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1. Introduction. In this paper we study the following problem originally 
proposed by Walsh (8). To determine the class of functions/(x) continuous 
in a given w-dimensional region R and having the property that the value 
of f(x) be equal to the average olf(x) over the vertices of all sufficiently small 
regular polytopes similar to a given one, which are centred at x. This problem 
has been studied by several mathematicians (1; 6; 8) and has been completely 
solved except for the four-dimensional regular polytopes {3, 4, 3}, {3, 3, 5}, 
{5, 3, 3} (see 3, p. 129, for the meaning of these symbols) and the w-dimensional 
cube. In each case, the class of functions is identical with a class of harmonic 
polynomials which can be specified. In § 2, we solve the problem for the four-
dimensional figures, thus leaving the problem open only for the w-dimensional 
cube.f We will give a detailed treatment for all regular polytopes simplifying 
the proofs of those cases already discussed in (1; 6; 8). 

The problem of Walsh leads to a natural generalization. We observe that 
the groups of symmetries of the regular polytopes are generated by reflections, 
thus forming a subclass of the irreducible finite orthogonal reflection groups 
acting on En. We pose the problem of determining the functions/(x), continu­
ous in a given w-dimensional region R, and satisfying the mean value property 

(1.1) f(x) = ~^2f(x + tay), x £ R, 0 < / < ex, y a fixed non-zero vector, 

where g is the order of G, G being an irreducible finite orthogonal reflection 
group. If G is the group of symmetries of a regular polytope irn centred at the 
origin and y is an arbitrary vertex of wn, then G acts transitively on the vertices 
of irn, and (1.1) becomes identical with Walsh's problem. 

The study of the solution space to (1.1) turns out to be closely related to the 
invariant theory for the irreducible finite reflection groups. Chevalley 
(2, p. 778, Theorem A) has shown that for these groups, the algebra I of invari­
ants is generated by n algebraically independent forms 7i, . . . , In. Coxeter 
(3, Chapter 11) has classified these groups and has computed (4, p. 780, Table 3) 
the degrees m\ + 1, . . . , mn + 1 of the forms 7i, . . . , In. The m^s are distinct 
so that we may assume that 0 < m\ < . . . < mn. (This holds for all irreducible 

Received June 26, 1968 and in revised form, October 16, 1968. This research was supported 
by NSF Grant GP-7352. 

\ Added in proof. Recently the conjecture has been solved in the affirmative (G. K. Haeuslein, 
On the algebraic independence of symmetric functions, to appear in Proc. Amer. Math. Soc) . 
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finite orthogonal reflection groups G which are not of type B21 (21 - n; I ^ 2). 
In this paper we shall always assume that G ^ B2i. In particular, the sym­
metry groups of the regular polytopes are not of type B2i.) Furthermore, 
mi = 1, i i = S?=i XJ2 ( w e use these facts later on). We have recently proved 
the following results concerning the solution space 5 of (1.1). 

THEOREM 1.1 (7, Theorem 1.2). Let G be an irreducible finite orthogonal reflec­
tion group acting on En. Let Pm(x,y) = X ^ G (X • ay)m (1 ^ m < 00 ) and 

d(xu ...,xn) 
Then 

J(x,y) = fljk(y)flLk(x), 
k=l k=l 

where the Jks are homogeneous invariants (deg Jk = mk + 1) forming an integrity 
basis for I and Lk(x) = 0 (1 ^ k ;§ r) ar^ /fee reflecting hyperplanes correspond­
ing to the reflections of G. 

Let 5 be the solution space of (1.1) and DII the linear span of partial deriva­
tives of 

r 
U(x) = I I Lk(x). 

k=l 

S = DU if and only if Ji(y) . . . Jn(y) 9e 0 or, equivalently, if and only if 
Pmi+i (x,y), . . . , Pmn+i (x> y) are algebraically independent as polynomials in 
x. 

We say that y is an exceptional direction if Ji(y) . . . Jn(y) = 0 and refer to 
^ = {y\ Ji(y) - • - Jn(y) — 0} as the exceptional manifold. Let G again denote 
the group of symmetries of an ^-dimensional poly tope wn centred at the origin. 
Walsh's problem will then be solved provided we can show that for such 
groups, y (£ ^t', y denoting an arbitrary vertex of irn. We verify this statement, 
referred to as the vertex conjecture, for all regular polyhedra with the exception 
of the w-dimensional cube. As explained at the end of § 2, we encounter a 
certain technical difficulty in this case which we cannot resolve. 

Since the solution space 5 to (1.1) can be characterized for y S ~#, it is 
natural to ask whether S can also be characterized for y G ^# . We solve this 
problem in § 3 for the dihedral and tetrahedral groups. The complexity of the 
solution in the latter case leads us to believe that the problem of characterizing 
5 when y Ç ^ for all irreducible finite orthogonal reflection groups is a rather 
hopeless one. 

2. Verification of the vertex conjecture. In § 3 we describe explicitly 
the exceptional manifold-^ for the dihedral group Dn, which is the group of 
symmetries of the regular n-gon {n}. We will find in this case that the vertices 
of the polygon do not lie i n ^ , thus verifying the vertex conjecture for Dn. 
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This leaves us with the figures {3, 5}, {5, 3}, {3,4,3}, {3, 3, 5}, {5, 3, 3} ,an,j8n,7n. 
The classification of the regular polytopes and the symbol \p\, . . . , pn-\] were 
discussed in (3, Chapter VII). {3, 5} and {5, 3} are three-dimensional ; {3, 4, 3}, 
{5, 3, 3}, and {3, 3, 5} are four-dimensional; ani pn, and yn are ^-dimensional. 
We consider separately these three classes. We will make constant use of the 
following result found in (7, formula 3.4). 

THEOREM 2.1. Let Pm(x,y) = J^(x • <ry)m, G denoting an irreducible finite 
orthogonal reflection group. For fixed y, Pm(x, y) is an invariant polynomial in x. 
Pmk+i(x, y) (1 ^ k S n) has the representation 

(2.1) y) = Fk(Ii(x),. . . ,Ik-i(x);Ii(x),. . . , I*(y)) + Jk(y)I*(x), 

where Fk is a polynomial in Ii(x), . . . , Ik(y) (Fi = 0) and the Jks are the basic 
invariants introduced in Theorem 1.1. 

In the following, y will denote an arbitrary vertex of the regular poly tope wnj 

G the group of symmetries of wn. We define Pm(x) = S&=i(x • yk)
m, where 

yk ~ (yn, • • • i ykn) (1 S k ^ N) denote the N vertices of wn. Let H be the 
subgroup of G which fixes the vertex y\ i.e., H is the stabilizer of y. Let h be the 
order of H. It is readily checked that Pm(x, y) = hPm(x). (2.1) then becomes 

(2.2) Pmk+i(x) = F**(Ii(*),. . . , Ik-i(x)) + akIk(x), 1 ^ k ^ n, 

where Fk* is a polynomial in Ii(x),. . . , Ik-i(x) (Fi* = 0) and ak = (l/h)Jk(y) 
is a constant. The representation (2.2) is unique as Ii(x), . . . , In(x) are 
algebraically independent. We therefore have the following result. 

COROLLARY. The vertex conjecture is true if and only if ak ^ 0 (1 ^ k S n), 
the aks being the numbers occurring in the representation (2.2). 

We remark that the latter condition is equivalent to either of the following 
two: 

(i) Pmi+i(x), . . . , Pmn+i(x) are algebraically independent; 
(ii) Pmi+i(x), . . . , Pmn+i(x) form an integrity basis for the algebra I of 

invariants of G (see 7, Lemma 2.5). 

The polyhedra {3, 5} and {5, 3}. The vertices of the icosahedron {3, 5} may 
be chosen as the even permutations of (0, ± r , ± 1 ) , where r = | ( 1 + V5) . 
The vertices of the dodecahedron {5, 3} may be chosen as ( ± r , ± r , ± r ) and 
the even permutations of (0, ± 1 , ± T 2 ) (3, p. 52). These two figures have the 
same symmetry group which is denoted by [3, 5]. The degrees of the basic 
invariant forms of [3, 5] are 2, 6, 10. Let 7i, 72, Iz form a basic set of homogene­
ous invariants whose respective degrees are 2, 6, 10. Suppose that the vertex 
conjecture is false. It follows from the corollary to Theorem 2.1 that either 
PÔ = Ci/i3 or Pio = c2Ii

5 + CzIi2I2, where the CjS are constants, c\ > 0 as 
P 6 is positive-definite. Thus either P 6 = Ci/i3 or 7i[Pio. We show that this is 
not the case. 
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Let ki, k2 denote the coefficients of Xi6 and Xi2x2
2xz

2 in P6 , respectively. Thus 

N N 

where y j = (yji, yj2, y^) (1 ^ j S N) denote the N vertices. Direct computa­
tions show that for {3, 5}, h = 4(r6 + 1) = 8 \ / 5 T 3 , k2 = 0, and for {5, 3}, 
k± = 8r6 + 4(1 + r12) = 80r6, k2 = 720r6. It is easily checked that in both 
cases k2 9e- 6fei while the Xi2x2

2x%2 coefficient of Ji3 = 6 (xi6 the coefficient of 
/ i 3 ) . Hence P 6 ^ cJx*. 

We show next that 7i \ Pi0 . Let T be an orthogonal transformation sending 
one of the vertices of {3,5} into a point along the x3-axis. Let Qw(x) = 
P^T-'x). Thus 

Qioix) =Z (T-ix-yj)10 =jt (x • Zj)
10, 

j=l 3=1 

wherezj= Ty,(l S j S N), and <2io(l, i, 0) = L?=i (s,i + s^ ) 1 0 . For {3, 5}, 
two of the twelve numbers zn + zj2i (1 ^ j ^ 12) are 0, the other ten being 
given by Çkw (0 ^ k ^ 9), where f = e7^75 and w 9e 0. For {5, 3}, the twenty 
numbers z;-i + zj2i (1 ^ J ^ 20) are given by f%i, f*w2 (0 ^ & ^ 9), where 
t = w2/wi > 0 (see 3, p. 51, for the relevant diagrams). Thus Qio(l, i, 0) = 
10w10 9* 0 for {3, 5} and Qio(l, i, 0) = 10(1 + *i°)wi10 ^ 0 for {5, 3}. Since 
7i( l , i, 0) = 0, we conclude that JifQio which is equivalent to iVTPio. 

The four-dimensional figures {3, 4, 3}, {3, 3, 5}, and {5, 3, 3). We start our 
discussion with the figure {3, 4, 3}. The vertices of {3, 4, 3} may be chosen as 
the permutations of ( ± 1 , dbl, 0, 0) (3, p. 156). The symmetry group of {3, 4, 3} 
is denoted by [3, 4, 3] and the degrees of the basic invariant forms are 2, 6, 8, 12. 

Let Ii, I2, 73, I± be basic invariant forms whose respective degrees are 
2, 6, 8, 12. Suppose that the vertex conjecture is false. Then either P 6 = Ci^i3 

or P 8 = c2Ii* + Czhh or P12 = cj-f + c5Ii
zI2 + c*Ii2h + c7I2

2, where the 
cts are constants, c\ > 0. Thus either P 6 = Ci/i3 or I i | P 8 or P12 G (i"i, I2). We 
show that these possibilities do not occur. 

A direct computation yields 
4 

4X6 = 3 2.J %j \ 1 5 2^t \%j %JC \ Xfc Xj ) . 

The coefficient of X\2x2
2Xz2 in P 6 is zero, while the coefficient of Xi2x2

2x^2 in 
/ 1 3 is not zero. Hence P& 9e £i/i3. Thus P 6 and I\ are algebraically independent 
and we may choose I2 to be P 6 . We have J i ( l , i, 0, 0) = 0, 72(1, i, 0, 0) = 
12(16 + i6) + 60(i2 + *4) = 0, P 8 ( l , i, 0, 0) = 2[(* + l ) 8 + (i - l)8] + 16, 
p 2 ( l , if 0, 0) = 2[(1 + i)12 + (1 - i)12] + 16. Since 1 + i = v/2^7rt*, 1 - * = 
V2<riirf", we have (1 + *)8 = (1 - *)8 = 16, (1 + i)12 = (1 - *')12 = - 6 4 . 
Thus P 8 ( l , i, 0, 0) = 80 ^ 0, P i 2 ( l , i, 0, 0) = - 2 4 0 9* 0. We conclude that 
7i f P 8 and P12 € (lui 2). 
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We now treat the figures {3, 3, 5} and {5, 3, 3}. The 120 vertices of {3, 3, 5} 
may be chosen as the permutations of ( ± 2 , 0, 0, 0), ( ± 1 , ± 1 , dbl, ± 1 ) , 
and the even permutations of ( ± r , ± 1 , ± r - 1 , 0), The 600 vertices of {5, 3, 3} 
may be chosen as the permutations of ( ± 2 , ± 2 , 0, 0), ( ± V 5 , dbl, =bl, ± 1 ) , 
( ± r , ± r , d=r, dbr -2), (zbr2, dzr-1, zbr-1, d=r_1), along with the even per­
mutations of (dzr2, dbr"2, ± 1 , 0), ( ± V 5 , ± T ~ \ ± r , 0), ( ± 2 , ± 1 , ± r , zbr"1) 
(3, p. 157). The two figures have the same symmetry group denoted by 
[3, 3, 5]. The degrees of the basic invariant forms are 2, 12, 20, 30. 

Let 7i, /2 , 1%, ^4 be basic invariant forms whose respective degrees are 
2, 12, 20, 30. Suppose that the vertex conjecture is false. Then either P i 2 = Ci/i6 

or P 2 0 = c2/i10 + c3/i4/2 or P3o = cJ i 1 5 + cjfh + cj1
zl2

2 + crf^h, where 
the cts are constant, C\ > 0. Thus Ii\Pn or Ii\P2o or i~i|P3o. We show that these 
possibilities do not occur. 

Let Xial, . . . , %iai be a monomial appearing in Pm(x). Since the plus and 
minus sign can be chosen independently in the listing of vertices for {3, 3, 5} 
and {5, 3, 3}, we conclude that the ats must be even. Thus Pm(x) = 0 for m 
odd. For m = 2k we have 

(2.3) Pa(l, i, 0, 0) = £ <yn + y ^ = £ (f) £ (-D'y^y**. 

Let m be an odd prime, so that 

\2a / s ° ( m 0 d m ) f ° r a = lj 2' * * * ' ^m ~~ X)* 
Then 

(2.4) Pm + 1 ( l , i, 0, 0) s £ y,iw+1 + ( - 1 ) ^ + 1 ) I ] ^-2
m+1 (mod m). 

Since L7=i 3^im+1 = E 7-i 3^2m+1, we have 

(2.5) P w + 1 ( U , 0 , 0 ) - {1 + ( - l ) ^ + 1 ) } E ^ r + 1 (mod m). 

In particular, 

N 

(2.6) i>»+i(l, *. 0> 0) = 2 Z :V;iw+1 (mod w) for m = 11, 19. 

We obtain a similar congruence for P30 . 

(2.7) P3o(V2, i, i, 0) = z . (V2 ^ 1 + 3 ^ ' + 3>^)3°. 

Since 29 is prime, the multinomial coefficients behave like the above binomial 
coefficients, and we have 

(2.8) P8o(\/2, i, i, 0) s 2(214 - 1 ) £ ^i 3° = ~ 4 Z ^i 3° (mod 29). 
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We now show that 

N 

£ yjl
m+1 jà 0 (mod m) for m = 11, 19, 29. 

(2.5) then implies that P ro+i(l, i, 0, 0) ^ 0 for w = 11, 19 and (2.8) implies 
that Pzo(V2, i, i, 0) ^ 0. Since 7i(l , i, 0, 0) = 7i(V2, *', i, 0), we conclude 
that IikPm+i for m = 11, 19, 29. 

We first consider {3, 3, 5}. A direct computation yields 

(2.9) f ) y,!**1 = 16 + 2 - 2m+1 + 24(rw+1 + r~(w+1) + 1). 

I t is known that, when n is even, 

(2.10) rn + r~n = /w_x + /w+1, 

where {/w} is the Fibonacci sequence, i.e., 

(2.H) fl=f2= 1, /w+2 = /n+1 + /n 

(5, pp. 166-167, equations 11.42 and 11.48). It is easily checked that the 
Fibonacci sequence modulo m is periodic. In particular, fn+m-i = fn (mod m) 
for m = 11, 19, 29. Thus we have 

(2.12) T-+1 + r — i = /M + / w + 2 s f± + / 8 = 1 + 2 = 3 (mod m). 

Also, m being an odd prime, we have 

(2.13) 2™"1 = 1 (modw). 

It follows from (2.9), (2.12), and (2.13) that 

N 

Y, yjim+1 = 16 + 8 + 72 + 24 = 120 jà 0 (mod m). 

We consider next the figure {5, 3, 3}. A direct computation yields 

(2.14) f ) yjl
m+1 = 12 • 2W+1 + (16 • 5*(w+1) + . . .) 

= 240 • 2m~1 + 40 • 5è(m+1) + 40(r2(w+1) + r~2(w+1)) 

+ 120(rw+1 + T~im+1)) + 120 

s 240 + 200 • 5è(w_1) + 40 (fa + /s) 

+ 1 2 0 ( / i + / 3 + 1) (mod m). 
A direct check yields 

5*(«*-D = i ( m o d m) for w = 11, 19, 29. 

Thus 

£ y / * 1 = 1200 fa 0 (mod m). 
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The n-dirnensional polytopes. T h e vertex problem has been discussed for 
these figures in (6, pp . 264-266). W e discuss the problem again here for the 
sake of completeness and give a more direct t r ea tmen t for the ^-dimensional 
simplex an. 

Let yi, . . . , yn+i denote the n + 1 vertices of the ^-dimensional simplex an. 
Any n of the yp are then linearly independent . T h e symmet ry group of an is 
denoted by Sn+i. T h e degrees of the basic invar iants of Sn+i are 2, . . . , n + 1. 
W e proceed to show t h a t the polynomials 

Pm(x) 
n+1 

; = 1 
(2 ^ m ^ n + 1) 

are algebraically independent . Le t £;- = x • ̂ ^ (1 ^ j ^ ^ + 1). T h e n 
ij — x ' J j (1 = J = n) ls a non-singular transformation from (xi, . . . , xn) 
to ( a . . . , &). Since E i i " i 30 = 0, E ^ 1 (* • y,) = 0 so t h a t {B+1 = - E y = i É* 
Transla t ing the problem into the (£i, . . . , £n) variables we mus t show t h a t the 
polynomials P* = L J Ï L ^ / (2 ^ fe ^ n + 1), where £n+i = — L j L i £ j , are 
algebraically independent . W e do this as follows. Let Pk 

L j i ^ / a £k ^ n+1). Let 
-Pitti &i+l) — 

J 

Then 

(2.15) J 

d(P<L, . . . , P r ç + l ) 

dP 2 

J d(PU . . . , P n + l ) 
d ( ? i , • • • » &i+i) 

agi 

dPn 

d P 2 

'n+1 

dP, w+1 

3*i 

(» + D! 

<% In+l 

Now 

(2.16) 

fcW+l 
Ç 1 

(»+D! n fe - w. 
l ^ K * ^ n + l 

£w+l 

t n + l 
£n+l 

d P r d P r <3Pr 

d£s d£s d£n+l 
2 ^ r ^ n + l , l ^ s S n . 
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Subtracting the (n + l)st column in J from all other columns we conclude 
from (2.16) that 

(2.17) / = 

0 0 

J 

1 

~dP\ 

dL-+1 

dP, M+l 

( -1 ) M + 1 / . 

Thus 

(2.18) 

Since £n+i = — S"=i èj> we obtain 

d&i+i 

j= (-iy+\n + iy. n (fc-fc). 

(2.19) / = ( - ! ) 2rc+l (»+D! n & w n tti+... + £.+?i). 

Hence J ^ 0 so that P 2 , . . . , Pw+i are algebraically independent. 
The 2n vertices of the ^-dimensional cross poly tope ("octahedron") /3n may 

be chosen to be the permutations of ( ± 1 , 0, . . . , 0). pn and yn have the same 
symmetry group denoted by Cn. The degrees of the basic invariants of Cn are 
given by 2k (1 ^ k ^ n). Now 

p%(x) = E(^-^)2" = 2i: . 
y=i j=l 

(1 ^ jfe g W) . 

We have just shown that the polynomials 5 J * = I x / (1 ^ k ^ n) are algebrai­
cally independent. Substituting xf for xy, we conclude that the polynomials 
P2fc0xO (l û k ^ n) are algebraically independent. 

We note that for the figures any fin, the fact that P m + i , . . . , PWn+i are 
algebraically independent is equivalent to the well-known fact that the power 
sums ]Ci=i x* (1 = & = n) a r e algebraically independent. This is no longer the 
case for the ^-dimensional cube. We may thus say that the difficulty of the 
vertex problem in this case stems from the abundance of vertices of yn. In 
(6, pp. 266-267) the vertex problem is settled in the affirmative for n ^ 7 
but we have no proof yielding the result for all n. 

3. The mean value problem for the exceptional directions. As shown 
in § 2, the solution space 5 to (1.2) can be completely described provided 
y $ ^ , ~ # denoting the exceptional manifold. We now take up the problem of 
describing S when y is an exceptional direction. We do this in detail for the 
dihedral group Dn and for the group 5 4 of the tetrahedron a3. 
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The dihedral group Dn. This group has a simple description if we introduce 
the complex coordinate z = X\ + ix<i. We then choose Dn to be the group 
generated by the linear transformations zf = fs, zf = z, where f = e2iri/n. 
Dn is thus the symmetry group of the regular n-gon {n} with the vertices 
rei<*/n+2**/n) (Q g & < n) y r > 0. The mirrors for the reflections of Z>n have the 
equations 0 = arg s = kw/n (0 ^ fe < 2w). These lines divide the plane into 
2n fundamental regions. The degrees of the basic invariants are 2 and n, \z\2 

and Re(V0 forming a basic set. Thus P2(xi, x2l y) = J\(y)(x\2 + x2
2), 

i \ O i , *2, y) = a(y)(*i2 + x2
2)h + /2(y)[(^i ~ ix2)n + (*i + ^ 2 ) w ] , where 

a(y) is a polynomial in y, Ji(y) and J^OO being the basic invariants introduced 
in Theorem 1.1. Since Jx(y) = c(yi2 + y2

2)1 where c 9* 0, <Jé = {y\ J2(y) = 0{. 
P n ( l , i, y) = 2nJ2(y), so that we conclude that y Ç ̂  if and only if 
Pn0-,i,y) = 0. Now P n ( l , i , y ) = X j i i ( ^ I + 3 ^ ) n , where the vectors 
yj = (3^1*3^2) (1 ^j S 2n) denote the 2n vectors ay (a £ Dn). Let 
Y = yi + y2i. The 2n numbers (y^ + y^i) (I ^ j Û 2n) are identical with 
the 2n numbers f 'F, f ; 'F (0 ^j<n). Thus 

(3.1) P„(l , *, y) = E ( f 'y)" + £ (f ' I T = ?z(Fw + Yn) = 2»| F|" cos *ff, 

where F = | F|«". 
The exceptional directions are thus obtained by setting cos nd = 0. This 

occurs for 6 = ir/2n + kir/n (0 ^ k < 2n). Thus ^ consists of the angle 
bisectors of the 2n fundamental regions determined by the mirrors for the 
reflections of Dn. Since Im(zw) is a homogeneous nth degree polynomial 
vanishing on the reflecting lines 6 = kir/n (0 ^ k < 2n), we may choose 
n(x) = lm(zn). Hence S = D[lm(zn)] provided Re(Fn) ^ 0. If y is a vertex, 
then Re(Fn) = — rn ^ 0. The vertex of the n-gon {n} is therefore not an 
exceptional direction so that the vertex problem is solved for Dn. 

If y Ç ̂ # , then arg F = 7r/2?z + kir/n (0 ^ k < 2n). y is thus a vertex of 
the regular 2n-gon \2n) whose symmetry group is D2n. Hence 5 = D[lm(z2n)]. 
We summarize the above discussion in the following result. 

THEOREM 4.1. Let Dn be the dihedral group generated by z' = e2vi/nz, z' = z. 
Let Y = yi + y2i. If Re(Fw) ^ 0, then the solution space S to (1.1) (G = Dn) 
is given by D[lm(zn)]. If Re(Yn) = 0, then S = D[lm(z2n)]. 

The symmetric group S4. The vertices of the tetrahedron «3 may be chosen to 
be (1, 1, 1), (1, - 1 , - 1 ) , ( - 1 , - 1 , 1), ( - 1 , 1, - 1 ) . Let SA be the group of 
24 linear transformations x/ = ejXff^) (1 ^ j ^ 3), where a(j) is an arbitrary 
permutation of 1, 2, 3 and either all ê  = 1 or one ej equals 1, the other two 
being equal to — 1 . It is easily seen that 5 4 is the group of symmetries of a3. 
The degrees of the basic invariants of S A are 2, 3, 4. The basic invariants 
lu I*i I* m a y be chosen as 

3 
v ^ 2 v ^ 2 2 
/ J Xj , XiX2Xzt 2Li %j %ic ' 
3=1 l^j<féZ 
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16 L. FLATTO AND SR. M. M. WIENER 

A direct computation yields 

CiP2(x,y) = Ji(;y)Ji(x), c2Pz(xfy) = I2(y)I2(x), 
3 3 

. céP4(x, y) = ]£ y? • S */ + 6 X) */**2 Z y/y*2 

= (£y*)h2(x) + \-2i/y; + 6 £ y,V~|/.(*). 

where the CjS are non-zero constants. 
Let 

Ji(y) = ii(y), Uy) = h(y), /.(y) = - 2 Ê y / + 6 Z y/y*2. 

Since Ji(y) = Z ^ = i y / , we h a v e ^ = {y\ J2(y)Jz(y) = 0}. A sketch of^# is 
to be found in (9, p. 68). We now describe the solution space 5 to (1.1) when 
y Ç^#. For each fixed y, we form the ideal &y generated by Pm(x, y) 
(1 ^ m < oo ). We will obtain a finite basis for ^ . We first prove two lemmas 
which will be useful in the remainder of the paper. 

LEMMA 3.1. Let S* be the group of symmetries of a3 and let Pm(x, y) = 
£^€54 (x • ay)m (1 ^ m < 00). Then 

Pm(x,y)= X) -fxaJa(y), 
\a\=m d\ 

where Ja(y) — Z ^ s ^ y ) " . If a = (ai, a2, az), then Ja(y) = 0 unless all ajS 
have the same parity. 

Proof. 

Pm(x,y) = Z (x-*y)m = S Z TT!^(^)a= E ^xaJa{y). 
CTÇSA CCS* \a\=m U" \a\=m a \ 

Let r be the group of permutations a of (yi, y2, y3). Then 

(3.3) Ja(30 = [1 + ( - l ) a i + a 2 + ( _ ! ) - + - + ( _ i r + a 3 ] ^ (oy)«B 

If all the ats do not have the same parity, then two of the three numbers 
di + a2, di + #3, a2 + az are odd and one is even. Thus 1 + (— l)ai+°2 4. 
(_l)«i+«« 4- (_i)«2+«3 = 0, proving the lemma. 

It follows from Lemma 3.1 that for odd m, Ja(y) = 0 unless a1? a2, az are 
all odd. In this case, XiX2Xz\xa, yiy2yz\Ja(y)- We thus obtain the following result. 

LEMMA 3.2. For odd m, we have I2(x)I2(y)\Pm(x, y). 

We now find a finite basis for &v\ we assume throughout the discussion that 
y 9^ 0. We distinguish several cases. The required computations prove to be 
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rather lengthy and the final results are incorporated in a table at the end of this 
section. 

Case I. J2(y) T* 0, Jz(y) = 0. A direct computation yields (Ii(x), I2(x)) == 

(P2(x, y), P3(x, y)). Because of Lemma 3.2, Pm Ç (72) C (P2, P3) for w odd. 
Since Jz(y) = 0, (3.2) shows that P 4 6 (70 C (P2, P3). Writing P 6 (s , y) and 
P8(x, y) as polynomials in Ii(x), I2(x), 73(x) we obtain P6(x, y) G (lu 12) 
and 

(3.4) P8(x, ;y) = Q(x, y) + 60(y)/s2 W , 

where Q(x,y) 6 (A) C (A, 72) = (P2, P 3 ) . 
We show next that 60(y) 5* 0. It then follows from (3.4) that (P2, P3 , P8) = 

(7i, 72, 73
2). Writing out Pm(x, y) as a polynomial in Ii(x), 72(x), 73(x), we see 

that for m ̂  8, P m € (7i, 72, 73
2). It follows that ^ = (7i, 72, 73

2). Now 
7i(l , i, 0) = 0, 73(1, i, 0) = - 1 . It follows from (3.3) that P 8 ( l , i, 0, y) = 
^o(y). Using Lemma 3.1 to compute P 8 ( l , i, 0, y) we obtain 

(3.5) ^ = E y / - 1 4 E (^V + ^V)+35 £ y,V. 

Suppose that b0(y) = 0. Let Uj = yf (1 ^ j ^ 3). Since 7*2 60 5* 0, Uj > 0 
(1 ^ J ^ 3). 7"860 = 0 and b0(y) = 0 become 

3 X w^* = °> 

14 X (^/^A; + UjU*) + 3 5 ^ w/w*2 = 0, 
l^j<k^Z l^j<h^Z 

respectively. We solve (3.6) by introducing the new variables 

3 

Si = S U3> Î2 = ] C WiW*» ^3 = U1U2U3. 

We note that the polynomials appearing in (3.6) are symmetric in U\, u2, uz. 
They can thus be rewritten as polynomials in £1, £2, £3. A straightforward but 
rather lengthy computation shows that (3.6) becomes transformed into 

(3.7) £i2 - 5£2 = 0, Si4 - W £ 2 - 5 2 ^ 3 + 65£2
2 = 0. 

Substituting the first equation of (3.7) into the second, we obtain £i£3 = 0. 
Since £3 = U\U2Uz 5* 0, we have £ 1 = 0. (3.7) then implies that £2 = 0. U\, u2, u% 
are the three roots of the equation uz — %iu2 + %2u — £3 = 0 so that uf = £3 

(1 ^ j S 3). This is impossible since £3 must have complex cubic roots. Thus 
b0(y) ^ 0 a n d ^ = (Ilt 72, 73

2). 
We observe that £i2 — 5£2 = 0, £3 = 0 yield a solution to (3.7). Thus 

J2(y) = 0 and /36O = 0 imply that b0(y) = 0. We use this fact later on in 
Case III . 

(3.6; 3 
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18 L. FLATTO AND SR. M. M. WIENER 

Case II. J2(y) = 0, J8(y) ^ 0. It follows from (3.2) that (P2, P4) = (Ih h) 
and that P 3 = 0. Since / 2 (y) = 0, Lemma 3.2 implies that Pm(x, y) = 0 for w 
odd. Now P6(x, y) = -Rfoy) + &i(y)J22(*0> where P(x, y) G (A) and bi(y) 
is a polynomial in y. If 61(3/) 5* 0, then (P2, P4 , Pe) = (h, I22, i"s). Writing 
Pw(x, 3/) as a polynomial in Ii(x), 12(00), I*(x), we observe that for m ^ 6, 
we have P ro G (/1, 72

2, Is). It follows that ^ = (Ii, 72
2, 73). Since 

J i (V2 f *\ *) = 0, 72(V2, i, *) = - V 2 , we have P 6 (V2 , *, i, y) = 2&i(y). 
Using Lemma 3.1 to compute PeOe, y), we obtain 

(3.8) ïP . (* f y) = 2 i : ^ 6 - Ê y / 

+ TPïî ^ (xfx* + x* V ) * S (y/y*2 + y*4?/) 

, r> 6 ! 2 2 2 2 2 2 

+ 6 2 ! 2 ! 2 ! X i X 2 X 3 ^ i y 2 3 ; 3 , 

(3.9) ^P.(V2,*>i>y) = 2 i : y / - 1 5 £ Cy/y*1 + y*V) 

+ 180y!2y2
23;32. 

Suppose now that bi(y) = 0. Since J2(y) = 0, y;- = 0 for some j (1 g J g 3). 
If 3>3 = 0, then we conclude from (3.9) that 

(3.10) 2(yi6 + y2«) - 15(yiW + yi2y2
4) = 0. 

Set z = y2
2/yi2. (3.10) then becomes 

(3.11) (z + l)(2z2 - 17s + 2) = 0 

so that y2/yi = ± V ( i ( 1 7 ± V 2 7 3 ) ) = =fc i ( V 4 2 db V26). Setting in turn 
y2 = 0 and j i = 0 we find that the common solutions to bi(y) = 0, / 2 (y) = 0 
are given by the 24 rays yff(kl) = t, y^2) = ± J (V42 ± \ /26)/ , 3V(3) = 0, 
where i > 0 and a(j) denotes an arbitrary permutation of 1, 2, 3. Let L\ 
denote the union of these rays. We have shown that &v = (Jlf 72

2, 73) if 
J2W = 0,J*(y) ^ O j ë L L 

We now investigate the case y G L\. A direct computation shows that 
Jz(y) 5e 0 for y G Li so that we have again (P2, P4) = (Ji, i 3 ) . Since &i(y) = 0, 
we have P 6 G (/1) C (A, / s ) . Writing out Ps(x, y), Pi0(*, y), and Pi2(*) as 
polynomials in Ii(x), I2(x), and I8(*0, we find that Pm{x,y) G (Ii, h) for 
m = 8, 10 and Pn(x,y) = S(x,y) + &2(yW(*), where S(x,y) G (Ily Iz) 
and b2(y) is a polynomial in y. We show that b2(y) 9e 0 for y G Li. Thus 
(P2, P4 , P12) = C î, ^24, i*3) for y G Li. Writing out Pm(x, y) as a polynomial in 
Ii(x), I2(x), h(x), we find that for m ^ 12, Pm G (Ii, J2

4, 73). It thus follows 
that for y G Li, &, = (lu h\ h). Let f = e***. Since 7i( l , f, f2) = 
I 3 ( l , f, r2) = 0, I 2 ( l , f, f2) = - 1 , we have P 1 2 ( l , f, f2, y) = b2(y). Since 
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y G i i , yj = 0 for some 7 (1 g j = 3). Suppose that yz = 0. Using Lemma 3.1 
we have 

(3.12) iPi2(*i, x2, xz, yh y2, 0) = 2(x1
12 + x2

12 + Xz12)^12 + y2
12) 

_1_ f 1 2 \ < ^ , 10 12 , M 1Q 2\ / 10 2 , 2 10\ 

+ (!?) E (*,V + **V) • CviV + yiV) 

+ 2(1
fi
2) E *,V-yiV. 

Hence &2(yi, 3>2, 0) = 0 becomes 

(3.13) 2(y? + y,u) - ( ^ ( y i V + ?iV°) 

- © ( y i V + y iV) + 2(1
6
2)yi63'26 = o. 

Since (3/1, y2l 0) £ i i , (3.10) holds. We claim that these two equations have no 
common solutions. It follows that b2{y) 9e 0 for (yh y2, 0) £ i i . The same 
reasoning holds if we assume that yi = 0 or y2 = 0, so that b2(y) 9e 0 for 
y G i i . To see that (3.10) and (3.13) are incompatible, we let z = y2

2/yi2. 
(3.10) and (3.13) then become (3.11) and 

(3.14) 2(s6 + 1) - ( ^ (s5 + *) - (X
4

2) (s4 + z2) + 2 ( 1
6

2 ) , 3 = 0, 

respectively. It suffices to show that (3.14) and 2z2 — 17z + 2 = 0 have no 
common root, which is equivalent to showing that 2z2 — 17z + 2 does not 
divide the polynomial in (3.13). This can be done by a direct computation, 
which we omit. 

Case III. J2(y) = J*(y) = 0. Since J2{y) = 0,yj = 0 for some j ( l £j = 3). 
Assume that 3>3 = 0. Then the two equations J2(y) = 0 and Jz(y) = 0 can be 
solved by setting z = y2

2/yi2. We find that 3 2̂/̂ 1 = ± r _ 1 . Similar calculations 
may be carried out for yi = 0 and y2 = 0. The common solutions to J2(y) = 0, 
Jz(y) = 0 are then given by the 24 rays y^v, = t, yff(2) = ±T±lt, y9{^ = 0, 
where / > 0 and <r(J) denotes any permutation of 1, 2, 3. Let i 2 denote the 
union of these rays, so that y Ç i2 . 

Since J2(y) = 0, Lemma 3.2 implies that Pm(x, y) = 0 for m odd. Equations 
(3.2) show that PA(x, y) G (J2). Now P 6 (s , y) = R(x, y) + b!(y)I2

2(x). It is 
seen by inspection that the rays in i i are distinct from those in i2 . Since i i 
is the solution to J2(y) = bi(y) = 0, we must have b\(y) 9e 0 for y Ç i 2 . Thus 
(P2, P6) = (7lf I2

2). Using (3.4) and (3.5) we have P 8 6 (Ii) C (Ji, /2
2) 

since J2(y) = 0 and ^ ( y ) = 0 imply that b0(y) = 0. Writing out P10 and P12 
as polynomials in Ii(x), I2(x), I*(x), we find that P10 G (Ii, I2

2), Pn(x, y) = 
r ( x , y ) + b3(y)Iz*(x), where P G (Ii, 72

2). We show that 63(y) ^ 0 so that 
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(P2, Pt, P12) = {h, h2, h3)- Writing Pm as a polynomial in Ih I2, h, we find 
tha t forw S; 12 wehaveP» € (h,h2,h"). T h u s ^ = (Ji, 72

2,73
3) îory € L,. 

Since 7i(l , *, 0) = 72(1, i, 0) = 0 and 73(1, i, 0) = - 1 , we have 

Pi*Q.,i,0,y) = -ô»(y) . 

Let (yi, y2, 0) G L2. Using (3.12) we have 

(3.15) iP 1 2 ( l , i, 0, y i , yt, 0) = 4(jx12 + y2
12) - 2yfj(y1

1W + W ) 

+ 2(1
4

2)(yiV + y i V ) - 2 ( 1
6

2 ) y 1 V . 

Let s = y2
2/yi2. Jd(yi, y2, 0) = 0 and b*(y) = 0 become 

(3.16) z2 - 3s + 1 = 0 

and 

(3.17) 2(z6 + 1) - ( ^ C + «) + ( ^ ( s * + / ) - (1
6

2)Z
3 = 0, 

respectively. 
Jziyu y2, 0) = 0 and bz(y) = 0 will be incompatible provided that (3.16) 

and (3.17) have no common root. However, (3.16) and (3.17) have a common 
root if and only if z2 — 3z + 1 divides the polynomial of (3.17). A direct com­
putation, which we omit here, shows that this is not so. Hence, if (yi, y2j 0) £ L2, 
then bz(y) T£ 0. Reasoning in a similar fashion for y\ = 0 and y2 = 0, we see 
that bz(y) ?* 0 for y G L2. Thus for y € L2, we have SPy = (JTi, I2

2, I3
3). 

We observe that in all cases &y — (Qi, Q2l Qz), where Qj (1 Sj S 3) is 
homogeneous and Qi(x) = Q2(x) = Qz(x) = 0 if and only if x = 0. Further­
more, S is the solution space to the system Qj(d/dx)f = 0 (1 ^ i ^ 3). It 
follows from a result in (6, the corollary to Theorem 2.2) that 5 is a finite-
dimensional space spanned by homogeneous polynomials and dim S = kik2k3, 
deg 5 = ^2j=i(kj — 1), where deg Qj = kj. dim 5 denotes the dimension of 5 
while deg 5 denotes the maximum degree of the polynomials in S. We summarize 
our results in the following table: 

Case ideal SPV dim S deg 5 

My) 9*0,J*(y) 7*0 (Ii, h, h) 24 6 

My) * 0, Js(y) = 0 (lu h, h2) 48 10 

My) = o, My) * o, (lu M h) 48 9 

My) = o, My) * o, 
y eu 

(lu h\ I.) 96 15 

My) = o, My) = o (7lf J2
2, J3

3) 144 17 
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We note that if J2(y) 7* 0, Jz(y) 7* 0, then S = DU, where 

It is easily checked that J 2 ( l , 0, 0) = 0, J 8 ( l , 0, 0) ^ 0, (1, 0, 0) g LlB Thus 
^(l.o.o) = &v for J2(y) = 0, J3(y) ?* 0, y $ Lx. The orbit of (1, 0, 0) under G 
is given by the permutations of ( ± 1 , 0, 0), these being the vertices of the 
octahedron /33. It follows from the vertex problem that in this case 5 = DTI, 
where 

II = X1X2X3 I T (Xj2 — xk
2). 

It is not known whether a similar characterization of S can be given in the 
remaining cases. 
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