞. Thus, we can assume that R ⊂ M . We now observe that we have
a direct sum of k(ts)-vector spaces:

K(ts)∞ = R ⊕mK(ts),∞
= R ⊕ 1

θ
k(ts)

[[
1

θ

]]
.

Since M is discrete, we deduce from the above decomposition that M/R is a finite k(ts)-vector
space. But M/R is also a R-module and hence a torsion R-module. Therefore, there exists
r ∈ R\{0} such that rM ⊂ R. Since R is a noetherian ring, we obtain that M is a finitely
generated R-module of rank one. Since R is a principal ideal domain, we deduce that M , as an
R-module, is free of rank one. 2

Remark A.2. We recall from § 5.4.1 the following R-module:

Vφ =
φ(K(ts)∞)

φ(R) + expφ(K(ts)∞)
,

which is a k(ts)-vector space of dimension 6 u(α). We notice that R + m
u(α)+1
K(ts)∞

⊂ R +

expφ(K(ts)∞). We observe that R and Ker(expφ) are discrete sub-R-modules of K(ts)∞,

which implies that exp−1
φ (R) is a discrete sub-R-module of K(ts)∞. The exponential expφ then

produces an exact sequence of k(ts)-vector spaces

0 →
K(ts)∞

exp−1
φ (R) + m

u(α)+1
K(ts)∞

→
K(ts)∞

R + m
u(α)+1
K(ts)∞

→ Vφ → 0.

In particular, exp−1
φ (R) 6= {0} and we obtain that exp−1

φ (R) is free of rank one by using
Lemma A.1.

A.1 L-series
Let P be a prime of A. Then the R-module φ(R/PR) is finitely generated and torsion. One can
show that the product over the primes of A,

L(φ/R) =
∏
P

[R/PR]R
[φ(R/PR)]R

,

converges in K(ts)∞. We will only give a sketch of the proof of the next theorem, as the proof
is very close to ideas developed by Taelman in [Tae12a].
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Theorem A.3 (Class number formula). The following identity holds in K(ts)∞:

L(φ/R) = [Vφ]R [R : exp−1
φ (R)]R .

A.2 Nuclear operators and determinants
This section is inspired by [Tae12a, § 2]. Let (V, ‖ · ‖) be a k(ts)-vector space equipped with a
non-archimedean absolute value which is trivial on k(ts) and such that every open k(ts)-subspace
U ⊂ V is of finite k(ts)-co-dimension. Let us give a typical example of such objects: let M be a
non-trivial, discreteR-submodule of K(ts)∞; then V =K(ts)∞/M satisfies the above hypothesis.

Let f be a continuous endomorphism of V ; we say that f is locally contracting if there exist
an open subspace U ⊂ V and a real number 0 < c < 1 such that, for all v ∈ U ,

‖f(v)‖ 6 c‖v‖.

Any such open subspace U ⊂ V which moreover satisfies f(U) ⊂ U is called a nucleus for f .
Observe that any locally contracting continuous endomorphism of V has a nucleus. Let us give
an example: the map

τα :
K(ts)∞
R

→
K(ts)∞
R

is locally contracting and the image of m
u(α)+2
K(ts)∞

in K(ts)∞/R is a nucleus (just observe that for

f ∈ K(ts)∞, v∞(τα(f)) > v∞(f) + 1 if and only if v∞(f) > (r − 1)/(q − 1)).
Observe that any finite collection of locally contracting endomorphisms of V has a common

nucleus (see for example [Tae12a, Proposition 6]). Furthermore, if f and g are locally contracting,
then so are the sum f + g and the composition fg.

For any integer N > 0, we set

V [[Z]]

ZN
= V ⊗k(ts)

k(ts)[[Z]]

ZN

and we denote by V [[Z]] the inverse limit of V [[Z]]/ZN equipped with the limit topology. Observe
that any continuous k(ts)[[Z]]-endomorphism F : V [[Z]] → V [[Z]] is of the form

F =
∑
n>0

fnZ
n,

where fn is a continuous k(ts)-endomorphism of V .
Similarly, any continuous k(ts)[[Z]]/ZN -linear endomorphism of V [[Z]]/ZN is of the form∑N−1

n=0 fnZ
n. We say that a continuous k(ts)[[Z]]-linear endomorphism F of V [[Z]] (respectively

of V [[Z]]/ZN ) is nuclear if for all n (respectively for all n < N), the k(ts)-endomorphism fn
of V is locally contracting. Let F be a nuclear endomorphism of V [[Z]]/ZN . Let U1 and U2 be
common nuclei for the fn, n < N . Since [Tae12a, Proposition 8] is valid in our context,

detk(ts)[[Z]]/ZN (1 + F |(V/Ui)[[Z]]/ZN ) ∈ k(ts)[[Z]]

ZN

is independent of i ∈ {1, 2}. We denote this determinant by

detk(ts)[[Z]]/ZN (1 + F |V ).

If F is a nuclear endomorphism of V [[Z]], then we denote by detk(ts)[[Z]](1 + F |V ) the unique

power series that reduces to detk(ts)[[Z]]/ZN (1 + F |V ) modulo ZN for any N . Note that [Tae12a,
Propositions 9, 10, Theorem 2 and Corollary 1] are also valid in our context.
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A.3 Taelman’s trace formula

Observe that any element inR[τ ]τ induces a k(ts)-linear continuous endomorphism of K(ts)∞/R
which is locally contracting. Denote by R[τ ][[Z]] the ring of formal power series in Z with

coefficients in R[τ ], the variable Z being central (i.e. τZ = Zτ). Let P1, . . . , Pn be n distinct

primes of A. Set S = {P1, . . . , Pn}. Let us set

R = R
[

1

P1
, . . . ,

1

Pn

]
.

Let P be a monic prime of A. Let K(ts)P be the P -adic completion of k(ts)(θ) (with respect to

the P -adic valuation on k(ts)(θ) which is trivial on k(ts) and the usual one on K). Observe that

every element of K(ts)P can be written in a unique way:∑
i>m

xiP
i,

where m ∈ Z, xi ∈ R of degree in θ strictly less than degθ P .

We also define

K(ts)S = K(ts)∞ ×K(ts)P1 × · · · ×K(ts)Pn .

Observe that R is discrete in K(ts)S . Let P be a prime of A, P 6= P1, . . . , Pn. Let RP be the

valuation ring of K(ts)P . Then

K(ts)P = RP +R[1/P ].

Furthermore, the inclusion R ⊂ R induces an isomorphism:

R
PR

' R

PR
.

Let F ∈ R[τ ][[Z]]τZ. Then F defines k(ts)-endomorphisms of (K(ts)S/R)[[Z]], (R/PR)[[Z]],

((K(ts)S ×K(ts)P )/R[1/P ])[[Z]]. Now Taelman’s localization lemma [Tae12a, Lemma 1] remains

valid in our case.

Lemma A.4. Let us choose F ∈ R[τ ][[Z]]τZ. Then

detk(ts)[[Z]](1 + F |R/PR) =
detk(ts)[[Z]](1 + F |(K(ts)S×K(ts)P )/R[1/P ])

detk(ts)[[Z]](1 + F |K(ts)S/R
)

.

We also have in our case the following result.

Theorem A.5. Let F ∈ R[τ ][[Z]]τZ. Then we have an equality in k(ts)[[Z]]:∏
P monic prime of A

detk(ts)[[Z]](1 + F |R/PR) = detk(ts)[[Z]](1 + F |K(ts)∞/R)−1.

Proof. This is a consequence of Lemma A.4 and the proof of [Tae12a, Theorem 3]. Note that

in our case in [Tae12a, p. 383, line −5] we replace the original assumption of Taelman by the

assumption that R has no maximal ideal of the form PR, P a monic prime of A, such that

dimk(ts)
(R/PR) < D. 2
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A.4 Fitting ideals
Let f : K(ts)∞ → K(ts)∞ be a continuous k(ts)-linear map. Let M1 and M2 be two free
R-modules of rank one in K(ts)∞ such that f(M1) ⊂ M2. Then f induces a k(ts)-continuous
linear map

f :
K(ts)∞
M1

→
K(ts)∞
M2

.

We say that f is infinitely tangent to the identity on K(ts)∞ if for any N > 0 there exists an
open k(ts)-subspace UN ⊂ K(ts)∞ such that the following properties hold:

(1) UN ∩M1 = UN ∩M2 = {0};
(2) f restricts to an isometry between the images of UN ;

(3) for all u ∈ UN , v∞(f(u)− u) > N + v∞(u).

If f ∈ K(ts)∞[[τ ]] is such that this power series is convergent on K(ts)∞ and satisfies that
f(M1) ⊂ M2, for some free R-modules of rank one M1 and M2, then, by the proof of [Tae12a,
Proposition 12], f is infinitely tangent to the identity on K(ts)∞. A typical example is given by:
M1 = exp−1

φ (R), M2 = R and f = expφ. Now let M1,M2 be two free R-modules of rank one in
K(ts)∞. Let H1, H2 be two finite-dimensional k(ts)-vector spaces that are also R-modules. Set

Li =
K(ts)∞
Mi

×Hi.

Let f : L1 → L2 be a k(ts)-linear map which is bijective and continuous. We shall write

∆f =
1− f−1θfZ

1− θZ
− 1 =

∑
n>1

(θ − f−1θf)θn−1Zn.

We observe that ∆f defines a k(ts)-endomorphism of L1[[Z]]. Let us assume that f induces
(see [Tae12a, p. 385, line −6]) a continuous k(ts)-linear map

K(ts)∞
M1

→
K(ts)∞
M2

which is infinitely tangent to the identity on K(ts)∞. Then, by the proof of [Tae12a, Theorem 4],
we get that ∆f is nuclear and

detk(ts)[[Z]](1 + ∆f |L1)Z=θ−1 = [M1 : M2]R
[H2]R
[H1]R

.

A.5 Proof of Theorem A.3
We set, as in [Tae12a, § 5],

F =
1− φθZ
1− θZ

− 1 =
∑
n>1

(θ − φθ)θn−1Zn ∈ R[τ ][[Z]]τZ.

We have
L(φ/R) =

∏
P monic prime inA

(detk(ts)[[Z]](1 + F |R/PR))−1
Z=θ−1 .

By Theorem A.5, we get

L(φ/R) = detk(ts)[[Z]](1 + F |K(ts)∞/R)|Z=θ−1 .
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We consider the short exact sequence of R-modules induced by expφ:

0 →
K(ts)∞

exp−1
φ (R)

→
φ(K(ts)∞)

φ(R)
→ Vφ → 0.

Since R is a principal ideal domain and the R-module K(ts)∞/exp−1
φ (R) is divisible, this

sequence splits. The choice of a section gives an R-isomorphism:

K(ts)∞

exp−1
φ (R)

× Vφ '
φ(K(ts)∞)

φ(R)
.

This isomorphism gives rise to an isomorphism of k(ts)-vector space:

K(ts)∞

exp−1
φ (R)

× Vφ '
K(ts)∞
R

.

We denote this map by f . Then, by the proof of [Tae12a, Lemma 6], f is infinitely tangent to
the identity on K(ts)∞. But, observe that on (K(ts)∞/R)[[Z]],

1 + F =
1− fθf−1Z

1− θZ
.

Thus,
detk(ts)[[Z]](1 + F |K(ts)∞/R)|Z=θ−1 = [Vφ]R [R : exp−1

φ (R)]R .

The proof of our theorem follows.
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