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CONCAVITY PROPERTY OF MINIMAL L? INTEGRALS WITH

LEBESGUE MEASURABLE GAIN

QI'AN GUAN® anp ZHENG YUAN

Abstract. In this article, we present a concavity property of the minimal L?
integrals related to multiplier ideal sheaves with Lebesgue measurable gain. As
applications, we give necessary conditions for our concavity degenerating to
linearity, characterizations for 1-dimensional case, and a characterization for
the holding of the equality in optimal L? extension problem on open Riemann
surfaces with weights may not be subharmonic.

Contents

1 Introduction

1.1  Concavity property of minimal L? integrals with Lebesgue measurable gain
1.2 Applications . . . . . . . . e
1.2.1 Applications in optimal L? extension theorem . . . . . ... ... ..

1.2.2  Necessary conditions of G(h='(r)) is linear . . . ...........

1.2.3  Characterizations for the linearity of G(h(r)) in 1-dimensional case .

1.2.4 Characterizations for the holding of the equality in optimal L2
extension problem on open Riemann surfaces with weights may not

be subharmonic . . . . . . .. L

2 Preparation
2.1 LZmethods . . .. .. .. . e
2.2 Some properties of G(t) . . . . . ... L
2.3 Some results used in the proofs of applications . . . . ... ... ... ...

3 Proofs of Theorem 1.3 and Corollaries 1.4, 1.5, and 1.7
3.1 Proof of Theorem 1.3 . . . . . . . . . . . . .. ... .. . .. .. .....
3.2 Proof of Corollary 1.4 . . . . . . . . ..
3.3 Proof of Corollary 1.5 . . . . . . . . ...
3.4 Proof of Corollary 1.7 . . . . . . . . .. .

4 Proofs of Theorems 1.9 and 1.10, and Corollaries 1.11 and 1.12
4.1 Proof of Theorem 1.9. . . . . . . . . . . . . . e
4.2 Proof of Theorem 1.10 . . . . . . . . . . . . . . . i e
4.3 Proof of Corollary 1.11 . . . . . . . . .. . . o
4.4 Proof of Corollary 1.12 . . . . . . . . . . . .

5 Proofs of Theorems 1.13-1.15

Received September 19, 2022. Revised February 14, 2023. Accepted May 4, 2023.
2020 Mathematics subject classification: Primary 32D15; Secondary 32E10, 32110, 32U05, 32W05.

852

853
853
855
862

864
864
866
866
866

872
872
875
875
876

876

Qi’an Guan was supported by the National Key R&D Program of China (Grant No. 2021YFA1003100) and the
National Natural Science Foundation of China (Grant No. NSFC-11825101, NSFC-11522101, and NSFC-11431013).

© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal.

https://doi.org/10.1017/nmj.2023.12 Published online by Cambridge University Press

L)

Check for
updates


http://dx.doi.org/10.1017/nmj.2023.12
https://orcid.org/0000-0002-6151-3059
https://orcid.org/0000-0002-0235-5089
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/nmj.2023.12&domain=pdf
https://doi.org/10.1017/nmj.2023.12

CONCAVITY PROPERTY OF MINIMAL L? INTEGRALS 843

5.1 Proof of Theorem 1.13 . . . . . . . . . . . . .. . .. .. .. ... 877
5.2 Proof of Theorem 1.14 . . . . . . . . . . . . . . . e 878
5.3 A limiting property of G(t) . . . . . . . . . 879
5.4 Proof of Theorem 1.15 . . . . . . . . . . . . . . . . 882
6 Proofs of Theorem 1.16, Theorem 1.17, Corollary 1.18 and
Corollary 1.19 883
6.1 A necessary condition of linearity . . . . . . ... ... ... L. 883
6.2 Proof of Theorem 1.16 . . . . . . . . . . . . . . . .. .. ... ... ... 884
6.3 Proof of Theorem 1.17 . . . . . . . . . . . . . . . . . 887
6.4 Proof of Corollary 1.18 . . . . . . . . . . . . . 888
6.5 Proof of Corollary 1.19 . . . . . . . . . . . . . 892
7 Appendix 893
7.1 Proof of Lemma 2.1 . . . . . . . . .. .. .. e 893
7.2 Proof of Lemma 2.14 . . . . . . . . . ... 901

§81. Introduction

The multiplier ideal sheaves related to plurisubharmonic functions plays an important
role in complex geometry and algebraic geometry (see, e.g., [3], [4], [6-8], [22], ]23], [26-28],
[30]). Recall the definition of the multiplier ideal sheaves as follows (see [4]).

The multiplier ideal sheaf Z(p) was defined as the sheaf of germs of holomorphic functions
fsuch that |f|?e~* is locally integrable, where ¢ is a plurisubharmonic function on a complex
manifold M.

The strong openness conjecture is Z(¢) =Z;(¢) := Ues0Z((14€)¢p), which was posed by
Demailly [3] and was proved by Guan-Zhou [19] (the dimension two case was proved by
Jonsson-Mustata [21]). When Z(¢) = O, this conjecture is called the openness conjecture,
which was posed by Demailly-Kolldr [7], and was proved by Berndtsson [1] (the dimension
two case was proved by Favre-Jonsson [9]) by establishing an effectiveness result of the
openness conjecture.

Stimulated by Berndtsson’s effectiveness result, continuing the solution of the strong
openness conjecture [19], Guan—Zhou [20] established a non-sharp effectiveness result of
the strong openness conjecture. Recall that for the first time, Guan—Zhou [20] considered
the minimal L? integral related to multiplier ideals on the sublevel set { < 0}, that is, the
pseudoconvex domain D.

In [14], by considering all the minimal L? integrals on the sublevels of the weights ¢,
Guan presented a sharp version of the effectiveness result of the strong openness conjecture,
and obtained a concavity property of the minimal L? integrals without gain. In [13], Guan
generalized the concavity property in [14] to minimal L? integrals with smooth gain.

In [15], Guan—-Mi gave some applications of the concavity property in [13]: a necessary
condition for the concavity degenerating to linearity, a characterization for 1-dimensional
case, and a characterization for the holding of the equality in optimal L? extension problem
on open Riemann surfaces with subharmonic weights. Recall that if the subharmonic weights
degenerate to 0, the characterization for the holding of the equality in optimal L? extension
problem on open Riemann surfaces is the solution of the equality part of the Suita conjecture

n [18]; if the subharmonic weights degenerate to harmonic, the characterization for the
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holding of the equality in optimal L? extension problem on open Riemann surfaces is the
solution of the equality part of the extended Suita conjecture in [18].

In the present article, we point out that the smooth gain of the general concavity property
in [13] (see also [15]) can be replaced by Lebesgue measurable gain (Definition 1.1 and
Theorem 1.3). As applications, we give necessary conditions for our concavity degenerating
to linearity (§1.2.2), characterizations for 1-dimensional case (§1.2.3), and a characterization
for the holding of the equality in optimal L? extension problem on open Riemann surfaces
with weights may not be subharmonic (§1.2.4).

1.1 Concavity property of minimal L? integrals with Lebesgue measurable
gain
Let M be a complex manifold. We call M that satisfies condition (a), if there exists a
closed subset X C M satisfying the following two statements:

(al) X is locally negligible with respect to L? holomorphic functions; that is, for any local
coordinate neighborhood U C M and for any L? holomorphic function f on U\X,
there exists an L? holomorphic function f on U such that f lonx = f with the same
L? norm.

(a2) M\X is a Stein manifold.

Let M be an n-dimensional complex manifold satisfying condition (a), and let Kjp; be
the canonical (holomorphic) line bundle on M. Let 1) be a plurisubharmonic function on M,
and let ¢ be a Lebesgue measurable function on M, such that ¢+ is a plurisubharmonic
function on M. Take T'= —sup,, ¥ (T maybe —o0).

DEFINITION 1.1. We call a positive measurable function ¢ (so-called “gain”) on (T, +00)
in class Pr if the following two statements hold:

(1) c(t)et is decreasing with respect to t.

(2) There is a closed subset E of M such that E C {z € Z : ¢(z) = —oo} and for any
compact subset K C M\E, e ¥c(—) has a positive lower bound on K, where Z is
some analytic subset of M.

REMARK 1.2. We recall a class P} of positive smooth functions in [13]. A positive
smooth function ¢ on (T,400) in class P7 if the following three statements hold:
1) [ c(t)etdt < +oc.
(2) c(t)e™t is decreasing with respect to t.
(3) For any compact subset K C M, e~ %c(—1) has a positive lower bound on K.

We compare these two classes of functions Pr and Pr. When ¢ € Pr, ¢ maybe non-
smooth on (T, 4+00) and f;oo c(t)e~tdt maybe +o0o. When ¢ is continuous on M, condition
(3)" is equivalent to liminf;_, | c(t) > 0. When ¢ is continuous on M and ¢ € A(S) (see
§1.2.1), the decreasing property of ¢(t)e™" implies that ¢ € Pr and liminf;_, ; o c(t) may be
equal to 0.

Let Zy be a subset of {1) = —oo} such that ZyNSupp({O/Z(p+1)}) #0. Let U 2 Zj be
an open subset of M, and let f be a holomorphic (n,0) form on U. Let F 2 Z(¢+1)|u be
a analytic subsheaf of O on U.
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Denote

inf{/ \flPe™Pc(—) : (f— f) € H(Zo,(O(Kn) @ F)|z,)
{v<—t}

&feH ({y< —t}>0(KM))},

by G(t;¢,1,c) (so-called “minimal L? integrals related to multiplier ideal sheaves”), where

t € [T',+00), c is a nonnegative function on (7',+00), \f|?:= \/—71n2f/\f for any (n,0) form
fand (f—f) e H(Zy,(O(Kp)®F)|z,) means (f — fiz0) € (O(Knm) ®F)s, for all 29 € Zo.
If there is no holomorphic holomorphic (n,0) form f on {¢ < —t} satisfying (f — f) €
H(Zo,(O(K ) @ F)|z,), we set G(t;p,1,¢) = +0o0. Without misunderstanding, we denote
G(t;,1,¢) by G(t), and when we focus on different ¢, 1, or ¢, we denote it by G(t;¢),
G(t;v), or G(t;c), respectively.

In the present article, we obtain the following concavity for G(t).

THEOREM 1.3. Let c € Prp. If there ezists t € [T, +00) satisfymg that G(t) < 400, then
G(h=1(r)) is concave with respect to r € fg _tdt f t)e~tdt), limyr40G(t) =
G(T), and limy_, ;o G(t) =0, where h(t fT e tdty and T1 € (T,+00).

When ¢(t) € P} and M is a Stein manifold, Theorem 1.3 is the concavity property in

[13] (see also [15]).
Theorem 1.3 implies the following corollary.

COROLLARY 1.4. Iff Ye~tdt = +o00, where c € Pr, and f & H°(Zy,(O(Ky) ®

Flz,), then G(t) = +oo for any t > T, that is, there is no holomorphic holomor-
phic (n,0) form f on {4 < —t} satisfying (f — f) € H(Zy,(O(Kp) @ F)|z,) and
f{¢<_t} |fI2e=%c(—1) < 4o00.

In the following, we give two corollaries of Theorem 1.3 when concavity degenerates to
linearity.

COROLLARY 1.5. Let c € Pr, and let G( ) (0 o) for some t > T, then G(h=1(r)) is

concave with respect to r € (fT:: c(t)etdt f t)e~tdt] and the following three statements
are equivalent:

(1) G(t)= Wf}iﬁf—k c(ty)e~"rdty holds for any t € [T,400), that is, G(h='(r))

is linear with respect to r € [0 f+ooc ) ~5ds), where h(t) = f;LOO c(s)e 4ds.
(2) There exists ro € (f;l c(t)etdt f e~tdt) such that

ChTr) ¢
f;;oo C(tl)eftldtl — 70 T t=T+0 j;—i—oo C(tl)eftldtl ’

that is,
G(to) < 1 G(t)
—+o0 — +oo
fto c(tl)e—tldtl t—=T+0 ft c(tl)e—tldtl

holds for some to € (T,+00).
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(3) lim Sl GO ) NS TV e G() holds, that is,
t

rﬁleoo c(t1)e *1dt1—0 f;floo c(t)e—tdt—r c(t1)e t1dty

G(t) < i G(t)

11m =~
t—+o0 f;rooc(tl)e*tldh t—T+0 ft+°° c(ty)e~tdt

holds.

REMARK 1.6. Let M =A CC, and let ¢) =9+ ¢ = 2log|z|. Let ¢(t) =1, and let F =
I(p+1). Let f=dz and Zy = o the origin of C. It is clear that G(h~!(r)) = 27 is linear
with respect to r, where h(t) = t+°o c(l)e~ldl.

Let ¢(t) be a nonnegative measurable function on (7', +00). Set
H2(c,t) = {fr / |[[Pe™?e(—4) < +oo, (f = f) € HO(Zo, (O(Kar) © F)|z,)
{op<—t}

&feH ({< —t},O(KM))},

where t € [T,+00).

COROLLARY 1.7. Let ¢ € Pr, if G(t) € (0,400) for some t >T and G(h~'(r)) is linear
with respect to r € [O,f;foo c(s)e™*ds), where h(t) = :oo c(l)e~ldl, then there is a unique

holomorphic (1,0) form F on M satisfying (F — f) € H*(Z, (O(Kx) @ F)|z,) and G(tic) =
f{w<—t} |F|?e=?c(—4) for any t > T. Equality

2= (— :M " —td
/{—tlsw<—t2}F’€ Y fﬂwc(t)etdt/tz alt)edt (1)

holds for any nonnegative measurable function a on (T,+00), where +00 >t1 >to > T and
T, € (T,+OO)

Furthermore, if H2(¢,to) C H?(c,tg) for some to > T, where ¢ is a nonnegative measurable
function on (T,+00), we have

c +o0
G(to;é)z/{w“ }IFIQe‘%(—@b)ZJﬁTh)/ &(s)e~%ds. (2)

7, c(s)emsds Jio

When ¢(t) € P} and M is a Stein manifold, Corollaries 1.5 and 1.7 can be referred to [15]
(when ¢=1, M is a Stein manifold, ¢ is a smooth plurisubharmonic function on M and
{1p = —o0} is a closed subset of M, Xu—Zhou [32] also get the existence of F in Corollary
1.7 independently).

REMARK 1.8. Let é € Py, if H2(¢,t1) C H?(c,t1), then H2(¢,t2) C H?(c,t2), where t >
to > T. In the following, we give some sufficient conditions of H2(¢,to) C H2(c,tg) for tq > T

(1) ¢€Pr and limy, 4o % > 0. Especially, ¢ € Pr, ¢ and ¢ are smooth on (T, +00) and

4t (log(e(t)) > 4 (loge(1)).
(2) ¢€Pr, H2(c,to) # 0 and there exists ¢t > tg, such that {t) < —t} CC {p < —to}, {2z €

{0 <t} : (e +1). # 0.} C Zo and Flyzmy = Lo+ ¥)lpziy-
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The sufficiency of condition (1) is clear. For condition (2), assume that H?(¢,tg) # 0,
then the following inequality gives the sufficiency of condition (2):

/ FPe?e(—y)
{yY<—to}

<2 FeFPee-v)rz [ (PPetd-w)
{p<—t} {p<—t}

+f |P2e?c(—y)
{—t<y<—to}
< 20/ |F— F|2e %% 4 2/ |F|?e™%c(—1)
{yp<—t} {y<—t}

su Cc(S ~
4o psE(to,t]~( )/ |F|2€_LP5(—1/J)
lnfse(toyt] C(S) {p<—to}

< +00,
where ' € H?(é,tg) and F € H(c,tp).

1.2 Applications
In this section, we give some applications of our concavity property.

1.2.1. Applications in optimal L? extension theorem

Let M be an n-dimensional complex manifold, and let S be an analytic subset of M. Let
dVs be a continuous volume form on M.
We consider a class of plurisubharmonic functions ® from M to [—o00,400), such that:

(1) SC® !(—o0),and @~ (—oc0) is a closed subset of some analytic subset of M satisfying
that @ has locally lower bound on M\®~1(—o0).

(2) If S is I-dimensional around a point € Sycg, there is a local coordinate (z1,...,2,) on
a neighborhood U of = such that z;y1 =--- =2, =00n SNU and

sup |®(z) — (n—l)logz |2 %] < +oo0.
U=5 I+1

The set of such polar functions ® will be denoted by A(S). We call @ is in class A’(S),
if the condition (2) is replaced by (2)’:

(2)" if S is l-dimensional around a point z € S,¢4, there is a local coordinate (z1,...,z,)
on a neighborhood U of z such that 241 =---=2, =0 on SNU and ®(z) — (n—
1)log ;" |z|* is continuous on U.

Let ¢ € A(S). Following [24] (see also [18]), one can define a positive measure dV)s[¢)] on
Sreg as the minimum element of the partially ordered set of positive measures du satisfying

2(n—1
fdp > limsup M
s t—+oo O2n—21—1

/ It 1epesyfe " dVar
M

for any nonnegative continuous function f with suppf CC M. Here, denote by o,,, the
volume of the unit sphere in R™*L. If ¢ € A’(S), then dVis[¢]|s, is a continuous volume
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form on S; and dVis[v) +h]|s, = e "dVar[1]|s, (see [18]), where h is a continuous function
on M.

Let us recall a class of complex manifolds (see [18]). Let M be a complex manifold
with the volume form dVjy, and let S be an analytic subset of M. We say (M, S) satisfies
condition (ab) if there exists a closed subset X C M satisfying the following statements:

(a) X is locally negligible with respect to L? holomorphic functions.
(b) M\X is a Stein manifold which intersects with every component of S, such that
Ssing c X.

We give the following L? extension theorem with an optimal estimate. When c(t) is
continuous, the theorem can be referred to [18].

THEOREM 1.9. Let (M,S) satisfy condition (ab). Let ¢ € A(S) satisfying ¥ < =T on M.
Let ¢ be a continuous function on M, such that @+ 1) is plurisubharmonic on M. Let c(t)
be a positive function on (T,+00) such that c(t)e™" is decreasing and f;oo c(t)e tdt < 400.
Then for any holomorphic section f of Kyr|s on S, such that

— |fI?
T VP gy
kz:l o /S dVMe MY < +oo,

n—=k

there exists a holomorphic (n,0) form F on M such that F|s = f and

) o NG [P
[ rpeee-n < ([ etne tdt)kzlk! [ vl

By the definition of dVj[¢)], we know %dVM [¢] is independent of the choice of dV),
(see [18]).
k 2
Denote that ||flls =Y 4_y 57 fs . gbe ¢dVi[y] and ||F||as = [, [F|?e~%c(—). Let
Flz, =I(¢)]s,., and choose the f in the definition of G(t) by any holomorphic extension
of the f in Theorem 1.9. Then G(T') = inf{[|F'||s : F is a holomorphic extension of f from
S to M}, and Theorem 1.9 tells us that

cn < ([ +°0c<t>e-tdzt) TR 3)

T

(when G(T') < +00, Lemma 2.6 shows that there exists a holomorphic extension F' of f such
that G(T) = || F[|ar)-

Using Corollary 1.7 and Theorem 1.9, we obtain a necessary condition of inequality (3)
becomes an equality.

THEOREM 1.10. Let (M,S) satisfy condition (ab). Let v € A(S), and let < —T. Let
¢ be a continuous function on M, such that ¢+ is plurisubharmonic on M. Let c(t) be a
positive function on (T,+o00) such that c(t)e™t is decreasing and f;oo c(t)e~tdt < +oo. Let
f be a holomorphic section of Kyr|s on S, such that

- 77’“/ f?
T W = qvi ] < +oc.

IfG(T) = ( oo c(t)e‘%lt) | flls, then G(h=(r)) is linear with respect to r and there exists
a unique holomorphic (n,0) form F on M such that F|s = f and G(T) = || F||a-
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For any t > T, there exists a unique holomorphic (n,0) form F; on {i) < —t} such that
Fi|ls=f and

400 n k 2
2,—¢.(_ -1 T i
/{w<t} [Eilfe (=) < </t elb)e dl) ; k! /Snk, dVMe AValy)]

In fact, Fy =F on {¢ < —t}.

If H2(¢,t) C H?(c,t) for some t > T, where ¢ is a nonnegative measurable function on
(T, +00), then there exists a unique holomorphic (n,0) form Fy on {¢ < —t} such that
Fi|ls = f and

+oo n k 2
o et [ R
/{M_t}rm e Pe(—p) < ( | dZ);k! / e esavta)

In fact, Fy = F on {¢ < —t}.

When ¢(t) € P} and M is a Stein manifold, Theorem 1.10 was obtained by Guan-Mi in
[15].
Using Theorem 1.9, we obtain the following optimal L? extension theorem.

COROLLARY 1.11. Let M be an n-dimensional Stein manifold, and let S be an analytic
subset of M. Let i1 € A(S), and let 1o be a plurisubharmonic function on M such that
Y =114+ < =T on M. Let ¢ be a Lebesgue measurable function on M such that @+ o
is plurisubharmonic on M. Let c(t) be a positive function on (T,+00), such that c(t)e™" is
decreasing, f;oo c(t)e~tdt < 400 and e=¥c(—1)) has locally a positive lower bound on M\Z,

where Z is some analytic subset of M. For any holomorphic section f of Karls,., on Sreg

reg

satisfying

— 7 |f’2 —p—1p
Zil — e ¥ QdVM[@Z)l] < +00,
24H J, , dVi

there exists a holomorphic (n,0) form F on M such that F|s, ., = f and

+oo n k 2
[rreracn < ([eneta) S5 [ e tavil
k=1 """ Y®n—k

T

Especially, when ¢ =1 and ¢, = 2log|w|, where w is a holomorphic function on M, such
that dw does not vanish identically on any branch of w™'(0) and S,e; = {z € M : w(z) =
0&dw(z) # 0}, Corollary 1.11 can be referred to [16] (see also [18]).

. 2
Denote that | f||%s = Z:Zl%fsnik %6_”_¢2dVM[¢1]- Let Fl|z, = Z(¢1)ls,., and
choose the f in the definition of G(t) by any holomorphic extension of the f in Corollary 1.11.
Then G(T) = inf{||F||as : F' is a holomorphic extension of f from S to M}, and Corollary

1.11 tells us that
+oo
o)< ([ etmetar) 11 0
Similarly to Theorem 1.10, we give a necessary condition of inequality (4) becomes an
equality.

COROLLARY 1.12. Let M be an n-dimensional Stein manifold, and let S be an analytic
subset of M. Let 11 € A(S), and let 1o be a plurisubharmonic function on M such that
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Y =11+ < =T on M. Let p be a Lebesgue measurable function on M such that @ +1s is
plurisubharmonic on M. Let c¢(t) € Pr such that f;foo c(t)e~tdt < +oo. Let f be a holomorphic
section of Kpls,., on Sreg satisfying

iﬂk/ meﬂpﬂbzde[wl] < +o0.
2R s, Vi

reg

IfG(T)= ( ;OO c(t)e‘tdt> 1%, then G(h=(r)) is linear with respect to r and there exists
a unique holomorphic (n,0) form F on M such that F|s = f and G(T) = || F||a-
For any t > T, there exists a unique holomorphic (n,0) form Fy, on {1 < —t} such that

Fils = f and

26~ i ~1 — F p—
/{w<—t} |Fy2e%e(—1) < </t c(l)e dl> ];k'/snk me 72 dVs[n].

In fact, Fy = F on {¢ < —t}.

If H%(e,t) C H3(c,t) for some t > T, where ¢ is a nonnegative measurable function on
(T,4+00), then there exists a unique holomorphic (n,0) form F; on {¢ < —t} such that
Fils=f and

/ |Fy|2e%e(—y) < </+m5(l)eldz)i”k/ bk e PV2q Vs [11]

—h) < . A v lhe].
{b<—t} ' t =1 ks, AV '
In fact, Fy =F on {¢ < —t}.

1.2.2. Necessary conditions of G(h~1(r)) is linear
In this section, we give some necessary conditions of G(h~2(r)) is linear.

THEOREM 1.13. Let M be an n-dimensional complex manifold satisfying condition (a).
Let c € Pr, and assume that there exists t > T such that G(t) € (0,+00). If there exists a
Lebesgue measurable function ¢ > ¢ such that @+ is plurisubharmonic function on M and
satisfies that:

(1) e#e;
(2) limyrposupgy>_n (@ — @) =0;
(3) @ — is bounded on M.

Then G(h='(r)) is not linear with respect to r € (O,f;wc(s)e’sds). Especially, if

@+ is strictly plurisubharmonic at z € M, G(h='(r)) is not linear with respect to
re (0,];00 c(s)e™*ds).

In the following, we give two necessary conditions for ¢ when G(h~'(r)) is linear.

THEOREM 1.14. Let M be an n-dimensional complex manifold satisfying condition (a).
Let ¢ € Pr, and assume that G(T) € (0,400). If there exists a plurisubharmonic function
> on M satisfying that:

(1) ¢ < =T on M;
(2) ¥ #v; )
(3) limt_>_,_oo sup{¢<_t} (¢ - ?j)) =0.
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Then G(h=(r)) is not linear with respect to r € (0,fT+oo c(s)e™*ds). Especially, if ¢ is
strictly plurisubharmonic at z; € M\(N{v < —t}), G(h=1(r)) is not linear with respect to
+oo —s
re (0, [ c(s)e *ds).

Let M be an n-dimensional Stein manifold, and let S be an analytic subset of M. Let 1
be a plurisubharmonic function on M, and let ¢ be a Lebesgue measurable function on M
such that ¢+ is plurisubharmonic on M.

We call (¢,1) in class W if there exist two plurisubharmonic functions i, € A’(S) and
19, such that ¢+ 1) is plurisubharmonic function on M and v = 41 +1s.

The following theorem gives a necessary condition of G(h~1(r)) is linear when (¢, 1)) € W.

THEOREM 1.15. Let c € Pr, and let (¢,v) € W. Let F|z, = Z(Y1)|s,.,- Assume that
G(T) € (0,400) and a(z) > —co for almost every z € Speg. If G(h™1(r)) is linear with

respect to r € (O,j;roo c(s)e=*ds), then we have

GT) -7 Fi p—
W_I;k!/snk me oy dVMW’l]: (5)

and there is no plurisubharmonic function 1; > on M satisfying that:

~

1.2.3. Characterizations for the linearity of G(h(r)) in 1-dimensional case

In this section, we consider the 1-dimensional case. Let M = ) be an open Riemann
surface admitted a nontrivial Green function Gq, we give characterizations of the linearity.

We recall some notations (see [18]). Let p: A — € be the universal covering from unit
disk A to €. we call the holomorphic function f (resp. holomorphic (1,0) form F') on
A a multiplicative function (resp. multiplicative differential (Prym differential)), if there
is a character x, which is the representation of the fundamental group of €2, such that
9 f=x(g)f (resp. g*(F) = x(9)F), where |x| =1 and g is an element of the fundamental
group of Q. Denote the set of such kinds of f (resp. F') by OX(£2) (resp. I'X(Q2)).

For any harmonic function « on €2, there exists a x, and a multiplicative function f, €
OX+(Q), such that | f,| =p* (e*). If uy —ug =log| f|, where u; and uy are harmonic function
on 2 and f is holomorphic function on 2, then x,, = Xu,-

For the Green function Gq(z,zp), one can also find a x., and a multiplicative function
fz € OX=0(Q), such that |f.,| = p* (eF2(=20)),

Let M = be an open Riemann surface admitted a nontrivial Green function Gq. Let
1 be a subharmonic function on 2 satisfying T'= —supg ¥ = 0, and let ¢ be a Lebesgue
measurable function on €2, such that ¢+ is subharmonic on Q2. Let Zy = zy be a point
in Q.

Let w be a local coordinate on a neighborhood V,, of zy € Q satisfying w(z¢) = 0. Set
f= fi(w)dw on V,,, where f is the holomorphic (1,0) form in the definition of G(t) (see
§1.1) and f; is a holomorphic function on V.

The following two theorems give characterizations of G (lifl 7)) is linear with respect to
re (O,foJroo c()e~tdl) for some kinds of (p,1). Set d = 5+ (0 — 9).

1
271
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THEOREM 1.16. Let c € Py. Assume that ¢+ ayp is a subharmonic function on a
neighborhood of zo for some a € [0,1), and G(0) € (0,+00). Then G(h~'(r)) is linear with
respect to r if and only if the following statements hold:

(1) o+ =2log|g| +2Ga(z,20)+2u, ord,,(9) = ord,,(f1), and F,, =Z(@+1).,, where g
is a holomorphic function on Q) and u is a harmonic function on €.

(2) ¥ =2pGa(z,20) on Q for some p > 0.

(3) X—u =Xz, where x_,, and X, are the characters associated with the functions —u and
Gal(z,20), respectively.

When ¢ = 2Gq(z,20), Fzy =Z(¢+ )., and c(t) € P, Theorem 1.16 can be referred to
[15].
THEOREM 1.17. Let ¢ € Py, and let Zy = zo be a point in Q. Assume that (¢ —

2pGa(2,20))(20) > —o0, where p = $v(dd°,z), and G(0) € (0,+00). Then G(h™'(r)) is

linear with respect to r if and only if the following statements hold:

(1) o+v =2log|g|+2Ga(z,20)+2u, ord,,(9) = ord.,(f1), and F.y =Z(@+1),, where g
is a holomorphic function on Q0 and u is a harmonic function on Q.

(2) p>0 and ) =2pGq(z,z9) on Q.

(3) X—u= Xz, where x_,, and X, are the characters associated with the functions —u and
Gal(z,20), respectively.

1.2.4. Characterizations for the holding of the equality in optimal L? extension problem
on open Riemann surfaces with weights may not be subharmonic

Let M =) be an open Riemann surface admitted a nontrivial Green function Gq. Let
1 be a subharmonic function on 2 satisfying 7T'= —supg ¥ = 0, and let ¢ be a Lebesgue
measurable function on €2, such that ¢+ 1 is subharmonic on 2. Let Zy = zg be a point in €.

Let w be a local coordinate on a neighborhood V., of zy € Q satisfying w(zg) = 0. Let
f = dw be a holomorphic (1,0) form on V.. Following the notations in Section 1.2.1. Now,
we give characterizations for the holding of the equality in optimal L? extension problem
on open Riemann surfaces with weights may not be subharmonic.

COROLLARY 1.18. Let M=, S =2z, and T =0. Let p(z9) > —oc0. Assume that i) €
A(z0), e=?7% is not L' on any neighborhood of zo and c(t) € Py satisfying f0+oo c(t)e tdt <
+00.

Then there exists a holomorphic (1,0) form F on Q such that F(z0) = f(z0) and

[ipeeceen < ( +°° (et ] (©)

Moreover, equality (f0+°o c(t)e_tdt) 1 fllz, = inf{||F|lq: F is a holomorphic extension of f

from zg to Q} holds if and only if the following statements hold:

(1) ¢ =2log|g|+2u, where u is a harmonic function on ) and g is a holomorphic function
on  such that g(zo) # 0.

(2) ¥ =2Gq(z,20) on Q.

(3) X—u = Xzy, where x_y, and X, are the characters associated with the functions —u and
Ga(z,z20), respectively.

When 1) = 2Gq(z,20) and ¢(t) € P, Corollary 1.18 can be referred to [15].
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COROLLARY 1.19. Let M =€, S =z, and T = 0. Let (p,70) € W, and let ||f||}, €
(0,400). Let c(t) € Py such that f0+oo c(t)e~tdt <+o0o. Then equality (f0+ooc(t)e_tdt> Ifl%,=
inf{||F||q: F is a holomorphic extension of f from zy to Q} holds if and only if the following
statements hold:

(1) ¢ =2log|g|+2u, where u is a harmonic function on Q and g is a holomorphic function
on Q such that g(zo) # 0.

(2) Y =2Gq(z,20) on .

(3) X—u =Xz, where x_,, and X, are the characters associated with the functions —u and
Ga(z,20), respectively.

§2. Preparation

2.1 L? methods

We call a positive measurable function ¢ on (S, +00) in class Pg if | Ss c~(l)e_ldl < +o0 for
some s > S and c(t)e™! is decreasing with respect to t. Note that Pr C Pg when S >T.

In this section, we present the following lemma (proof can be referred to §7.1), whose
various forms already appear in [14], [15], [17], [18] etc.:

LEMMA 2.1. Let B € (0,+00) and to > S be arbitrarily given. Let M be an n-
dimensional Stein manifold. Let 1 < —S be a plurisubharmonic function on M. Let ¢ be a
plurisubharmonic function on M. Let F be a holomorphic (n,0) form on {¢ < —tg}, such
that

/ IFP? < 4oo (7)
Kn{¢p<—to}

for any compact subset K of M, and
1 _
/M EH{_tO_B<'¢’<_tO}’F|2€ ® < C< “+00. (8)

Then there exists a holomorphic (n,0) form F on M, such that
_ to+B
/ [ = (1= bty 5 () FPe™ 000 e(—uy, g (v) < C/ cft)e”"dt, (9)
M S

where by, p(t) = fioo %H{_t0_3<5<_t0}ds, vt B(t) = ffto bi, B(s)ds —to, and c(t) € Ps.

We give the proof of Lemma 2.1 in Section 7.1. It is clear that I_; 1) (t) < bysy,B(t) <
[(—ty—B, +00)(t) and max{t, —to — B} < vy, p(t) < max{t, —to}.
Lemma 2.1 implies the following lemma, which will be used in the proof of Theorem 1.3.

LEMMA 2.2. Let M be an n-dimensional complex manifold satisfying condition (a),
and let c(t) € Pr. Let B € (0,+00) and to >ty > T be arbitrarily given. Let 1 < =T be
a plurisubharmonic function on M. Let ¢ be a Lebesgue measurable function on M, such
that @+ is plurisubharmonic on M. Let F be a holomorphic (n,0) form on {¢ < —ty},
such that

/ |F|2e™?c(—) < +o0. (10)
{p<—to}
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Then there exists a holomorphic (n,0) form F on {1 < —t,}, such that
- to+B
/ |~ (1= bt 5 () F|Pe™ #0002 We(—vy, 5 (1)) < C/ c(tye”"dt, (11)
{v<—t1} 31

where C = [}, %H{*t07B<1/)<7t0}’F|2e_4P_w < 400, by p(t) = fioo %H{7t073<3<7t0}d8, and
vi.B(t) = [, biy.5(s)ds —to.

Proof. As M is an n-dimensional complex manifold satisfying condition (a) and c(t) €
Pr, there exist a closed subset X C M and a closed subset E C X N{y = —oo} satisfying that
X is locally negligible with respect to L? holomorphic functions, M\ X is a Stein manifold,
e~ %c(—1) has locally a positive lower bound on M\ E and there exists an analytic subset
Z of M such that E C Z.

Combining inequality (10) and e~ %c(—1) has locally a positive lower bound on M\E,
we obtain that

/ P2 < 400
Kn{y<—to}

holds for any compact subset K of M\X. Then Lemma 2.1 shows that there exists a
holomorphic (n,0) form Fx on {1 < —t;}\ X, such that

_ to+B
/ |Ex — (1 =biy () FPe™? V0.2 e(—vy, p(h)) < C/ c(t)e™"dt. (12)
{p<—t1 ]\ X t1

For any z € {¢p < —t1} N (X\E), there exists an open neighborhood V, of z, such that
V. CC {¢ < —t1}\ E. Note that c(t)e™" is decreasing on (7', +00) and vy, (1)) > 1, then we
have

/ P — (1~ by 5 () F e e(—)
VX

< / |Fx — (1= byy (1)) F[2e= 0=+ W)e(—uy g (1)) (13)
VAX
<+ 0.

Note that there exists a positive number C; > 0 such that e~ %¢(—v) > Cy on V, and
sz\X |(1=byy (V) F|?e™?c(—1) < f{w<_t0} |F|2e=%c(—1)) < 400, then we have
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As X is locally negligible with respect to L? holomorphic functions, we can find a
holomorphic extension F of Fx from {¢ < —t1 }\ X to {¢) < —t1 }\ £ such that

_ to+B
/{ } |Fig = (L=byy (1)) FPe™# 7V 08 We(—uy, p(4h)) < C c(t)e~"dt. (15)
P<—t1 }\E

ty

Note that E C {¢p < —to} C {¢p < —t1}, for any z € F, there exists an open neigh-
borhood U, of z, such that U, CC {¢ < —tp}. As ¢+ is plurisubharmonic on M and
V0.8 (V) e(—vy, p(1)) has a positive lower bound on {1 < —t;}, then we have

/ P — (1~ by () F?
U \E

<Gy / |Fg — (1= by (1)) e~V +0.5 Wy, 5 (1)) (16)
{p<—t1}\E

<+ 00,

where Cs is some positive number. As U, CC {¢ < —to}, we have
[ 1=t n@yrP < [ PR <o (a7)
Uz Uz

Combining inequality (16) and (17), we obtain that [, \B |Fg|? < 4o0.

As E is contained in some analytic subset of M, we can find a holomorphic extension F
of Fg from {¢) < —t1}\F to {¢ < —t1} such that

~ to+B
/w }|F— (1=byy, 5 () FPe ¢V 008 We(—y, p(v)) < C / c(t)e~'dt.  (18)
<—t1 t1

This proves Lemma 2.2. 0

2.2 Some properties of G(t)
We present some properties related to G(t) in this section.

LEMMA 2.3 (See [12]). Let N be a submodule of O, ,, 1< q<+0o0, and let f; € Ocn (U)*
be a sequence of q—tuples holomorphic in an open neighborhood U of the origin o. Assume

that the f; converge uniformly in U toward a q—tuples f € Ocn(U)?, assume furthermore
that all germs (f;,0) belong to N. Then (f,0) € N.

The closedness of submodules will be used in the following discussion.

LEMMA 2.4. Let M be a complex manifold. Let S be an analytic subset of M. Let
{9;}j=12,... be a sequence of nonnegative Lebesque measurable functions on M, which
satisfies that g; are almost everywhere convergent to g on M when j — 400, where g is
a nonnegative Lebesque measurable function on M. Assume that for any compact subset K
of M\S, there exist sk € (0,4+00) and Ck € (0,+00) such that

/ g; *¥dVy < Ck
K

for any j, where dVas is a continuous volume form on M.
Let {F;};=12,.. be a sequence of holomorphic (n,0) form on M. Assume that there exists
a positive constant C such that liminf;_, o [,,|Fj|?g; < C. Then there exists a subsequence
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{Fj }i=1,2,..., which satisfies that {F}, } is uniformly convergent to a holomorphic (n,0) form
F on M on any compact subset of M when | — 400, such that

/ |F|?g < C.
M

Proof. As S is a analytic subset of M, by Local Parameterization Theorem (see [5]) and
Maximum Principle, for any compact set K CC M, there exists K1 CC M\S satisfying

2 2
BP0 1)
zEK dVar zek, AV

(19)

for any j, where C] is a constant depending on K but independent of j. Then there exists
a compact set Ko CC M\ S satisfying K7 C K5 and

<‘Fdéﬂj|> gc/}{('%ﬁ‘) )
<Oy (/}(2|Fj|29j> (/1{29;13)

for any j and any z € Ky, where r € (0,1) and Cs is a constant. Let " = sk, , inequality
(20) implies

(20)

|Fj(2) / 2
sup <C F;i|7g;, 21
LeK, dVM 3 e | J’ 9j ( )
where C3 is a constant. As liminf; ., [, |Fj|%g; < C, combining inequality (19), (21),
and the diagonal method, we obtain a subsequence of {F}}, denoted still by {F}, which is
uniformly convergent to a holomorphic (n,0) form F on M on any compact subset of M.
It follows from the Fatou’s Lemma and lim;_, . [,,|Fj|?g; < C that

F|? lim |F}
/M "9 = / i |E5Pg;

<hm1nf/ |Fj|%g;

J—r+o0o

Thus Lemma 2.4 holds. U

Let M be an n-dimensional complex manifold satisfying condition (a). Let 3 be a
plurisubharmonic function on M, and let ¢ be a Lebesgue measurable function on M,
such that ¢ +1 is a plurisubharmonic function on M. Let ¢ € Pp. The following lemma is
a characterization of G(t) =0 for any ¢t > T, where T'= —sup,,; ¥ and the meaning of G(t)
can be referred to Section 1.1.

LEMMA 2.5. f€ H°(Zy,(O(Ky)®F)|z,) & G(t) =

Proof. 1t is clear that f € H%(Zy,(O(Ky)®F)|z,) = G(t) =0

In the following part, we prove that G(t) =0 = f € H%(Zy,(O(Kn) ® F)|z,). As
G(t) =0, then there exists holomorphic (n,0) forms {fj}jeN+ on {1 < —t} such that
lim; 4o f{¢<_t} |fil?e %c(—¢) =0 and (f; — f) € H*(Zo,(O(Knm) ® F)|z,) for any j.
As e ?¢(—1) has a positive lower bound on any compact subset of M\Z, where Z is
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some analytic subset of M, it follows from Lemma 2.4 that there exists a subsequence of
{f] }jen+ denoted by {f]k}keN+ that compactly convergent to 0. It is clear that f]k —f
is compactly convergent to 0— f = —f on UN{y < —t}. It follows from Lemma 2.3 that
f€HZy,(O(Kn)®F)|z,)- This proves Lemma 2.5. 0

The following lemma shows the existence and uniqueness of the holomorphic (n,0) form
related to G(t).

LEMMA 2.6. Assume that G(t) < +o0o for some t € [T,+00). Then there exists a unique
holomorphic (n,0) form Fy on {1 < —t} satisfying (Fy — f) € H*(Zo,(O(Kpr) @ F)|z,) and
f{¢<_t} |Fi|?e=?c(—1) = G(t). Furthermore, for any holomorphic (n,0) form F on {¢ <
—t} satisfying (F — f) € H*(Zo,(O(Kx) ® F)|z,) and f{¢<_t} |F|2e=%c(—1)) < 400, we
have the following equality:

/ |Fyf2ee(—) + / |F— FyPePc(—1)
{p<—t} {p<—t}
(22)
[ BPee-u)
{p<—t}

Proof. Firstly, we prove the existence of F;. As G(t) < +oo then there exists holomorphic
(n,0) forms {f;}jen+ on {¢ < —t} such that lim;_, | f{w<—t} |fi]?e %e(—y) = G(t), and
(fi = f) € H*(Zo,(O(Knm) ® F)|z,). As e~ ?c(—1) has a positive lower bound on any
compact subset of M\Z, where Z is some analytic subset of M, it follows from Lemma
2.4 that there exists a subsequence of {f;} compact convergence to a holomorphic (n,0)
form F on {¢ < —t} satisfying f{w<—t} |F|2e=%c(—1) < G(t). Tt follows from Lemma 2.3
that (F — f) € H°(Zy,(O(Kar) @ F)|z,)- Then we obtain the existence of Fy(= F).

Secondly, we prove the uniqueness of F; by contradiction: if not, there exist two different
holomorphic (n,0) forms f; and f; on on {¢ < —t} satisfying f{w<—t} |f1]2e=Pc(—y) =
Jpe iy lF2IP =G(@), (fr = f) € H*(Zo, (O(Kn) @ F)|z,) and (f2— f) € H(Zo,(O(Kn) @
F)|z,)- Note that

fitlele — fi=Ffele —p
o B [ R ) »
f{¢< t}|f1‘ e (= +f{w< t}|f2| e~ ?c(—1p) — G
2 Y
then we obtain that
| e <o)
{<—t} 2

and (% —f) € H*(Zy,(O(K ) ® F)|z,), which contradicts the definition of G(t).

Finally, we prove equality (22). For any holomorphic A on {¢¥ < —t} satisfying
f{¢<7t} |h|?e=%c(—1) < +oo and h € HY(Zy,(O(Kp) @ F)|z,), it is clear that for any
complex number «, F; + ah satisfying ((Fy 4+ ah) — f) € H*(Zo,(O(Kn) ® F)|z,), and
f{¢<_t} |Fy|2e=%c(—1) < f{¢<_t} |F; + ah|?e=%c(—1)) < +00. Note that

/ |Fy+ ahlPePe(—4) - / Fyf2e % e(—p) > 0
{p<—t} {p<—t}
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implies
3%/ Fyhe %c(—1) =0,
{p<—t}
then
| ARbere-) = [ (RP P e,
{<—t} {<—t}
Choosing h = F' — F;, we obtain equality (22). O

The following lemma shows the monotonicity and lower semicontinuity property of G(t).

LEMMA 2.7. G(t) is decreasing with respect to t € [T,+00), such that lim;_4,40G(t) =
G(to) for any ty € [T,+00), and if G(t) < +o0 for some t > T, then lim;_, 1o G(t) = 0.
Especially G(t) is lower semicontinuous on [T,400).

Proof. By the definition of G(t), it is clear that G(t) is decreasing on [T',4+00). And
it follows from the dominated convergence theorem that if G(t) < 400 for some t > T,
then lim; 4+ G(t) = 0. Then it suffices to prove lim;_,4,1+0G(t) = G(to). We prove it by
contradiction: if not, then lim; ;.10 G(t) < G(to).

By Lemma 2.6, there exists a unique holomorphic (n,0) form F; on {¢ < —t} satisfying
(Fy = f) € H)(Zy,(O(Kn) ® F)lz,) and [(,, . |Fi|*e™?c(—2) = G(t). Note that G(t)
is decreasing implies that f{¢<_t} |Fi|?e=?c(—1) < limy_yy,10G(t) for any t > to. If
limy 4,40 G(t) = +o0, the equality lim;_,+ 10 G(t) = G(to) is clear, thus it suffices to prove
the case lim;_4,4+0G(t) < +00. As e~ ?c(—1)) has a positive lower bound on any compact
subset of M\Z, where Z is some analytic subset of M, and f{¢<_tl}|Ft|2e*@c(—w) <
lim; 4,40 G(t) < 400 holds for any ¢ € (to,t1], where ¢; >ty is a fixed number, it follows
from Lemma 2.4 that there exists {F},} (t; — to+0, as j — +00) uniformly convergent on
any compact subset of {¢) < —t;}. Using the diagonal method, we obtain a subsequence of
{F} (also denoted by {F},}), which is convergent on any compact subset of {¢) < —to}.

Let Fto = lim;_, { o F},, which is a holomorphic (n,0) form on {¢) < —to}. Then it follows
from the decreasing property of G(t) that

/ |Ey [2e%e(—) < ; lim |F,)Pe %e(—¢) < lim G(tj) < lim G(t)
K K

—+00 T jotoo T t—to+0

for any compact set K C {1 < —to}. It follows from Levi’s Theorem that

/ |Ey |2e ?e(—y) < lim  G(t).
{¥<—to}

- t—)to-‘ro

It follows from Lemma 2.3 that F,, € H(Zy, (O(K ) ®F)|z,). Then we obtain that G(to) <
f{¢<—to} |Fy12e=%e(—1) <limy 440 G(t), which contradicts lim; ¢, 410G (t) < G(to). 1

We consider the derivatives of G(t) in the following lemma.

LEMMA 2.8. Assume that G(t1) < 0o, where t1 € (T, +00), then for any to > t1, we have

S c@etdt — Bo0+0 [OTF e(t)e~tdt
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that 1is,
G(to) —G(t1) . G(to+ B) — G(to)
%o t = limsup ——7 tot+ B :
le c(t)e~tdt — le c(t)e~tdt  B—0+0 Tf c(t)e~tdt — Tf c(t)e=tdt

Proof. 1t follows from Lemma 2.7 that G(t) < +oo for any ¢ > ¢;. By Lemma 2.6, there
exists a holomorphic (n,0) form Fy, on {¢ < —tg}, such that (Fy, — f) € H*(Zo,(O(Ky) ®
‘F)’ZO) and f{¢<_t0} ‘Ft0‘26_800(_«(/}) = G(to)
G(to)—G(to+B)
ftt00+B c(t)e—tdt
property of G(t). Then there exists B; — 0+0 (j — +00) such that

to) —G(to+ B, to) —G(to+ B
lim G(tOJ)FB,G( 0+ 5B)) = liminf G(tOlB Glto+ B)
j—+o0 ftOO J c(t)e_tdt B—0+0 ftOO C(t)e_tdt

It suffices to consider that liminfz_,¢4¢ € [0.+00) because of the decreasing

(24)

and {w}jel\ﬁ is bounded. As c(t)e™ " is decreasing and positive on (T, +00),

fto T e(t)e—tdt
then
i G(to)—G(to—i—Bj) o . G(to)—G(t0+Bj) 1
S [to+B; —tgt EI—FOO B; lim c(t)e—t
j—+ fto c(t)e~tdt J j t—to+0 (25)

( . G(to)—G(tQ—l-Bj)) ( eto )
= lim - .
J—+oo Bj hmtﬁto+0 C(t)

Hence, {%@} - is bounded with respect to j.
j€
As t <wy, B, (t), the decreasing property of ¢(t)e~* shows that
eV 0B e~y 5, (1)) 2 ().

Lemma 2.2 shows that for any Bj, there exists holomorphic (n,0) form l*:'j on {¢ < —t1},
such that (Fj — Fy,) € H(Zo,(O(Kum) @Z(p+v))lz,) € HO(Zo, (O(Knr) ® F)|z,) and

[ - bn ) E e -0)
p<—t1}

</ |Fj— (1= by, 5, (1)) Fy, [Pe™9e™ V0005 W~y g (1))
{v<—t1}

t0+Bj . 1 2
g/ c(t)e” dt/ = (Lt By<pc—to}) | Fro[Pe %77
t1 {p<—t:1} PJ
etotB; ft0+Bj c(t)e~tdt 1
< — al / — (T4 _g. _ Fy |?e ?c(—1
1th€(t0,t0+Bj)C(t) {w<7t1}Bj({ tomBisvs tO})| tol (=¥) (26)

1 _
EH{¢<—to}|Fto‘2e S()C(_w)
Y<—t1} 27

etotBs (1085 Lopye—tqy
- I (t) y /
{

infie to,t0+B;) €(1)

1 _
_/ EH{M—to—Bj}\Fto!Ze S"C(—lﬁ)>
{p<—t1} PJ

<eto+Bj JEHP e(t)etdt  G(to) = G(to+ B)
infte(t07t0+Bj) c(t) B;

Firstly, we will prove that f{1,b<—t1} |Ej]2e=%c(—1) is bounded with respect to j.

https://doi.org/10.1017/nmj.2023.12 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.12

860 Q. GUAN AND Z. YUAN

Note that

( | E-G-bs <w>>Ft0\2e%<—w>>
{y<—t1}

Fj|?e %c(— - 1—byy,B; Fy |2 c(— ,
Z</{w<_t1} e e w>> </{¢<_t1}'( B, () Fu e w)

then it follows from inequality (26) that

( / |Fj|2e—%<—w>)
{p<—t1}

. <eto+Bj fttlo—’_Bj c(t)etdt> : (G(to) —G(to+B;) > : (28)

infye (19,10+B;) €(t) B;

2

N[

1
2

1
2

1—byy,B; FylPe %c(—
+</{w<tl}|< B, () Fi e ¢>)

Since {%W}jewL is bounded, lim; , o infye (1,104 B,) ¢(t) € (0,+00) and

/ (1= by 1, () Frg[2e () < / Foo e %e(—1) < 400,
{v<—t1} {p<—to}

then f{¢<_t1} |Ej|2e=%c(—1)) is bounded with respect to j.
Secondly, we will prove the main result.
It follows from f{w<—t1} |Fj|2e=?c(—1)) is bounded with respect to j and Lemma 2.4 that

there exists a subsequence of {Fj}, denoted by {F ir Jhen+, which is uniformly convergent
to a holomorphic (n,0) form Fy on {¢ < —t;} on any compact subset of {¢) < —¢;} when
k — —+o00, such that
/ |F1|?e %c(—y) < liminf/ |Ej2e™%c(—1) < +oo.
{p<—t1} I Jip<—ty}

As (Fj— Fy)) € H(Zo,(O(K ) © F)|z,) for any j, we have (Fy — Fy,) € H(Zo,(O(Kym) ®
F)|z,)- Note that

) .
' ' 1 0, if x€(—o0,—tg)
1 ()= 1 =1 - =11 +o0),
M by 5, () = lim — Bj (to=By<a<—to) { 1, if z€[~to,+00),
and
. .
| ' [ —to, if x€(—00,~t),
jgmoovt(J’Bj <t) o JETOO —to th’B]’dS—tO B { t? lf €T 6 [_t0’+oo)
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Following from equality (25), inequality (26), and the Fatou’s Lemma, we have

/ |Fy _Fto|2€_¢_¢_toc(t0)+/ |F1[?e”%e(—4)
{<—to} {mtosv<—t}
:/ lim |ij —(1- bthjk (¢))Ft0|2€_¢€_¢+”‘0’3jk (#J)c(_’UtO,Bjk ()
<liminf / By — (1=bey 5, (1)) FyyPe2e ™V 0020 W ey, . (1))
k——+o0 _ Tk T
{v<—t1}
<liminf el fttlo—’_Bjk C(t)e_tdt X G(to) _G(t0+Bjk) (29)
1min "
T k=400 1nft€(t0,t0+Bjk) C(t) Bj

_€to fttlo c(t)etdt i G(to) — G(to+ B;)
N limt_>t0+00(t) j—+oo B]'

to _ B
:/ c(t)e tdt lim G(fOlB_G(tO + ]).
ty Jrtoo ftoo Tc(t)e~tdt

As e¥e(—) < e toc(tg) on {1 < —to}, it follows Lemma 2.6, equality (24) and inequality
(29) that

to B
/ c(t)etdt liminf G(to) — G(to + B)
t1

B—0+0 tt00+B c(t)etdt

to G(to) — G(to+ B,
:/ c(t)e_tdt lim (tOlB. (fo+ B;)
t1 j—+oo ftoo Te(t)e~tdt

Z/ ’Fl—Fto\ewwtOC(to)‘f‘/ [Fr?e™%e(—) (30)
{yp<—to} {—to<tp<—t1}

> [ R-Rerd-n [ FiPeoe(~0)
{<—to} {—to<y<—t1}

- / Py PePe(—) — / (Foo e %c(—)
{p<—t1} {p<—to}
>G(t1) —G(to)-

This proves Lemma 2.8. 0

The following well-known property of concave functions will be used in the proof of
Theorem 1.3.

LEMMA 2.9. Let a(r) be a lower semicontinuous function on (A,B) ( —co <A< B <
+00). Then a(r) is concave if and only if

7@(7’2) —a(r) > limsup 7{1(7’) —a(ra) (31)
To—T1  poret0  T—T2

holds for any A <ry <rq < B.
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Proof. For the convenience of the reader, we recall the proof.
It suffices to prove that inequality (31) implies the concavity of a(r). We prove by
contradiction: if not, there exists A < rz <r4 < rs < B such that

a(rg) —a(rs) _ a(rs) —a(rs) _ a(rs) —a(rs)
rq—7Ts3 Ts —T3 rs — T4

. (32)
Consider a(r) = a(r) —a(rs) — %(r —r5) on (A, B). As a(r) is lower semicontinuous
on (A,B), then a(r) is lower semicontinuous on (A,B). Note that a(rs) = a(rs) =0
and a(ry) < 0, then it follows from the lower semicontinuity of a(r) that there exists
r¢ € (r3,75) such that a(re) = inf,cp, ra(r) < 0. It clear that % < 0 and

limsup,. .10 Mﬁ(}(%) > 0. Then we obtain that

T—T

a(rs) —alrs) _ alrs) —a(rs) _ limsup a(r) — a(re) 7
Te —T3 s —T3 r—re+0 T —T6
which contradict inequality (31). 0

2.3 Some results used in the proofs of applications
In this section, we give some results which will be used in the proofs of applications in
Section 1.2.

LEMMA 2.10. If ¢(t) is a positive measurable function on (T,+oc) such that c(t)e™*
is decreasing on (T,+00) and f;{oo c(t)e~tdt < +oo for some Ty > T, then there exists a
positive measurable function ¢ on (T,+00), satisfying the following statements:

(1) é¢>con (T,+0).
(2) ¢(t)e™t is strictly decreasing on (T,400) and ¢ is increasing on (a,+00), where a >T
s a real number.
+o00o ~ —t
(3) Jp c(t)e tdt < +oo.

Moreover, if f;oo c(t)etdt < 400 and ¢ € Pr, we can choose ¢ satisfying the above
conditions, f;oo é(t)e tdt < +o00 and ¢ € Pr.

Proof. Without loss of generality, we can assume that 7' < 0. Let a,, = ¢(n)e~", where
bnfl
€
an is decreasing with respect to n, we have b, > b, 11 > b?" and b,, > a,, for any n € NT.

Let

n € N*. Take by = a1, and we can define b,, = max { ,an} for n > 1, inductively. Since

at) = ebn(%)t_", if ten,n+1),
| e(t)e if te(T,1).

It is clear that a(t) > c(t)e™", a(t) is decreasing on (T,+00) and continuous on [1,+00).
Let ¢(t) =a(t)e'. When t € [n,n+1), as eb, 1 > by, we have ¢(t) is increasing on [n,n+1),
which implies that é(t) is increasing on (1,400).

As f0+oo c(t)e~tdt < 4o0, then 377 a, < +oo. In the following, we will prove

[F&(t)et < +o00. By the definition of &(t), we have

0
+o00 1 +00  an41 +o00
/0 é(t)e _/o a(t)dt—l—Z/ a(t)dt < c(O)e—i—ean. (33)

n=1
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Take I = {n; : n; is the ith positive integer such that a,, =b,,} € NT. Note that if a,,+1 #
bn+1, then b,41 = bf, thus, we have

400 nit+1—n;—1
E bn = E E bnr&-j
n=1 i=1  j=0

TLH_l—TLi—l

=D, D> bae (34)
i=1  j=0
(&
S ; ani e— 1

<+ 00,

where if n; is the largest integer such that a,,, =b,,, take n;;1 = +00. Combining inequality
(33) and (34), we obtain f0+°° é(t)e~tdt < +oo. By replacing ¢(t) by ¢(t)+1, we have ¢ > ¢, ¢
is increasing on (1,+00), ¢(t)e™" is strictly decreasing on (7', +00) and f0+oo é(t)e tdt < +oo.

Moreover, if f;foo c(t)e~tdt < +oo and ¢ € Py, as é(t) > c(t) on (T, +o00) and ¢(t) = ec(t)+1
on (T,1), we have f;oo ¢(t)e~tdt < +oo and ¢ € Pr. Thus, Lemma 2.10 holds. 0

Let © be an open Riemann surface admitted a nontrivial Green function Gg. Let w be
a local coordinate on a neighborhood V, of zo € Q satisfying w(zy) = 0.

LEMMA 2.11 (See [25], see also [31]). Ga(z,20) = SUDP,en,(z) V(2), where Ag(zo) is the
set of negative subharmonic functions v on Q satisfying that v —log|w| has a locally finite
upper bound near zg.

LEMMA 2.12. For any open neighborhood U of zy, there exists t > 0 such that
{Gal(z,20) < —t} is a relatively compact subset of U.

Proof. Let w be a coordinate on a neighborhood V,, CC U of zg, such that w(zg) =
0 and Gq(z,20) = log|lw(z)| + v(w(z)), where v is a harmonic function on V., and
supy, |v(w(z))| < +oo. Then there exists ¢ >0 such that {z € V, : log|w(z)| +v(w(z)) <
—t} CC V.

We claim that {z € Q: Gq(z,20) < —t} CC V,,, therefore Lemma 2.12 holds. In fact, set

G(z) = Gal(z,20), it zeV,,
| max{Ggq(z,20),—t}, if z€Q\V,.

As {z €V, tlog|w(z)|+v(w(z)) < —t} CC Vs, we know G(z) is subharmonic on Q. Lemma
2.11 tells us G(z) < Ga(z,z0), therefore {z € Q: Gq(z,20) < —t} ={z € V,, : Ga(z,20) <
—t} CC Vs 0

LEMMA 2.13. For any zg € Q) and open subsets Vi and Uy of Q satisfying zg € V1 CC
U, CC Q, there exists a constant N > 0 such that

Ga(z,21) > NGq(z,20)
holds for any (z,z1) € (Q\U1) x V4.

Proof. As Vi CC Uy CC, fixed z € Q\U;, Gq(z,21) is harmonic with respect to z; on a
open neighborhood of V. The Harnack inequality shows that there exists a constant N > 0
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such that

sup (=Ga(z,21)) <N inf (=Ga(z,21)) (35)
z1€VL z1€V1

holds of any z € Q\U;. As zp € V4, it follows from inequality (35) that
Ga(z,21) > NG(z,z0)
holds for any (z,z1) € (Q\U1) x V1. 0

The following lemma (proof can be referred to §7.2) will be used in the proof of Theorem
1.16.

LEMMA 2.14. Let T be a closed positive (1,1) current on Q. For any open set U CC ()
satisfying U NsuppT # 0, there exists a subharmonic function ® <0 on Q, which satisfies
the following properties:

(1) i00® < T and i00P # 0;
(2) limt_>0+9(inf{GQ(2720)2,,5} CI’(Z)) = O,‘
(3) supp(i00®) C U and info\y @ > —oo.

Now, we recall some notations. Let cg(z) be the logarithmic capacity which is locally
defined by

cg(z0) :=exp lim (Gq(z,20) —log|w(z)])
zZ—r 20
on Q (see [25]). The Weighted Bergman kernel kg , with weight p of holomorphic (1,0) form
on ) is defined by ko, =), e; @€, where {e;}i—1,2,.. are holomorphic (1,0) forms on
and satisfy v/— pr €L N e’ =07, Let Bg () := 4 2 (2) on V,

[duw]?

THEOREM 2.15 [18]. (A solution of the extended Suita Conjecture) Let u be a harmonic
function on Q. c%(zo) < ﬂe_Q“(ZO)BQ’fm(zO) holds, and the equality holds if and only if
X*'u = XZO .

83. Proofs of Theorem 1.3 and Corollaries 1.4, 1.5, and 1.7

In this section, we prove Theorem 1.3 and Corollaries 1.4, 1.5, and 1.7.

3.1 Proof of Theorem 1.3

Firstly, we prove that if G(t¢) < 400 for some to > T, then G(t1) < +oo for any ¢, € (T,%).
It follows from Lemma 2.6 that there exists a holomorphic (n,0) form Fi, on {¢) < —to}
satisfying (Fy, — f) € H°(Zo,(O(Ka) ® F)|z,) and f{w<_t0} |Fyo[Pe%c(—1) = G(ty) < +oc.
Using Lemma 2.2, we get a holomorphic (n,0) form F on {¢) < —t;}, such that

(F —Fy,) € H(Zo,(O(Kn) 9 Z(9+ )| z) © H(Zo, (O(K ) © F)|z,)
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and
| -t a@) B P ve-v)
{v<—t1}
S/ |F— (1_bto,B(w))Fto‘267(‘07w+vt0’3(w)c(_vto,B(w)) (36)
{v<—t1}
to+B 1
S / C(t)e_tdt / EH{_tO+B<'¢)<_tO}|Ft0|26_¢_¢'
t1 {p<—t1}
Note that

1
2

(/ rFPe%<—w>> —(/ r<1—bto,3<w>>Ft0\2e%(—w)
p<—t1} {p<—t1}

< (/ |F—(1 —bto,B(T/)))Ftol%_“"C(—lb)) ;
{<—t1}

combining with inequality (36), we obtain

( / \F\Ze%(—w))
{<—t1}
to+B
0 _ 1 o
< ((/ c(t)e tdt>/ EH{—to—B<dJ<—t0}’Ft0|2€ v w) (37)
t1 {p<—t1}

1=y, Fy)%e™?c(— 2
+</{¢<_t1}‘( B(0)Fi <w)>

As by, () =1on { > 1o}, 0<by p(Y) <1, f{¢<_t0} |Fy, |2e%c(—1)) < +o0, and ¢(t) has
a positive lower bound on any compact subset of (T',4+00), then

1
2

[

[SIE

(/ (11— bto,B(w))FtOIQG_“DC(—w)> < 400
{p<—t1}

to+B 1 2
/ c(t)e tdt / EH{—tO—B<¢<—t0}|Ft0‘ e oY
t1 {b<—t1}

to+B [to+B —t
et [0 c(t)e T at
infte(to,to-i-B) C(t)
<+ 00,

and

1 _
/{w . }EH{—tO—B<w<—to}‘Fto|2€ Ye(—v)
<—t1

which implies that
| P e-p) < +x.
{y<—t1}

Then we obtain G(t;) < f{w<—t1} |F|2e=%c(—1)) < 400.
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Now, assume that G(ty) < +oo for some ¢y > T (otherwise it is clear that G(t) = +00).
As G(h~Y(r)) is lower semicontinuous (Lemma 2.7), then Lemmas 2.8 and 2.9 imply
the concavity of G(h=1(r)). It follows from Lemma 2.7 that lim; ,7,0G(t) = G(T) and
lim;, oo G(t) = 0, hence we prove Theorem 1.3.

3.2 Proof of Corollary 1.4

Note that if there exists a positive decreasing concave function g(¢) on (a,b) C R and
g(t) is not a constant function, then b < +o0o0. We prove Corollary 1.4 by contradiction:
if G(t) < +oo for some t > T, as f & H°(Zy,(O(Kn) ®F)|z,), Lemma 2.5 shows that
G(t) € (0,+00). Following from Theorem 1.3, we know G(h~1(r)) is concave with respect
tore (f;fl c(t)e_tdt,f;{oo c(t)e~tdt) and G(h~(r)) is not a constant function, therefore we

obtain f;loo c(t)e"tdt < +oo, which contradicts to f;{oo c(t)e~tdt = +o00. Thus Corollary 1.4
holds.

3.3 Proof of Corollary 1.5

If G(t) € (0,400) for some t > T, Corollary 1.4 and Lemma 2.5 show that f;{oo c(t)e tdt <
+00. As limy_, o G(t) =0, then G(h~1(r)) is concave on (fgl c(t)e*tdt,fgoo c(t)e~tdt] by
defining G(+00) = 0. Then the concavity of G(h™!(r)) implies that the three statements
are equivalent.

3.4 Proof of Corollary 1.7

It follows from Corollary 1.5 that G(t) = % t+oo
Ty

Firstly, we prove the existence and uniqueness of F.

Following the notations in Lemma 2.8, as G(t) = % t+oo
T

for any t € (T,+00), by choosing t; € (T,4+00) and tg > t1, we know that the inequality (30)
must be equality, which implies that

c(s)e *ds for any t € [T, +0).

c(s)e*ds € (0,+00)

/ [Fy— Fyy 2e=# (e~ t0c(ty) — e(—1)) =0, (38)
{p<—to}

where F} is a holomorphic (n,0) form on {1 < —t;} such that (Fy — f) € H*(Zy,(O(K ) ®
F)lz,) and F;, is a holomorphic (n,0) form on {¢ < —ty} such that (Fy, — f) €
H(Zy,(O(Kn)®F)|z,)- As ;{OO c(t)e”t < 400 and c(t)e ! is decreasing, then there exists
ta > to such that c(t)e™t < c(tg)e "t —§ for any t > to, where 4 is a positive constant. Then
equality (38) implies that

(5/ |Fy — Fy |2e %e™?
{¥<-t2}

< / Py — By Pe= (e~ ~10c(to) — c(—1)))
{p<—t2}

< / Py — By 2e= (e~ c(to) — c(—1)))
{yp<—to}
=0.

It follows from ¢+ 1) is plurisubharmonic function and F; and Fj, are holomorphic (n,0)
forms that Fy = F}, on {1 < —tp}. As f{w<_t0} |Fy,[2e%e(—1) = G(to) and the inequality
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(30) becomes equality, we have
| IAPevd-u) = 6m).
{v<—t1}

Following from Lemma 2.6, there exists a unique holomorphic (n,0) form F; on {¢ < —t}
satisfying (Fy — f) € H%(Zo, (O(K ) ®F)|z,) and f{¢<_t} |Fy|2e=?c(—1) = G(t) for any t >
T. By discussion in the above, we know F; = I}y on {1 < —max{t,t'}} for any t € (T, +00)
and t’ € (T,+00). Hence, combining lim;_,7¢G(t) = G(T'), we obtain that there exists a
unique holomorphic (n,0) form F on M satisfying (F — f) € H°(Zy,(O(Kn) @ F)|z,) and
f{¢<_t} |F|2e=?c(—1) = G(t) for any t > T.

Secondly, we prove equality (1). As a(t) is nonnegative measurable function on (7, +00),
then there exists a sequence of functions {377, a;;llg,, Fient (ni < +oo for any i € N*)
satisfying Z?Zl ajlg,; is increasing with respect to ¢ and lim;_ 4o Z?Zl aile,; (t) = a(t)
for any t € (T',+00), where E;; is a Lebesgue measurable subset of (T, 400) and a;; >0 is a
constant. It follows from Levi’s Theorem that it suffices to prove the case that a(t) =1g(t),
where E CC (T, +00) is a Lebesgue measurable set.

Note that G(t) = [(,._y, [F]Pe™?e(—) = m=Cat— [T ¢(s)e~*ds, then

- f;floo c(s)e—sds Jt

G(T; t
/ |F|26—<Pc(_¢) — +oo(1)/ C(S)G_Sds (39)
{—t1<y<—ta} le c(s)e=sds Jt,
holds for any T <ty < t; < +00. It follows from the dominated convergence theorem and
inequality (39) that

/ |F|2e=% = 0 (40)
{zeM:—(2)EN}
holds for any N CC (T',+00) such that u(N) =0, where p is Lebesgue measure.

As c(t)e ! is decreasing on (T,+00), there are at most countable points denoted by
{sj}jen+ such that c(t) is not continuous at s;. Then there is a decreasing sequence open
sets {Uy}, such that {s;},;en+ C Uy C (T, +00) for any j, and limy_, 4 o pt(Us) = 0. Choosing
any closed interval [th,t]] C (T,+00). Then we have

/ FlPee
{—t<y<—th}

:/ |F|26—¢+/ |F[2e=% (1)
{zeM:—p(2)€(ty,t1]\Uk} {zeM:—v(2)€lty,t1]NUk }
n—1
= lim Z/ |F|2e‘“’+/ |F|2e=,
notee iy JHreMi—p(2)E L, i\ UL} {zEM:—y(2)E€[th,t}]NUL}
where I, ; = (t] — (i + 1)y, t) —iay,] and oy, = % Note that
n—1
lim / |F|?e~%
oot J{zeMi—y(2)€L, i \U
,01 { (2) \Ur} (42)
- 1
<limsup / |F|2€_¢C(—1/1)-
n——+oo ; 1nfln,i\Uk C(t) {zeM:—(2)€I, :\Ur}

https://doi.org/10.1017/nmj.2023.12 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.12

868 Q. GUAN AND Z. YUAN

It follows from equality (39) that inequality (42) becomes

lim / |F|%e™%
norhee ; {zEM:—9(2)€In,i\Ur}

n—1
1
&limsup E / c(s)e™%ds.
ITL,i\Uk

_fT 6 —Sds n—+oo i—0 lan'n,i\Uk C(t)

(43)

It is clear that ¢(t) is uniformly continuous and has a positive lower bound and upper bound
on [th,t}]\U. Then we have

1
limsu / c(s)e %ds
MOEZZ infr, o e® oo

n—1
Slimsupz SpI\Uk(t)/ e °ds (44)
n—+oo f—5 10 fI,L \U € (t) n,i\Uk

:/ e °ds.
(t5, 1 \Ux

Combining inequality (41), (43), and (44), we have

/ F2e
{—ti <y<—th}

:/ |F\2e_“0+/ |F|?e=? (45)
{zeM:—y(2)€(ty,t1]\Ur } {zEM:—y(2)€[ty,t1]NUk}
G(T
<+OO<1)/ esds+/ |F|2€7‘p.
I els)e=3ds S, e\Ux (=€ M:—p(2)€lth,t}NUL}

Let k — +o00, following from equality (40) and inequality (45), we obtain that

T t
/ F2e—¢ < mG(l)/ e~*ds. (46)
{—t) <p<—ty} I, cls)e=sds Ju,

Following from a similar discussion, we obtain
G(T f
/ |F|?e™% > e (7) / e %ds,
{—t1<p<—t5} 7, c(s)e sds i,

then combining inequality (46), we know that

/ |F‘267‘P — +OOG(T1> /t1 e %ds. (47)
{—t, <p<—t}} [ e(s)esds Ju,

T

Then it is clear that for any open set U C (T,400) and compact set V C (T,4+00)

|F|?e¥ = SEEICH) / e °ds
U

[ ¢(s)e~ds

/{;ZGM:—QIJ(Z)EU} T
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and

|F|?e™% = —G(Tl) / e %ds.
v

f+°o c(s)e—sds

/{Z€M3¢'(Z)€V} i

As E CC (T,+o0), then EN (t2,t1] is Lebesgue measurable subset of (T'+ 1 ,n) for some
large n, where T' <ty < t; < +00. Then there exist a sequence of compact sets {V;} and a
sequence of open sets {V//} satisfying V1 C--- CV; CVj41 C--- CEN(t2,ta] C--- C V], C
VicC...cV{cC(T,+o0) and lim;, oo (V] —V;) =0, where p is Lebesgue measure. Then

we have
/ FPeTs(—9) = | PP
{—t1<yp<—ta} {zeM:—y(2)EEN(t2,t1]}
§1jminf/ |F|2€_“J
I J{zeM:—y(2)€V]}
Sliminf_mF(Tl)/ e’
imtee [ e(s)emsds Jv;
T
:—+OOG( ) / e *ds
I, c(s)emds JEn(ta,ta]
G(T t
—Jroo(l)/ e °lg(s)ds
le c(s)e=sds Ji,
and
/ |F|2e™?Tg(—1) leminf/ |F|2e?
{—t1<y<—ta} J=+o0 JlzeMi—y(2)eV;}
T
zljmianwoG(l)/ e ®
J—rtoo le c(s)e=sds Jv;
T h
le c(s)e=sds Ji,
which implies that f{_t1§w<_t2} |F|2e=%Ig(—1) = %ﬁ; e *Ig(s)ds. Hence, we

obtain that equality (1) holds.

Finally, we prove equality (2).

By the definition of G(tg;¢), we have G(tg;¢) < f{¢<7t0} |F|?e=%¢(—1), then we only
consider the case G(t;¢) < +00.

By the definition of G(ty;¢), we can choose a holomorphic (n,0) form F;, : on {¢ < —to}
satisfying (Fy, .z — f) € H*(Zy,(O(Kn) ® F)|z,) and f{w<_t0} |Fyo.cl?e™%E(—1) < +o0. As
H2(E,t0) C H3(c,to), we have f{w<—to} |Fy, 2|?e %e(—9) < +00. By using Lemma 2.6, we
obtain that

/ (Fryal?e%c(—1h) = / FePe(—)
{p<—t} {p<—t}

+ / (Fiyc— F2ee(—)
{p<—t}
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for any t > tg, then

/ |Fro al?e™%c(—10) = / |F2e % e(—)
{—ts3<tp<—ta} {—ts<yp<—t4}

4 / |Fio — FPe%c(—)
{—ts<yp<—tq}

holds for any t3 > t4 > to. It follows from the dominant convergence theorem, equality (48),
equality (40), and ¢(t) > 0 for any ¢t > T, that

/ Frgele? = [ S (49
{zeM:—¢(z)=t} {zeM:—(z)=t}

holds for any t > tg.

Choosing any closed interval [t},t5] C (to,+00) C (T, +00). Note that c(¢) is uniformly
continuous and have positive lower bound and upper bound on [t},5]\U, where {Uy} is a
decreasing sequence of open subsets of (T',400), such that ¢ is continuous on (T',+00)\Uy
and limy 400 (Ug) = 0. Take N = ﬂ:;’olUk. Note that

/ (Fyy o2
(—ty<pe—ty}
n—1
~ lim / 7, 75|26_“’+/ |Fy, o%e®
"*mz (M (el \U} (2eM—p()E(t, t4INTR}

<limsup Z

n—-+oo S0 lanM\Uk ( )/{zeM —(2)€ln i \Ur}

(48)

(50)
| Fro.cl*e™e(—4)
+/ |Ft075|2€7¢7
{zeM:—(2)€(t),t5]NUL}
where I, ; = (t4 — (i+ 1), t5 —iay] and o, = té;ta. It following from equality (48), (49),
(40), and the dominated theorem that

/ |Fyy 2l2e=2c(—p)
{zEM:—4(2)E€l, :\Ux} (51)

FPe?e(—) + / |Fro e — FPe%c(—1).

_/{zeM:—w(z)EImi\Uk)} {zeM:—(2)€I, :\Uk)}

As ¢(t) is uniformly continuous and have positive lower bound and upper bound on
[t},t5]\Ug, combining equality (51), we have

limsup Z

n—-+oo =7 mfIm\Uk ()/{ZEM —(2)€ln.\Up}

= limsup Z

n—-too 2 lnfzm\Uk c(t) /{zeM —p(2)E€Ln.\Us)}

| Fiy el e (=)
|[F[Pe™?c(—)

+f B~ PRe9c(—0)
{zeM:—(2)€I, :\Uk)}
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—lgu ) c(t
< limsupZ—. Pl \Ux ( )(

/ P
n—-+4oo i=0 lnflnyi\Uk C(t) {ZGM:—’L&(Z)EL,L@\U}C}

+/ |Fro e — F|?e™?)
{zeM:—(2)€I, :\Ur}

= |Fypc— F2e™%. (52)

J P |
{zE€M:—(2)E(th,t5]\Ur } {zeM:—(2)€(t),t5]\Ur }

It follows from inequality (50) and (52), we obtain that

2 —
/ |Fyy al?e
{—ti<y<—t4}

<

/ |F|2e=® +/ |Fy o= F2e=®
(M= ()t \UL ) (M- ()t \Un}

+/ |Fyy.cl?e™?. (53)
{zeM:—4p(2)€(t]y,t5]NUL}

It follows from Fy, z € H?(c,to) that f{—tg<w<—tg} |y, 2|?e™% < 4o0. Let k — +o00, following
from equality (40), inequality (53), and the dominated theorem, we have

/ Foo al?e% < / FPee
{—th<ypp<—t}} {-ti<y<—t}}

+f Fusm FPe®  (51)
{zeEM:—(2)€(ty,t5]\N}

+/ ‘Ft075|26_¢.
{zeM:—(2)€(ty,t5]NN}

Following from a similar discussion, we can obtain that

/ Frodl?e > / FPe?
{—ti<e<—t}} {—ti<ep<—t}}

+/ ’thg—FPeiw
{zeM:—9(2)€(t,,t5]\N}

‘Ft075|26_¢7

g
{zeM:—y(z)e(ty,t5]NN}

then combining inequality (54), we have

{—ts<y<—t,} {—ts<y<—t}}

+/ |Fyyc— F|2e™? (55)
{zeM:—p(2)€(t},t5]\N}

+f [Fupal?e™.
{zEM:i—p(2)E(t},t4]NN}
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Using equality (40), (49), (55), and Levi’s Theorem, we have

J Fucle = | Fee
{zeM:—y(2)eU} {zeM:—(z)eU}

4 / |Fros— F[2e™ (56)
{zeM:—y(2)EU\N}

|Ft075 e

g/
{zeM:—(2)EUNN}
holds for any open set U CC (tg,+00), and

J Fuocle o= | Fee
{zeM:—y(2)eV} {zeM:—y(2)eV}

+/ |Fy, o — F[?e™* (57)
{zeM:—(2)EV\N}

+/ ‘Ft075‘2€_90
{zeM:—y(2)EVNN}

holds for any compact set V' C (o, +00). For any measurable set £ CC (to,+00), there exists
a sequence of compact sets {V;}, such that V; C V41 C E for any [ and lim;_, u(V}) = u(E),
hence

/ |Fyy o2e—#Tn(—) > lim (Fro ol?e Ty, (—1)
{yp<—to} I=r+oo {yY<—to}

> lim |F|?e Ty, (—v) (58)
J=H0 Jiyp<—to}

- / |F2e=T5(—1).
{yp<—to}
+oo

It is clear that for any ¢ > tg, there exists a sequence of functions {Z?Zl aiilp,; 10

defined on (t,+00), satisfying E;; CC (t,400), Z;”:*f aiv1lE, ., (s) > Z?Zl aijlg,,;(s), and

lim; s 00 D52y aijlp,; () = ¢&(s) for any s > ¢. Combining Levi’s Theorem and inequality
(58), we have

/ |Fio ol2e#2(—1) > / FPe2e(—). (59)
{yY<—to} {y<—to}

By the definition of G(ty,¢), we have G(to,¢) = f{w<_t0} |F|?e=%¢(—1). Then equality (2)
holds.

84. Proofs of Theorems 1.9 and 1.10, and Corollaries 1.11 and 1.12

In this section, we prove Theorems 1.9 and 1.10, and Corollaries 1.11 and 1.12.

4.1 Proof of Theorem 1.9
The following remark shows that it suffices to consider Theorem 1.9 for the case ¢(t) has
a positive lower bound and upper bound on (t',400) for any ¢’ > T.

REMARK 4.1. Take ¢; is a positive measurable function on (7', +00), such that ¢;(t) =
c(t) when t <T+j, ¢;(t) = min{c(T—l—j),%} when ¢ > T +j. It is clear that ¢;(t)e™" is
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decreasing with respect to ¢, and f;co cj(t)e ™t < 4o0. As

+oo

lim cn(t)e =0,
Jj——+o0 T+j

we have

—+o0 —+o0
lim cj(t)e " = / c(t)e ™.
J—+oo Jp T

If Theorem 1.9 holds in this case, then there exists a holomorphic (n,0) form F; on M such
that Fj|g = f and

+o0 n ok

[rperat-n < ([ ameta) S5 [ 1P ravia,
M T k=1 " Y Sn—k

Note that 1 has locally lower bound on M\t~ (—o00) and ¥ ~!(—cc) is a closed subset of

some analytic subset of M, it follows from Lemma 2.4 that there exists a subsequence of

{F;}, denoted still by {F}}, which is uniformly convergent to a holomorphic (n,0) form F

on any compact subset of M and

+oo n k
/M [FlPe?e(—) < lim ( [ <t>e—tdt) > /S [FPe* dVarly)
k=1 n—k

T
+o0 L )
- ( / c(t)e—tdt> g / F2e=dVi [,
T k=1 """/ Sn—k

Since Fjj|g = f for any j, we have F|g = f.

By the definition of condition (ab), liminf; , . c(t) > 0, it suffices to prove the case
that M is Stein manifold and S,., = S. Without loss of generality, we can assume that
supp(Onr JZ()) = Sreg (if supp(Onr/Z()) # Sreg, there exists a analytic subset X of M
such that (M, X) satisfies condition (ab) and supp(Onr/Z(¢))\Sreqg € X).

Since M is Stein, we can find a sequence of Stein manifolds {Dm};;ozol satisfying D,,, CC
D, 41 for any m and U:;fl D,,, = M, and there is a holomorphic (n,0) form F on M such
that F|g = f.

Note that [, |F'|? < 400 for any m and

/ H{—t0—1<w<—to}|ﬁ|2€f¢7w < 400

m

for any m and tg > T. Using Lemma 2.1, for any D,, and ty > T, there exists a holomorphic
(n,0) form F,,;, on D,,, such that

/ ‘Fm,to - (1 - bt0,1(w))F‘267AD7¢+UtD’1(w)c(_vtoyl(w))
Dy,

to+1 -
< </ C(t)etdt>/ H{—t0—1<¢'<—to}|F| eisoiwa
D

T m
t . o
where bt071(t) = f_ool{—to—1<5<—to}d37 Uto,l(t) = f—to bto,l(S)dS—to. Note that e~ ¥ is not
locally integrable along 5, and bt,,1(t) =0 when —¢ is large enough, then (£, s, — (1 —
bio.1(V))F)|p,,ns =0, and therefore F, +,|p,.ns = f.

(60)
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Note that vy, 1(¢)) > and c(t)e™" is decreasing, then the inequality (60) becomes

/ o to — (1= by 1 () FPe%c(—p)
D,

to+1 - o
< (/ C(t)e_tdt>/ L to—1<p<—to} | Fl e e
T D,
As Y0 5 fo AR emedViyy) < +oo, by definition of dVy[¢] and supp(Oar/I(v)) =
Sreg, we have
to+1 5
limsup ( [ awe —tdt) J R
to—>+00 T D,

: (/+°o tdt) i: 71; e, YAV [Y)] (62)

T n kmDWL dVM
<—+o0.

(61)

Note that e~%c(—1) has a positive lower bound on D,,, then it follows from inequality (61)
and (62) that supy, [, [Fi, — (1 — by 1 (¥))F|? < +o0.
Combining with

sup [ |1 bioa ()PP <sup [ Tjueoi) PP < +oc, (63)
D, 0 D

to

m

one can obtain that sup, [ D, [Fm.to |2 < +00, which implies that there exists a subsequence
of {Fyy 40 }to—+o0o (also denoted by {Fi, 1, }to—+00) compactly convergent to a holomorphic
(n,0) form on D,, denoted by Fj,. Then it follows from inequality (61), inequality (62),
and the Fatou’s Lemma that

/ |Fm|2e_@c(—1/1):/D };gmnﬂFmto (1 _bt071(¢))}3’]26_‘p0(—¢)

m

< liminf / P g0 — (1 by 1 (1)) F 26~ c(—1))
Dy,

to—+oo
to+1 _ QZ}
<limsu —tdt / I, _ | FPe %
_t0—>+£ (/T c(t)e > . {—to—1<y< to}| | (64)

([T S i

T Sn_rNDy, dVM
“+oo 71' |f’2
< c(t>e—tdt)§ T / e~ dVi[v],
(/T 2 Js, Vi

and F,,|p, ns = f. Inequality (64) implies that

3 +o0 3 L 7Tk |f|2 3
/Dm|Fm,|Qe Pe(—1h) < </T c(t)e tdt),;k!/snk e CAVar[y)]

holds for any m’ > m. As e~ ?c(—1) has a positive lower bound on any D,,,, by the diagonal
method, we obtain a subsequence of {F),}, denoted also by {F,}, which is uniformly
convergent to a holomorphic (n,0) form F' on M on any compact subset of M satisfying
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that F|s = f and

5 +o00 B n 7_‘_k: ‘f|2 -
/M|F| e fe(—y) < </T c(t)e tdt) klkl/snk dVMe CdVar ]

Thus Theorem 1.9 holds.

4.2 Proof of Theg)rem 1.10

Ity 7,;—]: fsn—k %eﬂodVM [¢)] =0, it is clear that F = 0 satisfying all requirements in
Theorem 1.10. In the following part, we consider the case Y ,_; %;: /. Sy %e‘deM [¢] €
(0,400).

Using Theorem 1.9, for any ¢ > T', there exists a holomorphic (n,0) form F} on {¢ < —t}
such that Fy|g = f and

+o00 n k 2
2= i ™ 17" -
[ IR < ([ ewe cu); 5 vl

Then we have inequality

G(t) - G(T)
S elyetdl = [ e(t)etdt

holds for any ¢ > T. As (M,S) satisfies condition (ab), and 1 € A(S), Theorem 1.3 tells us
G(h~(r)) is concave with respect to r. Combining inequality (65) and Corollary 1.5, we
obtain that G(h~'(r)) is linear with respect to r. Note that &(1) =|f|ls, Corollary

f;oo c(t)e—tdt
1.7 shows that the rest results of Theorem 1.10 hold.

(65)

4.3 Proof of Corollary 1.11

In this section, we prove Corollary 1.11 by using Theorem 1.9.

Since M is Stein, we can find a sequence of Stein manifolds { D, };;of satisfying D; CC Djy1
for any [ and U;;OfDl = M. Since ¥ and 15 + ¢ are plurisubharmonic functions on M, there
exist smooth plurisubharmonic functions ¥,, and ®,,,, which are decreasingly convergent
to 19 and 1) + ¢, respectively.

Fixed D;, we can choose large enough m such that ¥,, + 7 < —T on D,;. Note that
AV [V, + 1] = e ¥ dVis[1h1] and

iﬂlj/ ﬁe_q>vr/dVM[1lJ1] < iﬂlj/ me_“o_qbdeijl} < +00.
o K s, AV i s AV

Using Theorem 1.9, for any Dy, there exists a holomorphic (n,0) form Fj ,,» on Dy, satisfying
Fip|s = f and

/ | By |26 P Tme( =Wy, — 1) < </+OO C(t)e_tdt) En 7r]:/ i e dVir[ihn].
Dy T E—1 k Sn—k dVM
(66)

As e ®m' T¥me(—W,, — 1) has locally uniformly positive lower bound for any m’ on
D, \Z, where Z is some analytic subset of M, it follows from Lemma 2.4 that there
exists a subsequence of {F] 1 }im/—+00, also denoted by {F} s b’ —+00, Which satisfies that
{Fl,m' }m’—+o0o is uniformly convergent to a holomorphic (n,0) form F; on any compact
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subset of D;. Following from inequality (66), Fatou’s Lemma and c(t)e™! is decreasing, we

have
|Fi|2e%c(—pg—p1) < | |Fy|Pe ¢ V2t ¥me(—W,, —qhy)
Dl Dl
:/ lim |Fy|?e” ®m/ t¥me(—0,, — 1)
D, m’——+oo

(67)

m’——+oo

+o00 no_k 2
—t m |f’ —p—1a
< (/;F c(t)e dt> ngk! /Snk 7dVMe P2 qVr 4]

Note that e~¥c(—19 —1)1) has locally a positive lower bound on M\Z, where Z is some
analytic subset of M, by using Lemma 2.4 and the diagonal method, we obtain that there
exists a subsequence of {F;}, also denoted by {F;}, which satisfies that {F;} is uniformly
convergent to a holomorphic (n,0) form F on M on any compact subset of M. Following
from inequality (67) and Fatou’s Lemma, we have

< liminf/ |Fy|2e™ ®m t¥me(— W, — )
D,

/ FPePe(—py— 1) = / lim Ip, [F2ePe(—is — )
M M l—+oo
<11m1nf/ |Fy|2e™% (g — 1) (68)

=400

oo _ wk i p——

4.4 Proof of Corollary 1.12

If | f||& =0, it is clear that F' = 0 satisfying all requirements in Corollary 1.12. In the
following part, we consider the case || f||% € (0,+00).

Using Corollary 1.11, for any ¢ > T, there exists a holomorphic (n,0) form F; on {1 < —t}
such that Fy|s = f and

+oo
[ IRReee-n < ( [ et lcu) 115
{<—t} t

Then we have inequality

This proves Corollary 1.11.

oy _ G

f;roo c(l)e~tdl — ;oo c(t)etdt

(69)

holds for any ¢ > T'. Theorem 1.3 tells us G(h~"(r)) is concave with respect to r. Combining
inequality (69) and Corollary 1.5, we obtain that G(h~1(r)) is linear with respect to r. Note

that % = || f|I3s, Corollary 1.7 shows that the rest results of Theorem 1.12 hold.
T

85. Proofs of Theorems 1.13-1.15

In this section, we prove Theorems 1.13-1.15.
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5.1 Proof of Theorem 1.13

We prove the theorem by comparing G(t;¢) and G(t;@). Let us assume that G(h~(r); )
is linear with respect to r to get a contradiction.

As G(h™1(r); @) is linear with respect to r, it follows from Corollary 1.7 that there exists
a holomorphic (n,0) form F on M such that (F — f) € H*(Zo, (O(Ky)®F)|z,) and V¢t > T
equality

Gltio) = / F2e*e(—)
{<—t}

holds. As ¢+ is plurisubharmonic and ¢ — ¢ is bounded on M, it follows from Theorem
1.3 that G(h~1(r);) is concave with respect to 7.

As o+ > o+, o+ # o+ and both of them are plurisubharmonic functions on M,
then there exists a subset U of M such that e™% < e™% on a subset U and p(U) > 0, where
1 is Lebesgue measure on M. As F # 0, inequality

G(To;9) . Jrp<mpy |1FPePc(=) __ G(Typ)

f;;oo c(s)e—sds fTJ;OO c(s)e~*ds f;;oo c(s)e—*ds

(70)

holds for some Ty > T'. For t > T, there exists a holomorphic (n,0) form F; on {¢) < —t}
such that (F, — f) € H*(Zo,(O(K ) ® F)|z,) and

G(t:3) = / |FyPePe(—1h) < +oo.
{<—t}

As ¢ — ¢ is bounded on M, we have f{¢<_t} |Fi|?e=?c(—1) < +oo. It follows from Lemma

2.6 that
G(ti;0) —G(t2;9) Z/ |Fy, |Pe™Pe(—1p)
{—t2<yp<—t1}
> inf e % / Fy [Pe™Pc(—1 71
<{t2<¢} > {—t2§w<—t1}| ! (=) (7)

> inf ew—@/ F|?e%c(—y
<{—t2<¢} > {—t2§w<—t1}| | )

holds for T' <t <2 < 400. As limy7108Up,c(y>_¢3 (P —¢)(2)) = 0, it follows from
inequality (70) and (71) that

liminf G(tlt; p)—Glt2;9) > liminf ( inf
t2—=T+0 ftf c(s)e—sds t2=T+0 \ ze{—t2<¢}
G(To; )
f;fooo c(s)e—sds
G(To;9)

f;;oo c(s)e=sds’

6‘P—¢) f{_t2§w<—t1} ’F|26_¢C(_¢)
fttf c(s)e—sds

which contradicts the concavity of G(h~!(r);@). Thus the assumption does not hold, that
is, G(h=1(r);) is not linear with respect to 7.

Especially, if ¢ + 1 is strictly plurisubharmonic at z; € M, we can construct a ¢ >
¢ satisfying the three statements in Theorem 1.13, which implies G(h~1(r);¢) is not
linear with respect to r. In fact, there is a small open neighborhood (U,w) of z; and

https://doi.org/10.1017/nmj.2023.12 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.12

878 Q. GUAN AND Z. YUAN

w = (wi,...,w,) is the local coordinate on U such that i99(p + 1)) > ew for some € > 0,
where w = iZ}Ll dwj Ndw; on U. Let p be a smooth nonnegative function on M satisfying
p Z 0 and suppp CC U. It is clear that there exists a positive number § such that

i00(o+1+d0p) >0

holds on U. Let ¢ = ¢+ dp, it is clear that ¢ satisfies the three statements in Theorem 1.13.
Thus we complete the proof of Theorem 1.13.

5.2 Proof of Theorem 1.14

Let ¢ = o+ —1), then p+1 = @ +1 is a plurisubharmonic function on M. We prove
the theorem by comparing G(t;¢,1) and G(t;3,v). Let us assume that G(h~1(r);¢,1) is
linear with respect to r to get a contradiction.

Since G(T';p,1) € (0,400), G(h~1(r)) is linear and Corollary 1.7, we have f;oo c(t)e tdt <
400. As G(ﬁ_l(r);go,w) is linear with respect to r, it follows from Corollary 1.7, Remark
1.8, and Lemma 2.10 that we can assume c(t)e™" is strictly decreasing on (T, +0oc) and c(t)
is increasing on (a,+o00) for some a > T.

Using Corollary 1.7, there exists a holomorphic (n,0) form F' on M, such that (F — f) €
H(Zy,(O(Kp) @ F)|z,) and Vt > T equality

Gltipw)= [ |PPeee(-0)
{v<—t}
holds.

Since limy—; 4 0o SUP < 1 () —1) =0, we have Zy C {tp = —co} = {) = —o0}. As ¢(t)e " is
decreasing and ) > 1, we have e~ ?¢(—1p) = e ¢ Vele(—y) < e P Vele(—1)) = e~ Pe(—1h).
It follows from Theorem 1.3 that G(h~'(r);$,%) is concave with respect to 7.

We claim that ~

G(t;$,9) G(Ts50,4)

im . 72
t—=T+0 ft+°° c(s)e—sds f;oo c(s)e—sds (72)

In fact, we just need to prove the inequality for the case G(T;,1)) < +oc0. It follows from
Lemma 2.6 that there exists a holomorphic (n,0) form Fp on M such that (Fp— f) €
H®(Zo,(O(Kn) ® F)|z,) and

G(T:3,3) = /M FrfPee(—) € (0, +00),

where G(T;cﬁ,zﬁ) > 0 follows from G(T';p,v) > 0. As ¥ > 1, 1 # 1 and both of them are
plurisubharmonic functions on M, then there exists a subset U of M such that 1/; > 1 on
a subset U and pu(U) > 0, where p is Lebesgue measure on M. As Fr # 0 and c(t)e™" is
strictly decreasing on (7',4+00), we have

GT:6.4) _ fylPrPPe ?c(=¢)
f;oo c(s)e—sds f;oo c(s)e—sds
Iy FrPere(-)

[ ¢(s)e~ds

T
G(T;,¢)
B f;oo c(s)e—sds

Then the claim holds.
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As ¢(t) is increasing on (a,+00) and limy—, oo SUP <4y (¥ — 1) = 0, we obtain that

G(t;(ﬁ,l;) < lim f{¢<7t}|F‘26_¢C(—TZ~})

t—+00 ft+°° c(s)e=sds ~ t—too ft+°° c(s)e=sds

li Jw<- t}|F‘2€_‘P_¢’e¢ c(—1)
T t—+oo i
Je~Sds i ] -
S hm sup ew [ f{¢< t}| |€ C( ¢)
oo \{w<-1) Ye—sds

Sy [FPPe%e(-v)
f;ooc( Je~5ds

Combining inequality (72) and (73), we have

Gt:g )  _ . GlLg)

t—=+oo f:oo c(s)e=sds t=T+0 ft+oo c(s)e—sds’

which contradicts the concavity of G(h~1(r);$,%). Thus the assumption does not hold,
that is, G(h~'(r);,%) is not linear with respect to r.

Especially, if ¢ is strictly plurisubharmonic at z; € M \(Ne{¢ < —t}), we can construct
a 1) > 1 satisfying the three statements in Theorem 1.14, which implies G(h Lr);,1) is
not linear with respect to r. In fact, there is a small open neighborhood (U,w) of z; and
w = (wy,...,w,) is the local coordinate on U such that UN(N:{¢p < —t}) =0 and i00y > ew
for some € > 0, where w = iZ;-; dw; ANdw; on U. Let p be a smooth nonnegative function
on M satisfying p Z 0 and suppp CC U. It is clear that there exists a positive number §
such that

i00( +6p) >0

holds on U and ¥+ dp < =T on M. Let )= ¥+ dp, it is clear that ¢ satisfies the three
statements in Theorem 1.14. Thus we complete the proof of Theorem 1.14.

5.3 A limiting property of G(t)
The following proposition gives a limiting property of G(t), which will be used in the
proof of Theorem 1.15 and Corollary 1.18.

PROPOSITION 5.1. Let M be an n-dimensional Stein manifold, and let S be an analytic
subset of M. Let c € P, and let (p,v) € W. Let F|z, =Z(¢1)|s,.,. Assume that G(T) €
(0,400) and )2(z) > —oo for almost every z € Syegq.

Assume that c(t) is increasing on (a,+00) for some a>T. Then we have

reg

lim __GO —Z / bl e T2V 9], (74)
t—+o00 f+°° (le~ldl = k' Js. . dVi
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Proof. limt%+m% < ZZ=17;TTIS » (K)Me ¢=%2dVys[1h1] can be obtained by

using Corollary 1.11. Thus, we just need to prove that

i
t_l}Jroo f+oo —ldl kz: 7l / dVMe dVar[thr]-

For any ¢ > T, there exists a holomorphic (n,0) form F; on {¢) < —t}, such that Fi|s = f
and f{¢<_t} |Fy|2e=%c(—) = G(t).

Let {U®}qen be a coordinate patches of M\ Sy 4, biholomorphic to polydisks, and admit
the following property: if U® N S,¢, # 0, and we denote the corresponding coordinates
by (2%,w®) € Al x A"l where 2% = (2¢,...,2%) and w® = (w§,...,w®_,) for some [ €
{0,1,2...,n—1}, then U*NS =U*NS; = {w* = 0}. Let {v*} be a partition of unity
subordinate to {U}.

As ¢+ 15 is plurisubharmonic, then there exist smooth plurisubharmonic functions ®,,
on M decreasingly convergent to ¢+ 5. Thus, we have

/ V| e Pe(—p) > / V| Fy 2o tae(—y) (75)
{p<—t} {p<—t}

for any n € N.

Firstly, we consider f{w<—t} VY| Fy|2e=Pnt¥2¢(—1)), where U*NS; # 0.

Note that ¢ = 11 + 12 and ¢; € A’(S), then for small enough s > 0, ¥; = (n —
Dlog(|w®|?)+hy on Al x {|w®| < s} and hy is continuous on Al x {|w®| < s}. For any € > 0,
there exists s > 0 such that v® (2%, w®) > max {v*(2*,0) —¢,0}, @, (2%, w*) < P, (2%,0) +e,
and hy (2% w®) < h1(2%,0) +€ on Al x {|w®| < s}. Let 15(2%) = SUP| o <5 P2(2%, W) As
Pa(2) > —oo for almost every z € Syey, we know 1s(2%) > —oc for almost every z* € Al
Let v& := max {v*(2%,0) —¢,0}. As ¢(t) is increasing for ¢ > a, then we have

| wriRpe sy
{v<-t}
eI O ()

§ /{w2+h1+<n—z>1og<|wa|2><—t}m{|wa<s} (76)
2/ Uea‘Ft|2€—<I>n(z“,0)—e+¢z
{¥s+hi(z%,0)+et(n—1)log(|Jw|*) <—t}N{|w>|<s}
X o(=ths —h1(2%,0) — e — (n—1) log(|w*[*))
for t > a.
Without loss of generality, assume that dVy = (AL_ idzg Adz2) A (APZbidwg A dwg),
AV = Ay_ idz Adzg on U, and dV! = A7ZLidw Adwg. Let ho(2%) :=1)s(2%) +hy (2%,0) +

2
€. As %ew is plurisubharmonic on Al x {|w®| < s}, then we obtain that inequality

F 2
/ B s o=y — (. ) o 2))av,
{hat(n—1)log(|w|2) < —t}n{|we|<s} AVM
« 2
Zwe%(z O)/ C(—hg—(n—l)log(|wa|2))dvolt (77)
dVr {ha+(n—1)log(jwe|2) <—t}N{|we|<s}

_ogn— 102n—21— 1 f(2® 0)| o¥2(2%,0)

c(l)e~'dl
( _l) dVm /max{t,—hz(z‘l)—2(n—l)log(s)}
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holds for any z* € Al. Tt follows from inequality (76) and (77) that

/ V| Fy e tae( )
{p<—t}

a,—b,(z4,0)—
2/ vem PO
Al

| 2
X ——e"c(—hy — (n—1)log(|w*|*))dVa
/{h2+(n—1)1og(wa|2)<—t}m{|wa|<s} AV (78)

a 2
227’1,*1 0'42?1_2[_1 / v?eiq)n (za,0)76 ’f(z 70)‘ ewz(za,o)efhg
2(n—1) Jai AVt

+oo
X / c(l)e‘ldl> dV,
max {t,—ha(2*)—2(n—1)log(s)}

for t > a.
Next, we prove that

V| Fy|2e~%e(—1 n—l
liminf f{¢<_t}+oo| ! ( )2 u /
t=-+oo [ e(l)etdl (n—=0!Js,

t

e} 2
Uae—go—d!z |f(;v17\/(1))| dVis W)l] (79)

It follows from t,(2%) > —oo for almost every 2 € Al that hy(2%) > —oo for almost every
2% € Al. Thus, we have

+o0 -1
liminf fmax{tfh?(za)*?(n*l)10g($)}C(l)e di =

t—+o00 j;‘*‘oo c(l)e~tdl

1 (80)

for almost every z® € Al. Combining inequality (78), equality (80), and Fatou’s Lemma, we
have

rUa F 26_‘1:"n+w20 _w)
liminf f{w<7t} Fi (

t—r+00 j:‘oo c(l)e—ldl

Son—102n=21-1 / prg—a (0= F X0 o0y —hy
N 2(n—=1) Jar € dVar
+oo N
x liminf Jina tt,~ha (z2)~2(n—1) 053} €€
t—4o00 ft—l-oo C(l)e—ldl

dV,
_ 21— D, (2%.0)— @0)[? a0y —
—9n 192n-21-1 / a,—P,(2%,0)—¢ ’f(Z ’ P2 (2%,0) h2dVa.
2n—1) Ju'€ AV © N
As dViy = dVa A (APZEidw A dog) and oy = (n — 1) log(Jw®|?) + hy, by definition of
dViar[ibr], we have dVys[i1] = 2"~ te~"1dV,, on A! C S;. Then inequality (81) becomes

v Fy2e™Pnt¥2c(—1)
liminf f{¢<7t} 17 =9)

t—+00 ft"'oo c(l)etdl

a 2
O2n—21—1 @ —@n(za,O)—e|f(z 70)| Y2 (2%,0)—s(2¥)—e€
>_-- - - _— dV .
~ 2(n-1) /Sz Pe € dVar mlvr]
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When s — 0, 1,(2%) is decreasing to 1(2%,0) for any 2® € Al. As 1)5(2%,0) > —occ for
almost every 2® € Al, let s — 0 and € — 0, then inequality (82) implies that

V| Fy2e Pnt¥2e(—q)
liminf f{¢<_t} +|Oot‘ (=¢)
t—oo 77 e(le—tdl

t

! &, (=0 [f(z*0)
> a,—9,(24,0) ) d )
=~ /S,U ‘ @y Vbl

(83)

Note that ®,, decreasing to ¢ + 1), then inequality (83) implies that inequality (79) holds.
Following from inequality (79) and the concavity of G(t), we have

|f| e~ P2
t—1>1+oo f+°° e—ldl — kz k! / dVM dVM[wl]

Thus, Proposition 5.1 holds. O

5.4 Proof of Theorem 1.15

Assume that G(h~'(r)) is linear with respect to r. As G(T) € (0,400), we have
f;oo c(t)e~tdt < +oo. It follows from Corollary 1.7, Remark 1.8, and Lemma 2.10 that
we can assume c(t)e” " is strictly decreasing on (T,+00) and ¢(¢) is increasing on (a,400)
for some a > T'. Thus, Proposition 5.1 shows that equality (5) holds.

In the following part, assume that there exists 1/1 satisfying the three statements in
Theorem 1.15 to get a contradiction. We prove it by comparing G(t; ¢, ) and G(t'gb @Z)
where ¢ = ¢ +1 — ). It follows from Proposition 5.1 and the linearity of G( L(r);0,)

that >, _, fs N k’f llf/lwe $=¥2qVr[h1] < +o0o and equality

““/’ o=z
= ka, D e avl (59

holds for any ¢ > T . . S
_As (g, ) e W, there exist plurisubharmonic functions ¢ and ¢ such that ¢ = ¢ +12,
Yy € A'(S) and @ +1)o is plurisubharmonic on M. dVi;[th1] = e~ ¥1+%1dVy,[1h1] implies that

b ER g Sk R
pal 21 =62 g/ — . e~ P—¥2q )
,;:1 X /Sn_k W€ M (1] 321 A /S dVy; Vir[11] < +00

It follows from Corollary 1.11 that

7(10 ’(/} ﬂ-k ‘F’2 —p— ~2 "

T k=

_ ‘F’ —50—71)2
_;/s Wavy

Since 1) > 1), 1) # 1), there exists a subset U of M such that p(U) >0 and ¢ > on U,
where p is Lebesgue measure on M. As c(t)e™ ! is strictly decreasing on (T,+0c0), we have
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G(T;p,1) > G(T;¢,v). Then inequality (85) implies that

n k 2 .5 ol .
Z/ T ﬂe—@—il&dVMhm] > G(T;9,7) > G(T;0,7)
k=1"Sn—k

kN dVy T eetdl [ e(l)etdl’

which contradicts equality (84). Thus Theorem 1.15 holds.

86. Proofs of Theorem 1.16, Theorem 1.17, Corollary 1.18 and Corollary 1.19

In this section, we prove Theorems 1.16 and 1.17, and Corollaries 1.18 and 1.19.

6.1 A necessary condition of linearity
The following proposition give a necessary condition of G(h™!(r)) is linear, and will be
used in the proof of Theorem 1.16.

PROPOSITION 6.1. Let € be an open Riemann surface. Let ¢ € Py, and assume that
there exists t > 0 such that G(t) € (0,400). If G(h='(r)) is linear with respect to r, then
there is no Lebesgue measurable function ¢ > ¢ such that g+ is subharmonic function on
M and satisfies:

(1) ¢# ¢ and (¢ +¢) = (¢ +¢);

(2) limy—o40 SuP{wzft}(S5 —¢)=0; }

(3) there exists an open subset U CC € such that supg, (P —¢) < +oo, e~ ?c(—1)) has a
positive lower bound on U and [, |Fy — Fal?e™%c(—1) < 400 for any Fy € H?(¢,,t)
and Fy € H?(c,p,t), where U CC {1 < —t}.

Proof. We prove the lemma by comparing G(t;¢) and G(t;). In the following, let us
assume that there exists a Lebesgue measurable function ¢ satisfying these properties in
Proposition 6.1 to get a contradiction.

As G(h™'(r); ) is linear with respect to r, it follows from Corollary 1.7 that there exists
a holomorphic (1,0) form F on Q such that (F' — f,29) € (O(Kq) ® F),, and Vt > 0 equality

Gltig) = / F2e*c(—1)
{p<—t}

holds. As ¢+1) is subharmonic and there exists a subset U CC 2 such that supg, (¢ — ) <
+00, e~ %c(—1) has a positive lower bound on U and Z(¢+v) =Z(p+1), it follows from
Theorem 1.3 that G(h~1(r); @) is concave with respect to 7.

As @+ > o+, p+1 # p+1 and both of them are subharmonic functions on €2, then
there exists a subset V of Q such that e™? < e~% on a subset V and u(V) > 0, where y is
Lebesgue measure on ). As F' # 0, inequality

G(To,ﬁ) f{¢<7TO} |F|26_¢C(_w) G(To,(p)
oo = oo s (86)
fTo c(s)e—sds fTo c(s)e~sds fTo c(s)e—sds

holds for some T > 0. For ¢ > 0, there exists a holomorphic (1,0) form F; on {¢) < —t} such
that (Fy — f)., € (O(Kq)®F),, and

Glt:g) = / |Fy2ePe(—1h) < +oo.
{p<—t}
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As there exists a subset U CC €2 such that supQ\U(g?)— ¥) < +00, we get that

/ Fy2ee(—) = / |Fyf2ee(—) + / Fy2ePe(—1)
{p<—t} {p<—t}nU {p<—t}\U

< Fleve(-v)+2 [ |y~ FPee(—1)
{p<—t}nU {p<—t}nU

+esupn\y(¢w)/ |Fy2e=%e(—1p)
{p<—t}\U
<400
(87)
holds for small enough ¢ > 0. It follows from Lemma 2.6 that
Gt )~ Giltzid) = [ [Fyy e Pe(—)
{—ta<yp<—t1}
> inf e¥% / Fy, 2e=Pe(— 88
<z€{t2<w} ) {*t2§¢<*t1}| ' ‘ ( dj) ( )

> inf e¥7® / Fl?e %c(—1
<ze{—t2<w} > {7t2§¢<7t1}| ‘ ( )

holds for small enough ¢; and t5 such that 0 <1 <ty < +o00. Aslim; g0 SUP{y>_¢} (p—p)=
0, it follows from inequality (86) and (88) that

St tycpe iy [FIPe#e(=1)
fttlz c(s)e=sds

lim inf G(tlt;(’p)_G(t%@zliminf( inf e@—ﬂb)
to—0+0 L126(8)6*3d5 to—=0+0 \ ze{—t2<y}
_ G(To;e)
=
fTo c(s)e—sds
G(To; ¢)

f;;oo c(s)e=sds’

which contradicts the concavity of G(h~1(r);@). Thus the assumption does not hold, and
we complete the proof of Proposition 6.1. U

6.2 Proof of Theorem 1.16
Firstly, we prove the sufficiency by using Theorem 2.15. The following remark shows that
it suffices to prove the sufficiency for the case ¥ =2Gq(z, 2p).

REMARK 6.2. Let ¢ = ¢+ av), ¢(t) = c(lta)efﬁ and ¥ = (1 —a)y for some a €
(—00,1). It is clear that e ?&(—v)) = e ?c(—v), (1 —a) ;roo Ye~ldl = f Ye~ldl
and G(t;p,9,¢) = G((1-a)t; &, 1),).

Let ¢=1 on (0,+00). Set f = 5, ¢ = p—2loglg| = 2u, and F., = Z(p+ 1), =
Z(2Gq(z,20))z,- Denote

inf{/ 17672 (f = )z € (O(Ea)© ). & f € HO({y < —t},O(Kq))}
{y<-1}
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by G(t;¢). Without loss of generality, we can assume that f(z9) = dw, where w is a local
coordinate on a neighborhood V;, of z satisfying w(zp) = 0. By definition of G(t;¢) and
Baq.e—2u(20), it is clear that G(t;¢) = G(t;¢) and G(0;¢) = 2 = inf{ [, |f]2e 2w f

Q 67211,('50)

is a holomorphic extension of f from zy to ©2}. Theorem 2.15 shows that G(0;¢) = G(0;¢) =

27re;§zz(:;)). Note that || f|., == s ~2dVo[2Ga(z,20)] = 27 ¢ 25(20) therefore Theorem

zo dVr
1.10 tells us that G(—logr;é) and G(—logr;¢é) is linear with respect to r.
As 1 = 2Gq(z,20), Lemma 2.12 shows that, for any ¢y > 0, there exists ¢t > tg such
that {Ga(z,20) < —t} is a relatively compact subset of  and ¢ has no zero point in
{Ga(z,20) < —t}\{20}. Combining Corollary 1.7, Remark 1.8, and G(—logr;¢) is linear with

respect to r, we obtain that G(h~!(r)) is linear with respect to r, where h(t) = t+<>o c(l)e~tdl.

In the following part, we prove the necessity in three steps.

By Remark 6.2, without loss of generality, we can assume that ¢ is subharmonic near
zo. As 41 is a subharmonic function on €2, it follows from Weierstrass Theorem on open
Riemann surfaces (see [11]) and Siu’s Decomposition Theorem that

o+ =2loglg|+2Ga(z,20) + 2u, (89)

where g is a holomorphic function on 2, and u is a subharmonic function on €2 such that
v(ddu,z) € ]0,1) for any z € Q.

Step 1: Foy =Z(p+1) 4, ord,(g) = ord,,(f1) and v(dd®, zp) > 0.

As I(p+ 1), = Z(2loglg| +2Ga(z,20))z C Fz, and G(0) # 0, we have ord,, (g) +1 >
ord,,(f1). Corollary 1.7 tells us there exists a holomorphic (1,0) form on 2 such that
(F — f,2z0) € (O(Kq) ® F),, and G(t f{w< 5 |F|?e=%c(—1) for t > 0. Denote that
¢é(t) = max{c(t),e"} on (0,400), Where r € (0,1). Set F = Fdw on V,,, and it follows
from Corollary 1.7 and Remark 1.8 that |1:" |2e=%~"¥ is locally integrable near z, for any

€ (0,1), which implies that ord.,(F) > ord.,(g).

We prove F, =Z(p+1), by contradiction: if not, then F., & Z(2log|g|+2Ga (2, 20)) -

. 20 Z
Since ord,,(F') > ord,,(g), we have (F,zy) € F,,, which contradicts to G(0) # 0. Thus

Fao = (Sp'i‘w)zo‘ _

As ord,, (F) > ordy(g), ords(g) +1 > ord,,(f1) and (F — fi1,20) € Z(2log|g| +
2Ga(z,20))z,, we have ord,,(g) = ord,,(f1).

We prove v(dd®,zy) > 0 by contradiction: if not, v(dd®y,zy) = 0 shows that Z(¢ +
V)2 = I( )zo- Without loss of generality, we can assume that c(t) > 1 for large enough
t, then |F|?e~% is locally integrable near z;, which contradicts to (F,zo) & F.,. Thus

v(dd, z9) > 0.

Step 2: ¢ =2pGq(z,29) for some p > 0.

As 9 is subharmonic function on €2, it follows from Siu’s Decomposition Theorem that
¥ =2pGa(z,20) + 11 such that v(dd®y,z9) = 0.

Firstly, we prove 17 is harmonic near zy by contradiction : if not, there exists a closed
positive (1,1) current 7" # 0, such that suppT CC V,,, T < éi@é@bl on V,,, where V, is an
open neighborhood of zy, satisfying that g has not zero point on V,,,\{z0}, ¢ is subharmonic
on a neighborhood of V,, and V,, CC Q. Note that {z €V, : Z(p+), # 0.} = {20}

Using Lemma 2.14, there exists a subharmonic function ® < 0 on €2, which satisfies
the following properties: i00® < T and i00® # 0; limg010(inf{Ge(2,20)>—13 P(2)) = 0;
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supp(i00®) C V,, and info\y,, ® > —oo. It following from Lemma 2.11, v(dd“¢,z9) > 0
and ¢ < 0 on 2, that lim; 1o (infgy>_¢) ©(2)) = 0.

Set @ =@ —®, then ¢+ =9+2pGq(z,20)+1)1 —P on V., where ¢); — ® is subharmonic
on V,,. It is clear that ¢ > ¢ and @ # . suppT CC V,, and i00® < T < i0d; on V,, show
that ¢+ is subharmonic on Q, Z(¢ +v) = (¢ +19) = Z(2log|g| +2Ga(z, 20))-

Without loss of generality, we can assume that c(t) > es forany t > 0. T < %i(‘)&/}l onV,,
and i00® CC V,, show that %1,[) — @ is subharmonic on €2, which implies that e=%c(—) >
e~#e®~ 2% has a positive lower bound on V. Notice that info\v, (¢p—@)=info\v, &> —o0
and szo |Fy — Fy2e=%c(—v) < Cszo |Fy — Fy|?e=¢~% < 400 for any F} € H2(c,p,t) and
Fy € H?(c,,t), where V,, CC {1) < —t}, then ¢ satisfies the conditions in Proposition 6.1,
which contradicts to the result of Proposition 6.1. Thus 17 is harmonic near z.

Then, we prove ¢ = 2pGq(z,zp). Using Remark 6.2, it suffices to consider the case p =1,
where p = %fu(ddcz/},zo). By Siu’s Decomposition Theorem and Lemma 2.11, there exists a
subharmonic function ¥2 <0 on Q such that ¥ = 2Gq(z,20) +12. Note that 1s(zp) > —o0.

As Q is an open Riemann surface, there exists a holomorphic function fo on €, such
t?at ord,, (f2) =ord.,(f1) and {z € Q: fo(z) =0} = {20}. Set f= %, @ = —2log| fz|, and
Foo =Z(@+ )2 =I(2Ga(2,20))2,- Denote

inf{/ |F|2€_¢C(—w) I(F—f)zo S (O(KQ)®]:)ZO
{v<—t}
&FeH'({y < —t},O(KQ))}

by G(t). By the definition of G(t) and G(t), we know G(t) = G(t) for any t > 0, therefore
@(ﬁ L(r)) is linear with respect to r. Note that (@,1) € W, (p+v —2Ga(z,20),2Ga(z,20)) €
W, 1a(29) > —oo and 12 <0, then Theorem 1.15 shows that ¥ = 2Gq(z, 2p).

Step 3. u is harmonic on Q and X_y = Xz, -

Without loss of generality, we can assume that ¢ = 2Gq(z,z0). Lemma 2.12 shows that,
for any to > 0, there exists ¢ > ¢ such that {Gq(z,20) < —t} is a relatively compact subset
of  and ¢ has no zero point in {Gq(z,20) < —t}\{z0}. Combining Corollary 1.7, Remark
1.8, and G(h~'(r);c) is linear with respect to r, we obtain that G(—logr;é= 1) is linear
with respect to r and G(0;¢) € (0, +00).

Now, we assume that u is not harmonic to get a contradiction. There exists a closed
positive (1,1) current T # 0, such that suppT CC Q and T < i00u. There exists an open
subset U CC 2, such that suppT C U.

Using Lemma 2.14, there exists a subharmonic function ® < 0 on 2, which satisfies
the following properties: i00® < T and i00® # 0; lim;040(inf g (2, 20)>—¢) ©(2)) = 0;
supp(i00®) C U and info\y @ > —oo0.

Set @ = ¢ —®, then @ = 2log|g|+ 2u — ® is subharmonic on . It is clear that ¢ > ¢,
© # ¢ and ¢ +1) is subharmonic on Q, Z(¢+ 1) =Z(p+ ) = Z(2log|g| +2Ga(z, 20))-

As ¢ is subharmonic on €2, we have e~% has a positive lower bound on U. Note that

Z(p) =Z(), then

/|F1—F2\2e—%0§2/ |F1|Qe—¢’+2/ |Fy?e™% < 400
U U U
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for any Fy € H?(¢,p,t) and Fy € H?(¢,¢,t), where U CC {¢) < —t} and ¢ = 1. Since
info\py (¢ — @) = info\y @ > —oo, then $ satisfies the conditions in Proposition 6.1, which
contradicts to the result of Proposition 6.1. Thus, u is harmonic on §2.

Finally, we prove x_, = Xz, by using Theorem 2.15.

Recall some notations in the proof of sufficiency. Set f =g ® =@ —2loglg| = 2u, and

Fro =L(¢+1) 2y = L(2G0 (2, 20)) - Denote
mf{/ [fPe™?:(f = f)z € (O(Ka) ® F)2
{v<—t}
&feH ({y< —t},O(KQ))}

by é(t;é). Without loss of generality, we can assume that f (z0) = dw, where w is a local
coordinate on a neighborhood V., of z satisfying w(z9) = 0. By definition of G(¢;¢) and
Bg e-2u(20), it is clear that G(—logr;c) = G’(—logr;é) is linear with respect to r and
G(0;6) = —2—— = inf{ [, |f|2¢72%: f is a holomorphic extension of f from zy to Q}.

BQ —2u (ZO)
Note that || f]., = 2 CQELZ(Z()J) , then Theorem 1.15 shows that
(0,8) = 20
7C = m Y
C%(Z(])

that is, c%(zo) = me~2u(0) B ,—2.(z9). Therefore, Theorem 2.15 shows that X_, = Xz,
Thus, Theorem 1.16 holds.

6.3 Proof of Theorem 1.17

Theorem 1.16 implies the sufficiency. Thus, we just need to prove the necessity.

As ¢ +1) is a subharmonic function on €, it follows from Weierstrass Theorem on open
Riemann surfaces (see [11]) and Siu’s Decomposition Theorem that

¢ +1 =2loglg|+2Ga(z,20) +2u, (90)

where ¢ is a holomorphic function on €2, and w is a subharmonic function on €2 such that
v(dd°u,z) €10,1) for any z € Q.

As (o +1)., = Z(2loglg| +2Ga(z,20))2 C Fz, and G(0) # 0, we have ord,,(g) +1 >
ord,(f1). Corollary 1.7 tells us there exists a holomorphic (1,0) form on € such that (F'—
f.70) € (O(KQ)®F)z, and G(t) = [, |F|?e=%c(—1) for t > 0. Let ¢(t) = max {c(t),e"}
defined on (0,+00), where r € (0,1). Set F = Fdw on V., and it follows from Corollary 1.7
and Remark 1.8 that |F|?e~#~"% is locally integrable near z, for any r € (0,1). Note that

1 1
/ \F|2 —ete < </ |F|2p€—<ﬁ—w+psw) g (/ e—qS@b) !
U U

holds for any p > 1, Il)—l—% =1, U is a small open neighborhood of zy, and s € (0,1). For
any p € (1,+00), we can choose small enough U and small enough s € (0,1) such that
S |[F|PPe= ¢ tps¥ < 400 and [, e” %% < 400, which implies that (F,z) € I(%)ZO C

I(moglgHiG“(z’zo)) . Therefore, we have ord., (F) > ord.,(g).
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We prove F, =Z(p+1), by contradiction: if not, then ., & Z(2log|g|+2Ga (2, 20)) -

Since ord.,(F) > ord.,(g), we have (F,z) € F.,, which contradicts to G(0) # 0. Thus
FZO*I(()O"FQ/}N)ZO' ~

As ord,,(F) > ord,(g), ord.(g) +1 > ord,,(f1) and (F — fi,20) € Z(2loglg| +
2Gq(2,20))z,, we have ord,,(g) = ord,,(f1)-

We prove v(dd®, zp) > 0 by contradiction: if not, as |F'|2e=%~" is locally integrable near
2o for any 7 € (0,1) and ord., (9) = ord., (F), we have e~2G2(#:20)+(1=1)% j5 |ocally integrable
near zg. Therefore, there exists s > 0 such that

e(l_T)"z’
/ T < +00,
A, |l

where w is a local coordinate near z such that w(zp) = 0. As e'="¥ is subharmonic, we

have
1—r
9ol r>w<20>/ L _/ A
|wl? ’

which contradicts to 1(zg) > —oo. Thus v(dd®i), z) > 0 holds.

Using Remark 6.2, it suffices to consider the case p =1, where p = %v(ddczb,zo). By
Siu’s Decomposition Theorem and Lemma 2.11, there exists a subharmonic function ¢, <0
on 2 such that ¥ = 2Gq(z,20) + 1. Following the assumption in Theorem 1.17, we know
P2(z0) > —o0.

As Q is an open Riemann surface, there exists a holomor~phic function fo on €2, such
t%lat ord.,(f2) = ord,,(f1) and {z € Q: fo =0} = {20}. Set f = %, @ =@ —2log|fa|, and
Foo =Z(p+ )2 =LZ(2Gq(2,20))2,- Denote

. {/ [FPePe(=) :(F = f)z € (O(Ka) © F)z
{v<-t}

&F e H({y < —t},O(KQ))}

by G(t). By the definition of G(t) and G(t), we know G(t) = G(t) for any t > 0, therefore
G(ﬁ L(r)) is linear with respect to r. Note that (@,1) € W, (p+1 —2Gq(z,20),2Ga(2,20)) €
W, 1ha(29) > —oo and 1o <0, then Theorem 1.15 shows that ¥ = 2Gq(z, 2p).

As ¢+1) is subharmonic on §2 and ¢ = 2Gq(z,29), we have ¢ is subharmonic on 2. Then
Theorem 1.16 implies that u is harmonic on @ and x_, = X2,-

Thus, Theorem 1.17 holds.

6.4 Proof of Corollary 1.18

The following remark shows that it suffices to prove the existence of holomorphic
extension satisfying inequality (6) for the case ¢(t) has a positive lower bound and upper
bound on (t',4+00) for any ¢’ > 0.

REMARK 6.3. Take ¢; is a positive measurable function on (0,400), such that ¢;(t) =
c(t) when t < j, ¢;(t) = min{c(j), %} when ¢ > j. It is clear that ¢;(¢)e" is decreasing with
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respect to t, and f0+°° cj(t)e " < 4o0. As

+o00o

li (t)e ™t =

we have
+oo +oo
lim C; te_t:/ c(t)e .
Jim [ eme = [

If the existence of holomorphic extension satisfying inequality (6) holds in this case, then
there exists a holomorphic (1,0) form F; on £ such that F}(z) = f(z0) and

[impe o< (| +°°cj<t>e—fdt) 11l

Note that ¢ has locally lower bound on Q\%~!(—00) and 1)~ (—c0) is a closed subset of an
analytic subset Z of Q. For any compact subset K of Q\Z, there exists sx > 0 such that
f P YdVq < 400, where dV, is a continuous volume form on . Then we have

/ (ew >8Kdv / <e¢+w )SK KY Vo < O / XYV
= e_s S e—S <+OO,
K« \¢i(—9) 7 S \e(—v) =k ‘!

where C' is a constant independent of j. It follows from Lemma 2.4 (g; = e~ %c;(—1)) that
there exists a subsequence of {F}}, denoted still by {F}}, which is uniformly convergent to
a holomorphic (1,0) form F on any compact subset of 2 and

+o0
/Q FlPe*e(~4) < lm_ < /0 cj(t)e—tdt> 1£1so

_ ( / +ooc(t)etdt> £l

Since Fj(z9) = f(20) for any j, we have F(zy) = f(20).

As 1 € A(z9) and e ¥~¥ is not L' on any neighborhood of zg, it follows from Siu’s
Decomposition Theorem and the following lemma that 1(2) —2Gq(z,20) and p(2) +(2) —
2Gq(z,20) is subharmonic on © with respect to z. Denote that ¥2(2) = 9(2) —2Gq(z, 20).

LEMMA 6.4 [29]. Let u is a subharmonic function on Q. If v(dd®u,zy) <1, then e is
L' on a neighborhood of 2.

As € is a Stein manifold and ¢+ 15 is subharmonic on €2, there exist smooth subharmonic
functions ®; on €2, which are decreasingly convergent to ¢+ 5. We can find a sequence of
open Riemann surfaces { D, } 7>, satisfying zo € D,,, CC Dy, for any m and U, D,,, =,
and there is a holomorphic (n,0) form F on Q such that F(zo) = f(z).

Note that [, |F|? < 400 for any m and

/ I{—ty-1<pe—to) [F|?e™ P17 2G00%0) getoﬂ/ F2e=®+%2 < oo

m Dm
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for any m, [ and ¢y > T. Using Lemma 2.1 (¢ ~ ®; 4+ 2Gq(-,20)), for any D,,, [ € N*  and
to > T, there exists a holomorphic (1,0) form Fj ,, ;, on D,,, such that

/D | Frm,to = (1= big 1 () F[Pem 7260020500 W e~y 4 (1))

to+1 ]
< </ C(t)e_tdt> / H{—to—1<w<—t0}|F|26_(DZ_ZGQ(VZO)7
0 DTYL

where bto,l(t) = fjooﬂ{*to*1<s<ft0}dsa Uto,l(t) = fito btoJ(S)ds_tO' Note that e~2¢2(%0) jg
not L' on any neighborhood of 2o, and by, 1(t) =0 when —t is large enough, then (F} ,;, ¢, —

(1 ="bto,1(¥))F)(20) = 0, and therefore Fj m +,(20) = f(20)-
Note that vy, 1(¢) > ¢ and c(t)e~" is decreasing, then the inequality (91) becomes

(91)

[ Wi (0= by 0 FPe ()
D,

to+1 ]
< </ C(t)e_tdt> / H{_t0_1<’¢)<—t0}‘F|26_¢l_2GQ(.7ZO).
0 b

There exist smooth subharmonic functions ¥, on §2, which are decreasingly convergent to
1. By definition of dVq[v], we have

(92)

limsup/ ]I{,to,1<w<,t0}]F!2ef¢l+q”“7¢
Dy,

to—+o0

fI? —o+v (93)
< LA 1 k:d
< . dVge Valv]
<+o0.
Combining inequality (92) and (93), let to — 400, we have
msup [ (g, — (1= b (8) FPe ()
to—+o0 J D,
to+1 _
<limsup (/ c(t)e_tdt> / H{_t0_1<¢<_t0}|F|26_¢)l+\1"“_w (94)
to——+o00 0 D,
e |fI?
<m </ c(t)e_tdt) e PV [ah).
0 20 dVQ
Let k — 400, inequality (94) implies that
limsup/ |Eymoto — (1= by 1 () F|2e P T¥2¢(—))
to—+oo D,
o Mk )
<m / c(t)e tdt e P2 g4 ).
0 20 dVQ

Note that

to—+oo

timsup [ (1= by a(u) FPe ™ ¥2e(—) < +ox,
Dm
then we have

hmsup/ |Fpmto |26 22 ¢(—1)) < 400
Dm

to—+oo
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Using Lemma 2.4, we obtain that there exists a subsequence of { F} 1, ¢, }to—+o00 (also denoted
by {Fi.m,to Hto—+00) compactly convergent to a holomorphic (1,0) form on D,,, denoted by
F} . Then it follows from inequality (95) and Fatou’s Lemma that

/ PP P02 o(—ap) = / B [ Fym.gg — (1 — bug 2 (1)) F 26 # 2 —4p)
D, D

to—+o0
m

ghminf/ | Frmito — (1= bio,1 () FPe™ " ¥2e(—4))  (96)
D'm

to—+o0
e I s
<m </ c(t)e_tdt> e P2V [y).
0 20 dVQ
As ||fllzg=m ﬁe“"dVQ 1] < 400 and ®; are decreasingly convergent to ¢+ 109, we
0 zo dVg
have

2

lim 7 ﬂe_q”J””dVQ[@ZJ] =1 f]lz < +o00. (97)

l—+o00 20 dVa

It follows from inequality (96) and (97) that

“+oo
lim sup / |Fz,m|26—¢l+¢2c<—w>g< / c(t)e‘fdt) £z < +o0. (98)
D, 0

=400

Using Lemma 2.4 (g = e~ ®T%2¢(—1))), we obtain that there exists a subsequence of
{Fl.m}i—+00 (also denoted by {Fjm}i—s+00) compactly convergent to a holomorphic (1,0)
form on D,, denoted by F,, and

Fulreee(—y < ([ etyetdt) 1 £l (99)
L (/ )

Inequality (99) implies that

FPeselwy<n( [ etetat) -
/ ( )

m

holds for any m’ > m. Note that ¢+ and v are subharmonic on Q and ¢ = (¢ +1) — 1.
Using Lemma 2.4, the diagonal method and Levi’s Theorem, we obtain a subsequence of
{F.}, denoted also by {F,}, which is uniformly convergent to a holomorphic (1,0) form F
on  satisfying that F(zp) = f(z0) and

FPecewy< ([ ctetat) 1]
[ (/ )

Thus, the existence of holomorphic extension satisfying inequality (6) holds.

In the following part, we prove the characterization for ( 0+O° c(t)e_tdt) £l =
inf{||F||q : F is a holomorphic extension of f from z to Q}.

Firstly, we prove the necessity. If ||f||., =0, then F' =0, which contradicts to F(zp) =
f(20) #0. Thus, we only consider the case ||f|., € (0,400).

As {¢p < —t} is an open Riemann surface. Note that dVq[i +t] = e 'dVq[y)]. By the
above discussion (¢ ~ 9 +t, ¢(-) ~c(-+1t) and Q ~ {¢p < —t}), for any t > 0, there exists a
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holomorphic (n,0) form F; on {¢) < —t} such that Fi(z9) = f(20) and

/{M_t} IFiffe™%e(~) < ( / e ‘ldl) 110

Let F|z, =Z(¢):,, by the definition of G(t), we obtain that inequality
¢ _ GO

f;roo c(l)e~tdl — 0+°O c(t)etdt

(100)

holds for any ¢ > 0. Theorem 1.3 tells us G(h~1(r)) is concave with respect to r. Combining
inequality (100) and Corollary 1.5, we obtain that G(h~2(r)) is linear with respect to r. As
1 —2Gq(z,20) is bounded near zy and G(0) = ( 0+Oo c(t)e tdt)| fllz € (0,400), Theorem
1.17 shows that statements (1)—(3) hold.

Now, we prove the sufficiency. Let F|z, =Z(2Gq(z,20))2,, then Theorem 1.16 shows that
G(h='(r)) is linear with respect to r. It follows from Lemma 2.10 and Corollary 1.7 that
there exists ¢ € Py such that &(t) is increasing on (a,+00) for some a > 0, and G(h; '(r); )

is linear with respect to r, where hs(t) = t+oo é(l)e~'dl. Using Proposition 5.1, we have
G(05¢) = [If1l=(J, oo ~( Je~!dl). Following from Corollary 1.7 and Remark 1.8, we obtain
that G(0;¢) = |yfy|20( 7 ¢c(l)etdl), which implies that || f]l.,(f;"* c(l)e~tdl) = {||F|lq : F
is a holomorphic extension of f from zy to Q}.
Thus, Corollary 1.18 holds.

6.5 Proof of Corollary 1.19
Note that 2Gq(z,20) € A'(20) and ¥; € A’'(20), we have

L7

i e~ PV H2Ga(z20) g1 [2G (2, 20)].  (101)
zZ0 Q

[P
191, =7 [ Ll emevaavaiin) =
20

Corollary 1.18 implies the sufficiency. Thus, it suffices to prove the necessity.
Let Fl|z, = Z(11)z,. It follows from Lemma 2.6 that there exists a unique holomorphic
extension from 2z to €2, such that || F|jq < || f]|3,( 0+oo c(l)e~'dl). Using Corollary 1.12, we

know that G(h~1(r)) is linear with respect to r, therefore
G(t)

m =IfI1%, (102)

holds fo~r any t > 0.

Let ¥ = 2Gq(z,29). Lemma 2.11 tells us ¢ — ¢ <0 on Q. Let @ =@+ —1), then we
compare G(t;p,%) and G(t;@,v) to prove 1) — b = 0. As | fllz, < +oo and e~ Pe(— Y =
e*‘p*weic(—d;) > e ¥Yc(—), it follows from Corollary 1.11 and equality (101) that
G(O;@,q/;) < IfIIz, ( 0+°° c(t)e*tdt). Without loss of generality, we can assume that c(t)e™*
is strictly decreasing on (0,400). We prove 1 — ¥ = 0 by contradiction: if not, c(t)e ! is
strictly decreasing on (0,+o00) implies that G(0;¢,v) > G(0;¢,1), which contradicts to
G(0;,9) < | FII%, < e c(t)e_tdt) = G(0;¢,1). Thus, we have ¢ = 2Gq(z, 20). Combining

the linearity of G(h(r);p,1), G(0;p,1)) = 1£11%, ( 0+°° c(t)e_tdt> € (0,400) and Theorem

1.16, we obtain that the other two statements in Corollary 1.19 hold.
Thus, Corollary 1.19 holds.
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§7. Appendix

7.1 Proof of Lemma 2.1

In this section, we prove Lemma 2.1.

It follows from Lemma 7.4 that there exist smooth strongly plurisubharmonic functions
U and ¢, on M decreasingly convergent to ¥ and ¢, respectively.

The following remark shows that it suffices to consider Lemma 2.1 for the case that M is a
relatively compact open Stein submanifold of a Stein manifold, and F' is a holomorphic (n,0)
form on {1 < —to} such that f{¢<_t0} |F|? < 400, which implies that sup,, sup; ¥m < =T
and sup,,, sup s ¢m < +00 on M.

REMARK 7.1. It is well known that there exist open Stein submanifolds Dy CC --- CC
D;j CC Djiy CC - such that U/ D; = M.

If inequality (9) holds on any D; and inequality (8) holds on M, then for any B > 0, we
obtain a sequence of holomorphic (n,0) forms F j on Dj such that

/ |Fj = (1 =y 5 (1)) F et 005 We(—vy p(1)))

to+B 1 to+B
< / e(t)e "t / Tty peye_so|FI2e™# <C / c(t)e "t
D B T

T J

(103)

is bounded with respect to j. Note that for any given j, e‘“"+vt0’3(¢)c(—vt073(¢)) has a

positive lower bound, then it follows that for any any given j, [, |Fjr —(1—bs,,5(¢))F|* is
J

bounded with respect to j’ > j. Combining with

[ 10t s@nrr < | F? < 4o (104)
D Dijn{y<—to}
and inequality (9), one can obtain that [ D, |Ej|? is bounded with respect to j' > j.

By the diagonal method, there exists a subsequence F» uniformly convergent on any D;
to a holomorphic (n,0) form on M denoted by E. Then it follows from inequality (103) and
Fatou’s Lemma that

~ to+B
/ |F — (1= by, 5(¥))F|2e™ 000D e( 0y p(h)) < C / c(t)e 'dt,
D T

J

then one can obtain Lemma 2.1 when j goes to +oc0.
Next, we recall some lemmas on L? estimates for some 0 equations.

LEMMA 7.2 (See [2], [4]). Let X be a complete Kdhler manifold equipped with a (non
necessarily complete) Kdhler metric w, and let E be a Hermitian vector bundle over X.
Assume that there are smooth and bounded functionsn, g >0 on X such that the (Hermitian)
curvature operator

B .= [77\/ —105 — ﬁ@én - \/jlganA 5ﬁaAw]

is positive definite everywhere on ATy ® E, for some q > 1. Then for every form
A € L2(X,A™T% ® E) such that D"A =0 and [, (B~'A\,\)dVy < 0o, there ezists u €
L3(X, A" 'T% @ E) such that D"u= X\ and

/(77+91)1|U|2dVM§/<B_1)\,)\>dVM.
X X
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LEMMA 7.3 (See [18]). Let X and E be as in the above lemma and 0 be a continuous
(1,0) form on X. Then we have

V=100, A)a =0 A (a(6)),

for any (n,1) form « with value in E. Moreover, for any positive (1,1) form [3, we have
[B,A] is semipositive.

The following lemma belongs to Fornaess and Narasimhan on approximation property of
plurisubharmonic functions of Stein manifolds.

LEMMA 7.4 [10]. Let X be a Stein manifold and ¢ € PSH(X). Then there exists a
sequence {n tn=12... of smooth strongly plurisubharmonic functions such that ¢, | ¢.

For the sake of completeness, let us recall some steps in the proof in [14] (see also [17],
[18], [20]) with some slight modifications in order to prove Lemma 2.1.

It follows from Remark 7.1 that it suffices to consider that M is a Stein manifold, and F
is holomorphic (n,0) form on {¢) < —ty} and

/ |F|* < 400, (105)
{¢Y<—to}

and there exist smooth plurisubharmonic functions ,, and ¢,, on M decreasingly
convergent to ¢ and , respectively, satisfying sup,, sup; ¥m < —1 and sup,,, sup; ©m <
+00.

Step 1: Construct some functions.

Let € € (0,1 B). Let {vg}se(o’éB) be a family of smooth increasing convex functions on
R, which are continuous functions on RU{—o00}, such that:

(1) ve(t) =t for t > —tg — e, v:(t) = constant for t < —tyg — B+¢ and are pointwise
convergent to vy, p(t).

(2) vZ(t) are pointwise convergent to %H(—tO—B,—tO), when ¢ — 0, and 0 < v/(¢) <
%]I(_to_BJrs’_tO_s) for any t € R.

(3) w.L(t) are pointwise convergent to by, p(t) which is a continuous function on R, when

e —0,and 0 <v.(t) <1 for any t € R.

One can construct the family {vg}se(()’% p) by the setting

t t 1
ve(t) ::/ </ (MH(—to—B-F%,—to—%) *p}ﬁ) (s)d5> dtq
—to t1 1
—/ </ (MH(—tO—B+2s,—t0—25) *P}15> (3)d3> dty —to,

where p1 is the kernel of convolution satisfying supp(p 1 ) C (—%e,1e). Then it follows that

(106)

1
Ué/(t) = B_4€H(—t0—B+287—t0—28) *p%g(t)7

and

t 1
Ué(t) :/ <B_45H(—to—B+2e,—to—25) *P}le) (s)ds.

—0o0
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Let n = s(—ve(¥m)) and ¢ = u(—ve(Ym)), where s € C((S,+00)) satisfies s > 0 and
s >0, and u € C®((S,4+00)), such that u’s—s" >0, and s’ —u's = 1. It follows from
sup,,, Sup; ¥m < —S and max{t,—to— B} < v (t) < max{t,to} that ¢ = u(—ve(,,)) are
uniformly bounded on M with respect to m and ¢, and u( ve(1))) are uniformly bounded
on M with respect to e. Let ® = ¢+ ¢/, and let h = e~

Let f(z) = 2I_1 1y*p(z) be a smooth function on R, where p is is the kernel of

convolution satisfying supp(p) C (—%, %) and p > 0.
Let gi(z) = Ylx), i z<0, then {g;} be a family of smooth functions on R
9 1f(12x), if z>0, girent Y
satisfying that:

(1) SUPP(QI) [ % 1, gu(@) 2 0 for any z € R.
(2) flgl fo gi(x)dz < 7 for any | € N¥.
Set ¢(t) = et [ h(e¥(t—S) + S)gi(y)dy, where h(t) = e~tc(t) and ¢ € Pg. It is easy to get
0

at) —cft) > ¢t / (h(e¥(t—8)+5) — h(t))gr(y)dy > 0.

1
1

Set h(t) = h(et+S) and §;(t) = gi(—t), then ¢;(t) = e hx g (In(t— S)) € C* (S, 400). Because
h(t) is decreasing with respect to ¢, so is ¢;(t)e”t. And

/Scl(t)e_tdt:/s /Rh(ey(tS)+S)gl(y)dydt

eV(s—=S)+S
= / e Ya(y) / h(t)dtdy
R S
e(s—S)+S
S/e‘ygz(y)dy/ h(t)dt
R s

< +00,

then ¢;(t) € Pg for any | € N*.
As h(t) is decreasing with respect to ¢, then set A~ (t) = lims_,+—oh(s) > h(t) and ¢~ (t) =
limg_;—gc(s) > c(t), then we claim that lim;—, o ¢;(t) = ¢ (t). In fact, we have

0
en(t) — e (1) <e! / Ih(e¥(t — ) +8) — h™ (1) gu(y)dy

1
1

i (107)
+ et/o h(e?(t—5S)+S)gi(y)dy.

Ve >0, 36 >0 and |h(t—0) —h~(t)| <e. Then IN >0, VI > N, such that e¥(t—S5)+ .5 >
t—06 for all y € [-7,0) and } <e. It following from (107) that

lei(t) — ™ (t)] < ee’ +eh(t)e

hence, lim;_, 4 ¢;(t) = ¢ (¢t) for any ¢t > S.
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Step 2: Solving 0— equation with smooth polar function and smooth weight.

Now, let o € A™1T},, for any x € M. Using inequality s > 0 and the fact that ¢, is
plurisubharmonic on M, we get

<BO[,CM>}”L :<[77V _]‘GH_ \ _18577_ v _19877/\577»Aw]a’a>ﬁ
Z<[T’V _186¢_ Vv _18577_ Vv _19877/\5777Aw]0470¢>13;

where g > 0 is a smooth and bounded function on M. We need the following calculations to

(108)

determine g¢:

00 = —5'(—ve(¥m)) 00 (Ve (¥m)) + 8" (Ve (Ym)) OV (Yrm) A OV (1), (109)

and

90¢ = —u'(—ve (1hm)) 0 (Yrn) + 1" (=0 (V1)) Ve (Pm) A Dve (Pn).- (110)
Then we have
— 0N +1ddp — g(dn) Ao
= (5" = 5u")Dv (Pm) + ((u"s — 5") = g5") (=< (¥m) ) I —ve (V)
=(8" = su") (VL (Y ) 00, + v () O(Yn) A O(Yn))
+((u"s—5") = g5)O(=v=(Ym)) AO(—ve(Prm))-

We omit composite item —wv. (1) after s’ —su’ and (u”s—s") — gs'? in the above equalities.
1" 1" 2

Let g = “=2°—(—v:(¢m)). It follows that n+g~ L= (s+ ,,Z_S, ) (—ve(m))-

)

As v, >0 and s’ —su’ =1, using Lemma 7.3, equality (111) and inequality (108), we

(111)

obtain

(Ba,a);,

([17\/7@~ \/—718577—\/—719877/\577,/\&,]04,04)5
>([(V2 0 )V =10 AP, Ay] v, @)z (112)
<(Ug0¢m)(§7/}m/\(OzL(gzl)m)ﬁ),a)E,

Using the definition of contraction, Cauchy—Schwarz inequality and the inequality (112),
we have

|<(”g owm)éwm /\%5‘>E‘2

(07 0 )y, G (O )F); |2
v 0 )y, ) (02 owm)laL (Dm)f|;
! (
(B

IN

(113)

VL 0 )7, 7> ( O@bm)&wm (O"—(awm)ﬁ)va%}
v me)'Y 7> a d>ha

K
((
(e
((ve

IA

for any (n,0) form ~.

It follows from s > 0 and ¢,  is strongly plurisubharmonic that B is positive definite
everywhere on A™1T%,. As F is holomorphic on {¢) < —to} and Supp(v? (vm)) C { < —to},
then A := 9[(1 — v, (1)) F] is well defined and smooth on M.

Taking v = F, and & = B71\, note that 2 = e~ %, using inequality (113), we have

(BTIAN); < vf ()| e,

/ BIAN); < / o ()| F 2™
M M

Then it follows that
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Assume that we can choose 1 and ¢ such that eV=°¥me®c)(—v. 0)y,) = (n+g~ 1) L. Using
Lemma 7.2, we have locally L' function tm, m.; on M such that Oum, mc; = A, and

/|um’m,’€’l’2evs(wm)—somfcl(_v€owm)
M
:/ ‘um,m’,s,l’2<n+gil)ilei¢'
M
<[ @y, (114)
M
< / o (o) | F |2~
M
— [ wwalrpeea
M

Let Fom e = —Um,m’ e+ (1 — 0. (1)) F. Then inequality (114) becomes
/ |me el — (wm))FPevE(wm)ﬂpm/Cl(_Usowm)

(115)
< /Mw () [F e

Step 3: Singular polar function and smooth weight.
As sup,, .sup,y |¢| = sup,,, . [u(—v:(¥m))| < 400 and sup s @y < +00, note that

b, 2 o
v (Um0 < pliye o [P supe ™o
m,e
on M, then it follows from inequality (105) and the dominated convergence theorem that

i _ [ wl@n)|FPe e = [ P en (1)
m——+00 M M

Note that inf,, inf; evs(¥m)=%m’ ¢;(—v, 0 1m) > 0, then it follows from inequality (115)
and (116) that sup,, [y, [Fm.meq — (1= 0. (1m))F|* < 400. Note that

[(1 =0l (m)) F| < [Tgyp<—to} F, (117)

then it follows from inequality (105) that sup,, [, |[Fm.m’ > < +oo, which implies that
there exists a subsequence of {F, m/ ci}m (also denoted by {Fi, m/ ci}m) compactly
convergent to a holomorphic £,/ . ; on M.

Note that e”f(‘l’m)_%"m’cl(—v8 01y,) are uniformly bounded on M with respect to m,
then it follows from |Fp, mrci— (1 —0L(¥m))F1? < 2(|Fmmr el + (1 — vl (¥m))FI?) <
2(|Fm.m’ e0]* + Liyp<—t,3 F?]) and the dominated convergence theorem that

i / | Fon et = (1= 0L () F e ¥m) =2t ¢y (v 09y,

m——+oo

(118)
- /K P 21— (1= v (1)) F 26?9 =#mt ¢y~ 01))
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holds for any compact subset K on M. Combining with inequality (115) and (116), one can
obtain that

[ 1P = Q=) PR a0 0)

(119)
/ ()| F|2e o)) =0ms
M
which implies
/ |Fopr e = (1= 0L () F[Pe’ =20 ¢ (—v. 0)
(120)
/ ()| F|2eu(mve ) =¢m
- Ju
Step 4: Nonsmooth cut-off function.
Note that sup,_sup,,; e~ “(~v=(¥))=¢n" < 400, and
—u(—v - ’ 2 —u(—v - ’
VL ()| FPe e Do < Bl—to-Bv<—to)|[F|* supsupe (—oe®@D=em,
e M
then it follows from inequality (105) and the dominated convergence theorem that
; " 2= u(=ve(¥)) =@
lim [ /()| FPe
1 —u(—v — ’
:/ EH{—to—B<¢<—to}|F‘26 (=v10,5($))=¢m (121)

(SUPG (v, 5 (1)) / = ty—Bepa—to}|[FIPe % < fo0.

Note that inf. infy; evs(¥)=%m’¢;(—v. 01)) > 0, then it follows from inequality (120) and
(121) that sup, [, |Fm i — (1—0l(¢)))F|* < 4+00. Combining with

sup/ (1 -l F|2 / H{¢<_t0}|F|2 < +00, (122)
M

one can obtain that sup, [ M | Fons c.1|? < +00, which implies that there exists a subsequence
of { Fiys e.1 }e—0 (also denoted by {F,,,/ -1 }-—0) compactly convergent to a holomorphic (n,0)
form on M denoted by F,, ;. Then it follows from inequality (120), inequality (121), and
Fatou’s Lemma that

/ ’Fm’,l_(1_bto,B(w))FFevto’Bw})_gom,Cl(_vO¢)

M

/hmmf|Fm c1— (1=l () F eV =%m ¢)(—v_0))
M

e—0

<l1m1nf/ |Fpred — (1 =L (1)) F|2ev= ) =0m ) (—v, 04)) (123)

e—0

<liminf fug(w)‘F‘2e—u(—va(w))—somr
M

(Supe u( Vtg, B(w)) / ]I{ to— B<’¢J< to}‘F‘ e Qom’.
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Step 5: Singular weight.
Note that

1 o, 1 _
/ E]I{—to—B<1,Z!<—to}|F|2€ Fm! < / EH{—to—B<d)<—to}|F‘26 ¥ < +o0, (124)
M M
and sup,, e “("V10.8(¥) < oo, then it from (123) that
sup/ |For— (1 —b())F|2e? ) =%m ¢ (—v09)) < +00.
m’ JM
Combining with inf,,s inf; e?(¥)=%m’ ¢;(—v(1))) > 0, one can obtain that
sup/ | o — (1= b(¥))F|* < +oo0.
m’ JM
Note that
J1a-snrP < [ e i PR <+ (125)
M M

Then sup,, [ M|Fm/,l|2 < +00, which implies that there exists a compactly convergent
subsequence of {Fy, 1} (also denoted by {Fy, ;}ms), which converges to a holomorphic
(n,0) form F; on M. Then it follows from inequality (123), inequality (124), and Fatou’s
Lemma that

/ |Fi— (1= by, 5(¢)) F|?e’0 2 W) =2 ¢ (—uyy g o)
M

_ / Haninf [Fy s — (1 — by () F 2050 =2 ¢y (— vy 5 00))
M

m/—+00

< liminf/ |Eprt — (1= by g(00))F|2eVt0 B =m’ ¢ (—p, o)) (126)
M

m/’—+o0

1
< liminf (SUpe_u(_Uto’B(w)))/ EH{—to—B<w<—to}|F|2€_¢m/
M

m’/—+o0o Mg

1
S(SUPeu(vtO’B(w)))/ *H{ftofB<¢'<fto}|F‘267gD'
M u B

Step 6: ODE system.
we need to find n and ¢ such that (n+g¢~!) = e‘wme_‘bm on M and s —u's=1.

2

As n=5(—v-(¢m)) and ¢ = u(—v:(Vn,)), we have (n+g~1)evs(¥mle? = (s+ 21— )e~te¥o
(—ve(¥m)).

Summarizing the above discussion about s and u, we are naturally led to a system of
ODEs (see [16-18], [20]):

1) N 8/2 w—t 1
. S — ] € = —_—
u’s—s" c(t)’ (127)

where t € (T, +00).
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It is not hard to solve the ODE system (127) and get u(t) = —log(fst ci(t1)e~ 1 dty) and

s(t) = fst(fﬁ ;’((zl;e:?z:l)dt? (see [18]). It follows that s € C°((S,+00)) satisfies s > 0 and
S 1)e” "ldty

s’ >0, ue C®((S5,+00)) satisfies u”’s —s” > 0.
As u(t) = —log(f; c(t1)e t1dty) is decreasing with respect to ¢, then it follows from
=S > wv(t) > max{t,—to— Bo} > —to — By for any ¢ <0 that

to+B
supe “TPW) < qup  emu® :/ ci(ty)e dty, (128)
M te(S,to+B] S

then it follows from inequality (8) and inequality (126) that

to+B
/ |Fy — (1= bty 5(¥)) F €02 )= 2¢)(—vy, (1)) < C / a(t)e"dty.  (129)
M S

Step 7: Nonsmooth function c.

By the construction of ¢; in Step 1, we have

to+B
/ cl(tl)e_tldtl
S

to+B
- /S /R W((tr — S)e¥ + 8)g(y)dydty

(to+ B—S)e¥+5 (130)
:/e_ygl(y)/ h(s)dsdy
R S
to+B (to+B—S)eV+S
—[erawiy [ s+ [ eraw) | h(s)dsdy.
R s R to+B
As
lim / eygz(y)dy—l‘
0 T
<tim | [ (=Dl + tim | ["eady
l—+o0 _% l—+o0 0
=0
and
(to+B—S)eV+S
[eat) [ h(s)dsdy
R to+B
1
<el <1+z> h((to+B—S)e ' +8)(to+B—8)(ef —e™ 1),
then it follows from inequality (130) that
to+B to+B
lim cl(tl)e_tldtl :/ c(tl)e_tldtl. (131)
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Combining with inf;infy, e¥0-B(¥V)=¢¢c)(—v(¢))) > inf s eVt B (V) =¢c(—v(1h)) > 0, we obtain
that

sgp/ |Fi — (1= by, 5(¥))F|? < 4o0.
M
Note that

/ (1= buy 5 () FP? < / Lyesoy FI? < +o0, (132)
M M

then sup, [ M |F}]> < 400, which implies that there exists a compactly convergent subse-
quence of {F;} (also denoted by {F;}), which converges to a holomorphic (n,0) form F on
M. Then it follows from inequality (129) and the Fatou’s Lemma that

/M [ = (1= by, 5 () FPet 0 (=2 e(—vy, 5 (1))
S/ [ — (1= by, 5 () FPet 0 (D=2 (—uy 5(1))
M

/hmmfm (1= by, B (1)) F|2eV0 2 (D=0c) (—vy 5(1))
M

=40

<hm1nf/ |Fy— (1= by, () F|?e0 2 =% (—vy, (1))

=400

to+B
§C’liminf/ ci(ty)e 1dty

to+B
:C/ C(tl)eitldtl.
S

Thus, we prove Lemma 2.1.

7.2 Proof of Lemma 2.14

The proof is from [15] with a few minor modifications.

Choose p € suppT NU. By Lemma 2.12, there exist a real number ¢ > 0 and a coordinate
(V,w), such that w(p) =0, w(V) = B(0,1) and V CC {Ga(z,p) < —t} CC U. There exists
a cut-off function 6 on Q, such that # =1 on w=*(B(0,1)) and suppd CC w=*(B(0,3)).

Let T = 0T, then T is a closed positive (1,1) current on Q with suppT cc w~'(B(0, )
and T # 0. Now, we prove that exists a subharmonic function ® < 0 on 2, which satisfies
the following properties: i09® = T limy 040(inf (G, (2,20)> -} P(2)) = 0; info\y @ > —o0.
Then & satisfies the requirements in Lemma 2.14.

Step 1: Construct .

Let p € C*°(C) be a function with suppp C B(0,3) and p(z) depends only on |z], p >0
and [.p(z)dX\, = 1. Let p,(2) =np(nz), p, is a family of smoothing kernels.

As w(V) B(0,1), without mlsunderstandmg we see (V,z1) and (B(0,1),w) the same. As
suppT cC w=(B(0, % 1)) and suppp C B(0, 3), denote that T}, = T % py, be the convolution of
T. In fact, for any test function h € COO(Q) ((how™) % p,)(w) (h*p,(w) for short) is well
defined on w™*(B(0,3)), and (T,,(21),h(z1)) =< T(w),h* py(w) >. Then T}, is a smooth
closed positive (1,1) current on Q with suppT;, CC w= (B(0,5+ 5-)).

Let u,(z) = (T,,(21), 2Ga(z,21)). Ga(z,21) is locally integrable with respect z; € € for
any fixed z € 0 implies that w,(z) > —oo for any z € Q. For fixed z and fixed n, we
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will prove (Tp,(21),2Ga(z,21)) = (T(w), (L Ga(z,") * pn)(w)). For fixed z Ga(z,21) is a
subharmonic function on 2. There exists a sequence of smooth subharmonic functions
G (z1) decreasingly converge to Gq(z,21) with respect to m. As G,,(z1) is smooth, we
have

(Th(z1), le(zl» =< T(w), %Gm s pp(w) > . (133)

3

As T and T,, are closed positive (1,1) current on Q with suppT,, CC V and suppf ccV,
and Gy, (z1) decreasingly converge to Gq(z,21) < 0 with respect to m on €, it follows from
Levi’s Theorem and equality (133) that

(To(1), ~Galz,2)) = m_ (Tu(z1), - Gon21)

m—>+400

1
= lim <T(w )WGm*pn(w)>

m—-4-o00
~ 1
=< T(w), —Gg(z, )k pr(w) >

Fixed z € ), as 1Gq(z,21) is subharmonic, then Gq(z,-) xp, is decreasingly convergent
to 2Ga(z,21) Wlth respect to n. Note that T is a posmve (1,1) current on €, then wu,(z)
is decreasing with respect to n. Let ®(z) = lim,,— oo un(2). Ga(z,21) <0 on Q x © shows
that u,(z) <0 and ®(z) <0 on .

Step 2: 00D ="T.

Firstly, we show that both {u,} and ® is Lllo . function on Q. As u,, <0 on 2 and u, is
decreasingly convergent to ¢ with respect to n on €2, it suffices to prove that, for any ¢ € €2,
there exists an open subset K CC , such that ¢ € K and |, x |un|dVo < C, where dVq is
some continuous volume form and C' is a constant which independent of n.

It is clear that there exists a compact subset D of V such that suppT C D and suppT}, C D
for any n. When ¢ ¢ V, where exists a coordinate wy on a neighborhood V' of ¢, such that
wi(q) =0, V' cC Q, wi (V') =2 B(3,1), and VN D = (). Note that for any (z,2;) € V' x D,
G(z,71) <0 on Q2 xQ, G(z,21) is harmonic with respect to z or z; when fixed another one
and [, o, |G(q,21)| < +oo. Without loss of generality, we see (V',z) and (B(3,1),w1) the
same and assume that dVg = d\, on V', where d), is the Lebesgue measure on C. Then

we have
1
un|va:/ / Gz, 20)|Ta(21)d)
\%& T JzevrJziev

1
:/ / |Ga(z,21)|d\. T, (21)
T JzevJzev!

_1 /  mlGola I ) (134)

™

< Tl sup |Ga(g, 21))
z1€EV

= ||T| sup |Ga(g,21)].
z1€EV

When ¢ € V, Gqo(w,w) =log|w— | +v(w,w) on V x V, where v(w,w) is harmonic with
respect to w or w when fixed another one. Without loss of generality, we see (V,z) and
(B(0,1),w) the same and assume that dVo = dA,, on V, where d\,, is the Lebesgue measure
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on C. Then we have

1

/undVQ:/ / GQ(w,w)Tn(zb)d)\w
Vv T JweV Jwev

1/ Go(w,@)dA T (i) (135)

/ / log |w — @|dA\, Ty, (W) + / / v(w, W)d\y, Ty, (D).
weV JweV weV JweV

/ log |w —w|dA, > —/ |log |w||dA, > —o0
wEV weB(0,2)

holds for any w €V,

Note that

/ v(w,w)d\, = v (g, W)
weV

holds for any w € V' and inf;ecy v(g, @) > —o0, then equality (135) implies that there exists
a constant N > 0 such that

/ tndVa > N||T || (136)
1%

By the definition of T},, we know || T,,|| = || T|| < 4+0c0. As u,, <0, combining inequality (134)
and (136), we obtain that any ¢ € {2 there exists an open subset K CC €2, such that ¢ € K
and | 5w |un|dVo < C, where dVg is some continuous volume form and C' is a constant which
independent of n. Hence, we know {u,} € L}, () and ® € L}, (Q).

Now, we consider i00®. Let g € C°(X) be a test function. It follows from ® € L}, ()
and the dominated convergence theorem that

(i00®, g) = (®(2),i00g(z))

o L (137)
— i _{u(2).i099().
As un(2) = (Tn(21),2Ga(z,21)), using Fubini’s Theorem, equality (137) becomes
. : 1 .
(i00®,9) = lim ((T,,(z1), ~Ga(z,21)),i00g(2))
e i (138)

= lim (T (%), (%Gg(z,zl),iaég(z)».

n—-+oo

Since T}, is positive (1,1) current on , T}, converge weakly to 7" and £9,0.Go(z,21) = 0s,,
it follows from equality (138) that

(i00®,g) = lim <Tn(zl),<%Gg(z,z1),i859(z))>

n—-+oo

= lim (Tu(=1).g(=2)) (139)

=(T,qg),

which implies that i00® =T.
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Step 3: limy_o40(infgg (2,20)>—} P(2)) =0 and info\y @ > —oo.

Let W CC Q be an open set of Q which satisfies VU{z0} C W and WN{—t < Gq(z,20)} =
(), where t is a small enough positive number. Then for every fixed z € {—t < Gq(z,20)},
Gq(z,21) is harmonic function on a neighborhood of W with respect to z;. By the Harnack
inequality of harmonic function, there exists a M > 0 such that

sup (—=Ga(z,21)) <M inf (—Gq(z,21)).
21€W z1EW

As z € {—t < Gq(z,20)}, we have

Mt > —MGQ(Z,Z()) >M 1HL(_GQ(Z,21) > sup (_GQ(Z7ZI) > 07
znew 2 EW

which means that limt_>0+0(inf{GQ(z,zo)Z—t}XW Gqa(z,21)) =0.

Note that 0 > un(2) = (Th(21),£Ga(z,21)) > %inf{GQ(z,zo)Z—t}XWGQ(Z’Zl)HTnH holds
for any n and z € {—t < Gq(z,20)}, as ||T,,|| = || T|| < +oc and u, is decreasingly convergent
to @, then we have

1 -
lim inf ®(z)) > lim — inf  Ga(z,z1)]|T| =0.
t=04+0 {Ga(z,20)2—1} t=0+0 T (G (2,20)>—t}x W

Next, we prove info\y ® > —oo. Note that p € V CC {Ga(z,p) < —t} CCU CC Q, it
follows from Lemma 2.13 that there exists a constant N > 0, such that

Ga(z,z1) > NGq(z,p) > —Nt (140)

holds for any (z,21) € (Q\U,V). As un(2) = (Tn(21),£Ga(z,21)) and suppT, CCV for any
n, then we have wu,(z) > —~||T,|| hold on z € Q\U. Note that ||T,,|| = |T| and wu,, is

decreasingly convergent to ®, then we have infg\y ® > —oo.
Thus, Lemma 2.14 holds.
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