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Low-dimensional analysis and modelling
of the flow over a forward-facing step
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We consider the direct numerical simulation of the flow over a forward-facing step
protruding in a turbulent boundary layer. Proper orthogonal decomposition (POD) is
applied to the velocity field in different regions using Fourier modes in the spanwise
direction. The upstream flow is characterized by a structure with a spanwise modulation of
the order of the step height, the origin of which is consistent with a centrifugal instability.
The structure is associated with ejections over the step of low-speed fluid from the
upstream recirculation, and organized into streaks through the action of strong spanwise
motions along the step face. The spanwise-averaged instantaneous momentum deficit
created by the ejections is directly related to the maximal shear rate at the edge of the
step, and is well correlated with the dynamics of the downstream recirculation. The most
energetic patterns consist of three-dimensional motions with a large spanwise wavelength
located in the shear layer developing at the edge of the step, as well as two-dimensional
fluctuations downstream of the reattachment. A linear model based on the interaction of
the mean flow with the dominant POD modes is able to recover the main frequencies of
the fluctuations at these wavenumbers. Including the time variations of the ejections into
the model yields temporal spectra that resemble qualitatively those computed from the
simulation. The results suggest that the global dynamics of the flow are at least partly
driven by linear mechanisms and depend on the characteristic structure identified in the
upstream region close to the step.

Key words: low-dimensional models, boundary layer separation

1. Introduction

The flow over a step is of interest for a number of engineering applications, such as
wind turbines, heat exchangers, combustion chambers, as well as transport vehicles. Its
behaviour is dictated by the physics of separation, as it is characterized by two recirculation
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Figure 1. Numerical configuration (not to scale).

zones or bubbles, one at the base of the step and one on top of the step (as illustrated in
figure 1). The dynamics of separated flows involve a wide range of frequencies, which are
generally divided into three ranges: low frequencies, generally associated with ‘flapping’
or ‘breathing’ of the recirculation; medium frequencies, associated with large-scale
vortex shedding downstream of the recirculation; and high frequencies, associated with
instabilities in the developing shear layer and small-scale turbulence (Kiya & Sasaki 1983;
Weiss, Mohammed-Taifour & Schwaab 2015; Tenaud et al. 2016).

Although the flow can be assumed to be statistically two dimensional if the
width-to-height ratio of the step is large enough (W/H > 6–10 Martinuzzi & Tropea
1993; Sherry, Jacono & Sheridan 2010), its fluctuations are inherently three dimensional
(Largeau & Moriniere 2007). Hammond & Redekopp (1998) showed that globally
unstable dynamics can be expected in a recirculation bubble if the backflow velocity
reaches 30 % of the incoming velocity. Lanzerstorfer & Kuhlmann (2012) carried out
linear stability analysis of channel flows with various constriction ratios and identified
a three-dimensional (3-D) global critical mode in the recirculation zone on top of the step,
consisting of stationary streaks with a wavelength equal to three times the step height.
The sensitivity of the flow to upstream conditions has been documented in experimental
studies (Stuer, Gyr & Kinzelbach 1999), as well as in numerical studies (Wilhelm, Hartel
& Kleiser 2003; Marino & Luchini 2009; Lanzerstorfer & Kuhlmann 2012). A major
finding of these studies is that convective instabilities developing upstream can influence
the formation of instabilities at the step face.

The upstream region of the step has therefore been the focus of specific investigation
(Pearson, Goulart & Ganapathisubramani 2013; Graziani et al. 2018). The existence of
streaky structures fed by spanwise motions along the step face was supported by the
experimental observations of Martinuzzi & Tropea (1993), Stuer et al. (1999), Largeau
& Moriniere (2007) and Pearson et al. (2013). In the case of an immerged step, where
the step height H is smaller than the boundary layer thickness δ(δ/H = 1.47), Pearson et
al. (2013) were able to relate ejections over the step with the convection of low-velocity
regions originating in the upstream boundary layer, thereby establishing a connection
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Low-dimensional analysis and modelling

between the upstream and downstream region. Graziani et al. (2018) examined the case
of a protruding step (δ/H = 0.49) and found evidence that the downstream recirculation
was at least partly driven by the low-frequency oscillations of the upstream recirculation,
in that the enlargement of the upstream separation was associated with a contraction of
the downstream separation. Evidence of an anti-correlation was also found by Fang et al.
(2021) in the case of an immerged step (δ/H = 2), while a previous study by the same
group (Fang & Tachie 2020) found a positive correlation when the step was placed in a
rough turbulent boundary layer such that δ/H = 6.5.

These results confirm that the spatio-temporal characteristics of the recirculation zones
depend on various parameters of the incoming boundary layer, such as the ratio δ/H,
the turbulence level and the Reynolds number based on the external velocity U and the
boundary layer thickness δ. A discussion of the influence of these parameters can be
found in Sherry et al. (2010). When the step is immersed in the boundary layer (δ/H > 1)
(Pearson et al. 2013; Fang et al. 2021), the flow on top of the step is then subject to strong
mixing, which tends to reduce the size of the separation zone, but is also dependent on
the velocity gradients and, therefore, the Reynolds number. As δ/H increases, the size
of the downstream recirculation decreases (Largeau & Moriniere 2007). Moss & Baker
(1980), Kiya & Sasaki (1985) have shown that a higher turbulence intensity results in
a higher growth rate of the roll-up vortices developing in the shear layer between the
separation point and the reattachment zone. The higher entrainment rate associated with
larger vortices leads to a reduction of the separation zone. Sherry et al. (2010) showed
that for several different ratios δ/H, two regimes could be identified, with a cutoff
value of Reh = 8500 that appears to be independent of δ/H: a low-Reynolds-number
regime, where the recirculation length increases linearly with the Reynolds number, and
a high-Reynolds-number regime, where it seems to be essentially independent from the
Reynolds number, and which Sherry et al. (2010) attribute to the shear layer becoming
turbulent at separation. In addition, the influence of the wall on the development of the
shear layer is still an open question. McGuiness (1978) studied the internal separated flow
at the inlet to a parallel pipe and found that the shear layer development was very similar
to that of a mixing layer without the presence of the wall over most of the recirculation
length, while wall effects apperated close to reattachment.

Different statistical tools have been used to understand the physics of the flow
over the step, including cross-correlations (Largeau & Moriniere 2007), as well as
quadrant analysis of the turbulent motion (Hattori & Nagano 2010). Proper orthogonal
decomposition (POD), a statistical technique (Lumley 1967) that extracts characteristic
patterns from turbulent flows in an energetically optimal manner, has been applied to
experimental measurements (Pearson et al. 2013; Graziani et al. 2018; Fang & Tachie
2020) as well as numerical data (Fang & Tachie 2020; Fang et al. 2021). As far as we
know, in experimental as well as numerical studies, POD has been only limited to plane
sections in the case of the forward-facing step, despite the 3-D nature of the flow. However,
application of POD to volumes has been shown to be well suited for the analysis and
low-order model reduction of complex turbulent flows (see, for instance, Aubry et al. 1988;
Podvin et al. 2021).

In the present paper, a fully 3-D POD analysis of the flow is carried out for the flow over
a step protruding from a turbulent boundary layer δ/H < 1. Owing to spatial homogeneity
of the geometry, POD modes in the spanwise direction are by construction Fourier modes,
so that the decomposition is applied independently for each Fourier spanwise mode. In this
framework, the approach is to construct a low-dimensional representation for the flow in
order to better understand its underlying physics and to model its dynamics. The first step is
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therefore to identify the features of the most energetic patterns upstream and downstream
of the step, which constitute the building blocks of the representation. The next step is
to use this representation to investigate the connection between the upstream and the
downstream regions. The goal is then to construct a reduced-order model that can capture
the main flow dynamics. The paper is therefore organized as follows. After a description
of the numerical set-up in § 2, we present a brief review of POD in § 3. The flow in the
upstream region of the step is discussed in § 4. Section 5 provides a description of the
dominant dynamics over the step. The connection between the two recirculation zones is
examined in § 6. A model to predict the amplitudes of the most energetic fluctuations is
presented in § 7. A conclusion is given in § 8.

2. Configuration

2.1. Set-up
The configuration, shown in figure 1, consists of a two-dimensional (2-D) forward-facing
step of height H, which will be the reference length throughout the paper. The Reynolds
number Re based on the incoming velocity U and step height is 8300. The streamwise,
vertical and spanwise directions will be respectively referred to as x, y, z and the velocity
components as u, v, w or, equivalently, u1, u2, u3. The bottom end of the domain consists
of an impermeable wall. A symmetry condition is imposed at the top end. No corrections
for blockage effects are applied. Periodic boundary conditions are used in the spanwise
direction.

The dimensions of the domain are (Lx, Ly, Lz) = [37, 22, π]H. The step is located at the
origin of the domain at a distance of 17H from the upstream end. A convective boundary
condition is used at the outlet of the domain with a correction procedure to ensure the mass
flow rate conservation. The domain length is long enough to prevent small perturbations
generated by the outlet conditions from spreading into the region of interest for the study.
Turbulent inlet boundary conditions were implemented using the synthetic eddy method
of Pamies et al. (2009) and the mean velocity profile was given by the numerical data
of Spalart (1988) (AGARD database) for a turbulent boundary layer with a zero pressure
gradient at a Reynolds number based on the momentum thickness Reθ = 300. Validation
of the synthetic procedure was carried out for a turbulent boundary layer in the absence
of a step. It also made it possible to define the boundary layer thickness to step height
ratio δ/H, where δ was estimated as the flat plate boundary layer thickness at the same
streamwise position as the step. It was found that δ/H ∼ 0.8, which means that the step is
slightly protruding from the boundary layer. In all that follows, unless specified otherwise,
all quantities will be expressed in terms of the step height H and incoming velocity U.

2.2. Numerical method and implementation
The incompressible Navier–Stokes equations were solved with the in-house code
SUNFLUIDH (Fraigneau 2024), which is based on a second-order finite volume
formulation. The spatial discretisation of convective and viscous terms is carried out
with a second-order centred scheme on a staggered Cartesian grid following a MAC
approach (Harlow & Welch 1965). A second-order backward formulation is used for the
time derivative, with a semi-implicit treatment of the viscous term in order to strengthen
the numerical stability in regard to the time step. An incremental projection method is used
to compute the pressure field (Goda 1979; Guermond, Minev & Shen 2006). For each time
step, a predicted velocity field is obtained from integration of the Navier–Stokes equations
by means of the alternating-direction implicit method (Peaceman & Rachford 1955;
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�xmin �xmax �ymin �ymax �z

Upstream region (boundary layer) (x < −H ; 0 < y < H) 12.2+ 12.2+ 0.30+ 4.05+ 3.68+
Upstream region (footstep bubble) (−H < x < 0; 0 < y < H) 4.5+ 4.5+ 0.30+ 4.05+ 3.68+
Downstream region (over-step bubble) (0 < x < 4H; H < y < 2H) 4.5+ 4.5+ 0.34+ 4.05+ 3.68+
Downstream region (boundary layer) (4H < x; H < y < 2H) 4.5+ 10.8+ 0.34+ 4.05+ 3.68+

Table 1. Spatial resolution of the computational grid in wall units.

Beam & Warming 1976). The pressure field is then computed by solving Poisson’s
equation with a relaxed successive over-relaxation method coupled with a geometric
multigrid method to improve the convergence of the solution. The solution of Poisson’s
equation allows us to update both the pressure field and the velocity field so that the latter
has a divergence-free property. A complete description of the algorithm is presented in
Faugaret et al. (2022). This code has already been used for a number of studies, including
bluff-body flows (Podvin et al. 2021).

The domain was divided into 200 subdomains (5 × 4 × 4 upstream of the step and
10 × 3 × 4 downstream of the step), each of which had a grid size (128 × 192 × 96).
The cell sizes ranged from 0.01 to 0.027 in the streamwise direction x, 0.00013 to 0.075
in the wall-normal direction in order to better resolve the flow near the surfaces, near
the step edge and the shear layer growth capping the recirculation bubble downstream of
the step. The spanwise resolution was uniform and equal to 0.0082. Table 1 sums up the
spatial resolution of the grid in the main regions of interest. The resolution is expressed
in wall units based on conditions at the inlet (Reθ = 300). The time step was constant
and taken equal to 4.510−4 units, which yielded a Courant–Friedrichs–Lewy value of less
than 0.4 over the range of integration. The simulation was run for 730 time units, which
required about 900 000 CPU hours on the HPE SGI 8600 cluster at IDRIS (Institut du
Développement et des Ressources en Informatique Scientifique). Data acquisition of 3-D
flow fields was carried out once statistical convergence was established. The DNS results
used in this study are part of the database https://datasetmeca.lisn.upsaclay.fr/.

2.3. Flow statistics
Sufficiently far away from the step, the flow corresponds to that of a flat plate boundary
layer. A good agreement of the profiles with recent experimental results has been
established in Larose et al. (2024). The mean velocity profile and turbulent intensities at
x = −6.6 are represented in figure 2 and agree well with the results of Spalart (1988). The
shape factor, defined as the ratio between the displacement and the momentum thicknesses
δ1/θ , is higher by 6 % (1.64 for a Reynolds number based on the momentum thickness of
Reθ = 570) than in the flat plate case (1.55, Erm & Joubert 1991), which suggests that the
influence of the step begins to be felt at this distance.

The streamwise component of the time-averaged velocity U = 〈u〉, where 〈·〉 represents
a time average, is shown in figure 3(a). The flow experiences an adverse pressure gradient
as it approaches the step. Two recirculation zones, one upstream and one downstream, are
delimited by a black line corresponding to the contour U = 0. The centre of the upstream
recirculation zone is located at x = −0.4, with a separation point located at x = −1.6
and extends up to y = 0.55. The recirculation length of the downstream zone is about
xR = 4.3, which is in good agreement with results from the literature (Moss & Baker 1980;
Largeau & Moriniere 2007). The height of the downstream recirculation is about 0.25.
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Figure 2. Mean velocity field and turbulent intensities ui,rms at x = −6.6. Wall units are based on the wall
shear at x = −6.6.
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Figure 3. (a) Mean streamwise profile 〈U〉, (b) streamwise variance u′2, (c) vertical variance v′2 and spanwise
variance w′2. The crosses correspond to the positions of the origin of the streamlines in figure 10. The averages
were taken in time and in the spanwise direction. Results are shown for (a) 〈U〉, (b) 〈u′2〉, (c) 〈v′2〉 and (d) 〈w′2〉.

The variance of each component of the fluctuations is shown in figure 3(c,d). The
fluctuations are maximal in the shear layer developing at the edge of the step above the
separation bubble. The streamwise component is dominant and the spanwise fluctuations
are more intense than the wall-normal fluctuations.

The pressure coefficient on the step is shown in figure 4. Comparison with data from
Farabee & Casarella (1986) and Hahn (2008) corresponding to slightly immersed cases
δ/H = 2.4 and δ/H = 1.5 shows a very good agreement upstream of the step, with similar
maximum values in the downstream area. We observe however a variation in the size
of the adverse pressure gradient region downstream of the step, which could be due to
the difference between the experimental (immersed) set-ups and our numerical (slightly
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Figure 4. Mean pressure coefficient over the step. Comparison with the experimental data of Hahn (2008)
and Farabee & Casarella (1986). The averages were taken in time and in the spanwise direction.

protruding) configuration. We note that better agreement is obtained for the ratio of 1.5
(Hahn 2008) that is closer to our case.

3. Proper orthogonal decomposition

Our analysis of velocity fluctuations will be based on POD. Proper orthogonal
decomposition is a statistical technique (Lumley 1967) that decomposes any
spatio-temporal field q defined over a domain Ω into a sum of spatial modes Φ, the
amplitudes of which vary in time. The spatial modes Φ are the principal directions of the
autocorrelation tensor, which is built from a collection of fields or snapshots. The modes
are optimal in the sense that the reconstruction error between the original snapshots and
any linear reconstruction based on N modes is minimal for the POD modes.

Due to the statistical homogeneity in the spanwise direction (z), POD modes are
Fourier modes in that direction (Holmes, Lumley & Berkooz 1996). The decomposition
is therefore applied in Fourier space in the spanwise direction and any field q can be
written as

q(x, y, z, t) =
∑

k

q̂
k

ei2πkz/Lz + c.c. =
∑

k

∑
n

√
λn

kan
k(t)Φ

n
k(x, y) ei2πkz/Lz + c.c., (3.1)

where c.c. represents the complex conjugate. Here q will be taken equal to the fluctuating
velocity q = u − U. The positive quantity

√
λn

k represents the contribution of the mode
Φn

k to the variance of the fluctuations. The spatial modes Φn
k and temporal amplitudes an

k
are complex for k /= 0 and purely real for k = 0. By construction, at each spanwise Fourier
wavenumber, the spatial modes are orthogonal and the temporal amplitudes uncorrelated.
They are also normalized so that

∫
Ω

Φn
k ·Φm∗

k dx dy = δnm and 〈an
kam∗

k 〉 = δnm, where ∗
represents the complex conjugate. For each spanwise wavenumber k, the amplitudes an

k(t)
and modes Φn

k are obtained by applying the method of snapshots (Sirovich 1987) to the
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temporal correlation matrix obtained from Ns snapshots, i.e.

Cmp
k = 1

Ns

∫
x

∫
y

q̂
k
(x, y, tm)q̂∗

k
(x, y, tp) dx dy, (3.2)

and solving the eigenproblem
Cmp

k Apn
k = λn

kAmn
k , (3.3)

where the nth column of the matrix A is such that Apn
k = an

k(tp), and a summation
convention is used for the p index. Here λn

k represents the contribution of the nth POD
mode to the kth Fourier mode of the correlation. Since λn

−k = λn
k for k > 0, only the

positive part of the spectrum will be represented. However, to account for the contribution
of both negative and positive wavenumbers to the variance, we used a rescaling factor of
2 when representing the eigenvalues at non-zero wavenumbers.

The modes Φn
k(x, y) can be obtained from

Φn
k(x, y) = 1√

λn
k

Ns∑
p=1

an
k(tp)q̂k

(x, y, tp). (3.4)

Equation (3.3) shows that each vector of amplitudes An
k and, therefore, each spatial mode

Φn
k(x, y) is defined within an arbitrary phase.
We denote φ

n,i
k the ith velocity component of the nth POD mode associated with the kth

Fourier wavenumber. The number of snapshots was taken to be 940 fields, separated by 0.5
convective time units. No significant change in the dominant modes was observed when
only 600 fields were considered. Since the fluctuations are dominant downstream of the
step, POD was first limited to the upstream region close to the step in order to extract local
energetic motions there. We then applied POD to the velocity in a volume comprising
the upstream region and a region downstream of the step. The labels up and ds will be
used to refer respectively to the upstream and the downstream region to remove possible
ambiguity, but will be omitted otherwise.

4. Upstream dynamics

4.1. Dominant motions
A first description of the flow is given by the spatial distribution of the lowest and most
energetic spanwise Fourier modes for each velocity component, which is represented in
figure 5 for the region directly upstream of the step. The vertical velocity is most important
for the lower wavenumbers k = 1 and k = 2 with a maximum at the step mid-height. The
streamwise component is most important for modes k = 3 and k = 4 with a maximum
close to the step corner at x = −0.3 and y = 0.7. It is also associated with strong spanwise
components along the step face close to the edge.

Proper orthogonal decomposition was applied to the fluctuating velocity field in the
upstream region Ω

up
x × Ω

up
y × Ω

up
z = [−6, 0] × [0, 1.5] × [0, π]. The POD eigenvalues

λ
n,up
k are shown in figure 6 for the first spanwise wavenumbers. As expected from the

energy spectra in figure 5, the largest eigenvalues λ1,up
k correspond to the wavenumbers

k = 2, 3, 4, and are about equal. For these wavenumbers, the first eigenvalue λn
k is more

than twice as large as the next one, which indicates the importance of 3-D coherent
motions associated with the first mode. The eigenvalues λn decay as n−1 for higher-order
modes.
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Figure 5. Spatial distribution of the spanwise Fourier transform of the velocity in the upstream region.
(a) Streamwise component 〈|ûk|2〉, (b) vertical component 〈|v̂k|2〉, (c) spanwise component 〈|ŵk|2〉.
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Figure 6. The POD spectrum λn,up
k in the upstream domain. The eigenvalues are rescaled by the factor

2 − δk0 to account for the contribution of positive and negative wavenumbers.

The eigenvalue of the largest fluctuating spanwise invariant mode λ1,up
0 is about an

order of magnitude less than the dominant ones. The streamwise and the normal velocity
components φ

1,1(up)

0 and φ
1,2(up)

0 are represented in figure 7 on which we also reported the
streamline 〈U〉 = 0 delimiting the recirculation zone. The step height is delimited with a
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Figure 7. Velocity-based POD dominant spanwise invariant mode Φ
1,up
0 : streamwise (a) and vertical

(b) component. The black line represents the 〈U〉 = 0 contour. The dashed line represents the step height.
Results are shown for (a) Φ

1,1(up)

0 and (b) Φ
1,2(up)

0 .

horizontal dashed line. The mode is characterized by a strong horizontal motion close to
the edge of the recirculation in the region y < 0.5, which coincides with a vertical motion
of nearly equivalent intensity along the step face above the recirculation in the region x >

−0.5. A weaker horizontal (respectively vertical) motion of the opposite sign is observed
in the region y > 0.5 (respectively x < −0.5). The mode Φ

1(up)

0 therefore represents
momentum transfer from the streamwise to the wall-normal direction: it constitutes a
spanwise invariant vortex that oscillates non-harmonically back and forth.

The most energetic mode corresponds to k = 3 or λz ∼ 1.03 and is shown in figure 8.
Other dominant wavenumbers k = 2 and k = 4 were found to have generally similar
features. The main wavelength λz is in good agreement with Fang et al.’s (2021) results,
who found a dominant wavelength of 1.32. The streamwise component of the mode Φ

1(up)

3
captures 70 % of its energy and is of constant sign over a region connecting the upstream
boundary layer with the recirculation over the step. The mode is characterized by much
weaker vertical fluctuations (5 % of the energy), which are negatively correlated with
the streamwise component over the step, so that the corresponding pattern is consistent
with ejections of low-speed fluid. Although the spanwise motion represents only 25 % of
the total mode energy, it is characterized by intense fluctuations (twice as large as in the
streamwise direction) in a very thin layer, which is less than 0.1 thick and extends from
the top of the recirculation to over the top of the step. A weaker fluctuation of the opposite
sign is also noticeable upstream of the step. The presence of both positive and negative
fluctuations could be consistent with vortical motion aligned with the vertical axis along
the step face.

The spectra of the amplitudes a1,up
k are represented in figure 9. Since the amplitudes are

complex for non-zero Fourier modes, their Fourier transform is generally not symmetric
in frequency space ân

k(−f ) /= â∗n
k ( f ). The presence of a significant asymmetry in the

spectrum can be associated with a persistent drift in physical space. In the present
case the spectrum appears to be nearly symmetric, which does not make it possible to
identify specific convective motions. The dominant part of the spectra for the different
wavenumbers is located in the same low-frequency range [0, 0.05], which suggests that
their dynamics are connected.

4.2. Characteristic structure
The label up will be implicit throughout the paragraph. It would be helpful for physical
interpretation to educe a characteristic spatial or coherent structure associated with the
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Figure 8. The POD velocity eigenmodes (a,c,e) Re[Φ1,up
3 ] and (b,d, f ) Im[Φ1,up

3 ]. From top to bottom row:
streamwise, vertical and spanwise component. The black line represents the 〈U〉 = 0 contour. The dashed line
represents the step height.

dominant POD modes, that could be compared with experimental observations such as
particle tracking velocimetry visualizations (Stuer 1999) or numerical approaches such as
stochastic estimation (Fang et al. 2021). We note that reconstructing a physical structure
from Fourier POD modes is different from applying POD directly in the physical space,
since the temporal amplitude of each mode an

k also depends on the wavenumber. This
means that each term

√
λn

kan
k(t)Φ

n
k(x, y), which we rewrite as a product an

k(t)Φ̃
n
k(x, y),

where Φ̃
n
k = √

λn
kΦ

n
k corresponds to a convolution in physical space. As a result, the

expansion

q(x, y, z, t) =
∑

n

∑
k

an
k(t)Φ̃

n
k(x, y) ei2πkz/Lz =

∑
n

∫ π

z′=0
an(t, z′)Φn,C(x, y, z − z′) dz′.

(4.1)

If the average energy of the kth Fourier component of a1 is taken to be 1, it follows
that the kth Fourier component of Φ1,C is given by the POD mode λn

k |Φ1
k(x, y)|2.

However, this is not enough to reconstruct Φ1,C in physical space as the phases of the
Fourier components are arbitrary. Additional assumptions are therefore required in order
to determine Φn,C in physical space. A discussion of this issue can be found in Holmes
et al. (1996), who proposed a solution based on the determination of the bi-spectrum.
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Figure 9. Temporal spectrum of the dominant upstream POD velocity amplitudes |â1,up
k |2.

Moin & Moser (1989) applied this method to the case of a turbulent channel flow in order
to educe a ’characteristic eddy’ from 2-D Fourier mode components, but also explored
alternative approaches based on eigenfunction continuity with respect to the wavenumber
as well as spatial compactness.

Following their lead, we choose to guarantee spatial compactness of the structure, which
is easy to do in one-dimensional Fourier space. As shown by Moin & Moser (1989),
this means minimizing the phase difference between the modes – the Fourier coefficients
should all be real and positive for the sum of the modes to reach its maximum. This will
define a structure in physical space but will leave its absolute position in the spanwise
direction arbitrary since due to homogeneity only the phase differences of the modes can
be determined. We therefore computed for each mode Φ1

k an average phase α1
k over the

domain and over each component, using

α1
k =

3∑
i=1

∫∫
Ω

up
x ×Ω

up
y

|φ1,i
k (x, y)|2|Arg[φ1,i

k (x, y)] dx dy, (4.2)
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where φ
1,i
k is the ith component of the velocity POD mode and Arg is its argument. We

recall that
∫∫

Ω
up
x ×Ω

up
y

φ
1,i
k (x, y)φ1,i∗

k (x, y) dx dy = 1. A characteristic structure was then
reconstructed from the dominant wavenumbers k ≤ 4 as

Φ1,C(x, y, z) =
4∑

k=−4

√
λ1

kΦ
1
k(x, y) e2 iπkz/Lz−α1

k , (4.3)

where the contribution Φ1
k of each wavenumber k to the sum was weighted by the

characteristic intensity
√
λ1

k . This determines the amplitude of the structure.
The streamlines of the field corresponding to the superposition of the mean flow and

the reconstructed structure Φ1,C are represented in figure 10 for three different sets of
original locations (both forward and backward time integration are performed). Each set
of locations consists of a horizontal line along the step face: one close to the inward corner
(x = −0.05, y = 0.1), one just above the mean recirculation (x = −0.05, y = 0.6) and one
just above the step edge (x = −0.05, y = 0.9). Each type of streamline is associated with
the same well-delimited spanwise regions of fluid upstream, illustrating the compactness
of the representation. Vizualization of the streaky pattern created by the structure is
provided by representing the contour lines of the streamwise velocity in the vertical
plane at the step corner x = 0 in each subplot. Different flow patterns associated with
the characteristic structure Φ1,C can thus be identified.

Near the bottom wall (figure 10a), fluid from the incoming boundary layer gets trapped
within the recirculation zone, but then leaves it after a few spins and is ejected over the
step. A good agreement is found with experimental (Stuer et al. 1999) and numerical
observations (Fang et al. 2021, figure 14a). The twisting and ejecting motions from within
the recirculation zone are associated with open recirculation streamlines, which cannot
be captured by a 2-D representation. Comparison of the incoming streamlines with the
lifted-up streamwise velocity contours in the vertical plane at the step corner indicate that
the ejected fluid is slower than the mean flow.

At mid-height (figure 10b), flow separation takes place, due to the strong spanwise
motions close to the wall. Above the recirculation zone, the flow is collected into different
low-speed streaks, which are then ejected over the step. Note that the location of these
ejections generally coincides with the fluid leaving the recirculation. Just underneath
the step at y = 0.9 (figure 10c), most of the flow streamlines spread out from upstream
locations further away from the wall and are less likely to get trapped in the recirculation
zone. As a result, they reach the wall with a higher velocity (as evidenced by the
streamwise contour lines in the vertical plane) and without being shifted in the spanwise
direction.

4.3. Centrifugal instability
We now investigate the origin of this structure. Due to the presence of the step, the mean
flow is characterized by a strong curvature (see figure 3), so that a possible formation
mechanism could be a centrifugal instability. A necessary condition for the existence of
this instability is given by an inviscid criterion (Drazin & Reid 1982) based on the Rayleigh
discriminant Ψ that, following Beaudoin et al.’s (2004) approach for a backward-facing
step, can be defined as

Ψ = 2UmΩz

R
, (4.4)
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Figure 10. Streamlines of the characteristic upstream structure coloured by the streamwise velocity.
Streamlines go through the lines x = −0.1, y = 0.1 (a); x = −0.05, y = 0.6 (b) and x = −0.05, y = 0.95 (c).
See text for more details.
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Figure 11. Contour lines of the Rayleigh discriminant Φ – values from −0.30 to −0.54 with increments of
0.03. The lines are superposed with (a) the time-averaged streamwise velocity component U and (b) the local
Görtler number (see text for definition). The region where the Rayleigh discriminant Φ is positive is coloured
in white.

where U2
m = U2 + V2, Ωz = ∂V/∂x − ∂U/∂y and R is the local radius of curvature

obtained from Sipp & Jacquin (2000) as

R = (U2 + V2)3/2

Uay − Vax
, (4.5)

where ax and ay correspond to the components of the convective acceleration U.∇U.
When the Rayleigh discriminant is negative, the flow is potentially unstable to a centrifugal
instability. The region where the Rayleigh discriminant is negative with a large modulus
is represented in figure 11. It is characterized by two local minima corresponding to
the respective local maxima of the streamwise and spanwise velocity fluctuations (see
figure 5).

However, for instability to occur, curvature effects need to overcome the effect of
viscosity, a relative measure of which is given by the Görtler number

Go = Ufsδ
3/2

ν
R−1/2, (4.6)

where in the classical laminar Görtler problem (Saric 1994), δ corresponds to the boundary
layer thickness and Ufs is the free-stream velocity (here Ufs = 1). Note that although we
used a description based on a Görtler number, we did not find any clear evidence of Görtler
vortices in the flow. In the present case, the flow is (weakly) turbulent and, as proposed
by Tani (1962), the stability characteristics can be determined in a turbulent case if the
viscosity is replaced by the turbulent eddy viscosity νt, for which we can use Clauser’s law
νt ∼ 0.018Uδ1. Following Dagaut et al. (2021), we computed a turbulent Görtler number

Go = Ufsδ
3/2
1

νt
R−1/2 = δ

1/2
1

0.018R1/2 , (4.7)

where the displacement thickness δ1 was estimated at the position of the step in the flat
plate turbulent boundary layer.

Figure 11 shows that the upper region close to the step edge is characterized by
both a high Görtler number and strongly negative values of the Rayleigh discriminant.
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Figure 12. The POD spectrum λn
k in the full domain for the largest spanwise wavenumbers k ∈ {0, . . . 4}.

The eigenvalues are rescaled by the factor 2 − δk0 to account for the contribution of positive and negative
wavenumbers.

Comparison of figure 11 with figure 5 suggests that the region around x = −0.2, y =
0.8, corresponding to the maximum streamwise fluctuation intensity, could be a good
candidate for the origin of the instability. An interesting parallel can be drawn with Brès
& Colonius’s (2008) study of the flow over a cavity. Using 3-D linear stability analysis
and direct numerical simulation (DNS), they provided evidence of a centrifugal instability
mechanism with a spanwise wavelength of the order of the cavity depth for shallow
cavities, which is comparable with the dominant wavelengths found upstream of the step.

5. Full domain

Proper orthogonal decomposition was then applied to the domain consisting of both the
upstream domain Ω

up
x × Ω

up
y × Ω

up
z = [−6, 0] × [0, 1.5] × [0, π] and the downstream

region Ωds
x × Ωds

y × Ωds
z = [0, 7] × [1, 7] × [0, π]. Figure 12 represents the dominant

POD eigenvalues λn
k for the velocity for the first spanwise wavenumbers. As mentioned

in § 3, the contribution of the negative wavenumbers was lumped with that of the positive
ones, so that a factor αk of 2 was used in the representation of the non-zero spanwise
wavenumbers. Unlike the upstream case, the most energetic wavenumbers correspond
to the lowest ones, i.e. k = 0 and k = 1, and several eigenmodes make nearly equally
important contributions to the energy at each spanwise wavenumber, which indicates a
relatively complex organization of the flow. The discussion in this section will be focused
on the wavenumbers k = 0 and k = 1.

5.1. Zero spanwise modes
Figure 12 shows that the fluctuating velocity eigenvalues for the spanwise invariant modes
k = 0 are organized in pairs, of the form 2n − 1, 2n for n ≥ 1, particularly for the first three
couples of modes. The corresponding velocity eigenmodes are represented in figure 13.
One can see that they correspond to 2-D, roll-like structures shed from the downstream
recirculation bubble. The streamwise component of the modes is important at the location
of reattachment, which suggests that the modes could also be associated with the breathing
or flapping motion of the separation bubble.
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Figure 13. The POD eigenmodes Φn
0; (a,c,e,g) streamwise component Φ

n,1
0 and (b,d, f,h) vertical component

Φ
n,2
0 . The black line represents the contour 〈U〉 = 0.

The spectra of the corresponding amplitudes are represented in figure 14. One can see
that the range of frequencies covered by the spanwise-averaged velocity is the same for
each pair n. As we will see below, the organization of the modes into pairs is consistent
with convective motion. For the first pair of eigenmodes, two frequencies, one around 0.10
and one around 0.13, can be identified. These values are consistent with the characteristic
value of fxR/U = 0.6 associated with vortex shedding (Kiya & Sasaki 1983) since we have
xR = 4.3. For the higher-order pairs, the frequency at 0.10 can still be identified, but the
dominant lower-frequency part of the spectrum is characterized by low frequencies while
the high-frequency part shifts towards higher frequencies. A peak is observed around 0.03
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Figure 14. Temporal spectrum of the dominant POD velocity amplitudes |âp
0|2, p ∈ {1, . . . , 8}.

in the low-frequency range, which is in good agreement with the non-dimensional flapping
frequency of fxR/U = 0.12 identified by Kiya & Sasaki (1983).

5.2. Dominant spanwise modes
The dominant wavenumber k = 1 corresponding to a wavelength λz of π is in good
agreement with the critical mode of 3 identified by Lanzerstorfer & Kuhlmann (2012)
and Wilhelm et al. (2003). The first six modes corresponding to this wavenumber are
represented in figure 15. The spatial features of the modes are markedly different from
those of the 2-D (spanwise invariant) modes: the signature of the shear layer extending
above the separation bubble is clear, the modes extend within the recirculation zone
and are characterized by a strong spanwise component, which is larger than the vertical
component. The modes have different spatial scales: the first three modes are relatively
large scale, while modes 4 and 5 are characterized by smaller scales, and mode 6 is
characterized by a mixture of large and small scales.

Figure 16 represents the temporal spectrum of the corresponding amplitudes an
1. Unlike

the upstream region, the modes are characterized by a strong dissymmetry, which is
consistent with convective motion, as will be seen in more detail below. The first two
modes are characterized by frequencies in the range 0.05–0.15 (in absolute value) with
a peak slightly below 0.1, which is also observed for mode 3. However, mode 3 also
contains energy in the range [0.1, 0.25], which is also important for mode 4. Mode 5
is characterized by a narrow range of frequencies around 0.22, while mode 6 contains a
wide range of frequencies in the range [0.05, 0.3] with a low-frequency peak at 0.05. The
overlap in frequency space supports the idea that the modes are physically connected with
each other.
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Figure 15. The POD eigenmodes Re[Φn
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the mode. The black line represents the contour 〈U〉 = 0.
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Figure 16. Temporal spectrum of the POD amplitudes |ân
1|2.

5.3. Convection velocity
Comparison of figures 15 and 16 suggests that large scales tend to be associated with
low frequencies. However, as shown by Buxton, de Kat & Ganapathisubramani (2013) in
the case of a mixing layer, different scales can be associated with different convection
velocities. Convection velocities are typically determined from correlation-based methods
(Wills 1964). Here, for the mode k = 1, we use the spatio-temporal splitting induced by
POD to infer a convection velocity Cn for each POD mode n as follows.

(i) We first extract for each amplitude an
1 a characteristic frequency f n

1 such that

f n
1 =

∑
f

|ân
1( f )|2f

∑
f

|ân
1( f )|2

, (5.1)

where f spans the space of positive and negative discrete frequencies.
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Low-dimensional analysis and modelling

(ii) We compute the streamwise Fourier components Φ̂n
k(l, y) of the spatial mode

Φn
1(x, y). It is defined as Φ̂n

k(l, y) = ∫
Ωds

x
Φn

k(x, y) exp(−2iπlx/Lds
Ωx

) dx, where l is

the streamwise wavenumber and Ωds
x = [0, Lds

Ωx
] is the streamwise domain over

which the transform is taken. We then extract a characteristic wavenumber lnm from

ln1 =

∑
l

∫ yf

1
|Φ̂n

1(l, y)|2l dy

∑
l

∫ yf

1
|Φ̂n

1(l, y)|2 dy
, (5.2)

where l spans the space of streamwise wavenumbers. The streamwise Fourier
transform was applied to the downstream region Ωds

x = [0, 7] over a vertical region
Ωds

y = [1, 7]. End effects due to the non-periodicity of the domain were not found
to affect significantly the value of ln1.

(iii) The convection velocity for each POD mode is then computed as

Cn
1 = f n

1
ln1

. (5.3)

The method described above can be adapted to extract a convection velocity for each
pair of spanwise invariant modes, by defining complex modes of the form Ψ n

0 = Φ2n−1
0 +

iΦ2n
0 , associated with complex amplitudes zn

0 = a2n−1
0 − ia2n

0 , so that

a2n−1
0 Φ2n−1

0 + a2n
0 Φ2n

0 = Re[zn
0Ψ

n
0]. (5.4)

For the nth pair of POD modes (a2n−1
0 , a2n

0 ), one then defines a characteristic frequency
f n
0 as

f n
0 =

∑
f

|ẑn
0( f )|2f

∑
f

|ẑn
0( f )|2

, (5.5)

and a characteristic streamwise wavenumber ln0 as

ln0 =

∑
l

∫ yf

1
|Ψ̂ n

0(l, y)|2l dy

∑
l

∫ yf

1
|Ψ̂ n

0(l, y)|2 dy
. (5.6)

The convection velocity for the nth pair is then given by Cn
0 = f n

0 /ln0.
Figure 17 shows the convection velocity for the most energetic POD modes for k = 0

(a) and k = 1 (b). For almost all modes, the convection velocity is between 0.5 and 0.7,
which is in excellent agreement with results from Largeau & Moriniere (2007) (0.5–0.62),
Camussi et al. (2008) (0.4–0.7), Hoarau et al. (2006) (0.7), Kiya & Sasaki (1983) (0.5–0.7).
The exception is mode n = 5 at k = 1, for which the convection velocity is closer to
1, which suggests that the convective motion there is driven by the external flow. This
is consistent with the higher frequencies observed in figure 16, as well as the spatial
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Figure 17. Convection velocity for (a) the pair of POD modes (a2n−1
0 , a2n

0 ) and (b) the modes an
1. See text for

description.

localization of the mode, which appears to take large values in the external part of the
shear layer, further away from the recirculation and from the wall, as evidenced by φ

5,1
1 in

figure 15.

6. Connection between the recirculation zones

We now determine how the dominant spatio-temporal features of the regions upstream
and downstream of the step are related to their respective recirculations. We then examine
whether the two recirculations can be connected with each other.

Following Pearson et al. (2013), Fang et al. (2021), we define reverse flow regions using
the indicator

I(x, y, z, t) = 1 if u(x, y, z, t) < 0 and I(x, y, z, t) = 0 if u(x, y, z, t) ≥ 0. (6.1)

For each spanwise position z and instant t, we define upstream and downstream areas of
backflow as

Aup(z, t) =
∫ x=0

x=−6

∫ 1

y=0
I(x, y, z, t) dx dy (6.2)

and

Ads(z, t) =
∫ x=7

x=0

∫ 7

y=1
I(x, y, z, t) dx dy. (6.3)

The limits of the integration domains were chosen large enough to enclose the
recirculation zones. The dynamics of the upstream and downstream recirculations can
thus be monitored through the spatio-temporal variations of the corresponding backflow
regions. The volume of these regions Vup and Vds can be obtained by integrating the areas
over the spanwise dimension:

Vup(t) =
∫ π

z=0
Aup(z, t) dz (6.4)

and

Vds(t) =
∫ π

z=0
Ads(z, t) dz. (6.5)

The time evolution of the backflow volumes Vup and Vds is represented in figure 18(a).
The maximum cross-correlation between the upstream and downstream volumes, shown
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Figure 18. (a) Time evolution of the backflow volumes Vup and Vds upstream and downstream of the step.
(b) Cross-correlation between Vup end Vds.
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Figure 19. (a) Spatial spectra of the upstream and downstream backflow regions Âk,0. (b) Premultiplied
frequency spectra of the upstream and downstream areas of the reverse flow Â0,f . The spectra have been
normalized by their variance. The upstream and downstream regions respectively correspond to the black
dashed and red dotted lines.

in figure 18b), is of the order of 0.15 for a time delay of 4 units, which does not suggest
a clear connection. We note that generally due to experimental constraints, discussions of
the areas of reverse flow in the literature (Pearson et al. 2013; Graziani et al. 2018; Fang et
al. 2021) are generally focused on the 2-D areas A corresponding to the same longitudinal
plane.

The spatio-temporal characteristics of the areas of reverse flow Aup and Ads are shown in
spectral space in figure 19. The dominant wavelengths are found to be respectively about
1 and 3 for the upstream and downstream regions and the dominant frequencies were in
the range [0.01, 0.1]. This is in good agreement with the results of Fang et al. (2021), who
computed similar spectra for an embedded step (δ/H > 1) and identified characteristic
wavelengths of 1.32 and 2.68 for respectively the upstream and downstream regions. They
also found frequencies in the range [0.03 − 0.1] for both recirculations.

6.1. Global dynamics
We first determine how the spatio-temporal modulations of the backflow regions are
connected with the dominant POD modes identified in each region. For the upstream
region, figure 20 shows the cross-correlation between the time variations of the volume
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Figure 20. (a) Cross-correlation between the upstream backflow volume Vup and the spanwise-averaged
velocity amplitude a1,up

0 . (b) Cross-correlation between the spatial modulations of the upstream area of the
reverse flow Âup

k and the dominant amplitudes of the POD modes in the upstream region |a1,up
k |2.

Vup and of the dominant spanwise-averaged fluctuating mode a1,up
0 . The correlation

coefficient between the two curves is −0.7 and is maximal in absolute value for a zero
time delay. The negative correlation indicates that the recirculation zone grows when the
amplitude of the mode decreases, as discussed in § 4. This high correlation is consistent
with the relative importance at a zero spanwise wavenumber of the dominant eigenvalue
λ

1,up
0 (see figure 6), and shows that the variations of the backflow volume reflect those of

the most energetic 2-D fluctuation.
As was also seen in § 4, a large part of the fluctuation energy is associated with non-zero

spanwise wavenumbers. Figure 20 compares for each spanwise wavenumber k = 1 to 5, the
temporal cross-correlation of the Fourier components of the area of reverse flow |Âup

k | with
those of the dominant fluctuations |a1,up

k |2. The maximum correlation is relatively high (in
the range 0.5–0.6) for an optimal time delay that is negative and less than one time unit for
k > 1. The physical significance of this time delay is not clear, especially as correlation
values remain high at zero time delay. The high correlation indicates that the spatial
variations of the upstream recirculation are strongly connected with the most energetic
fluctuations in the upstream zone, which confirms the relevance of the characteristic
structure identified in § 4.

In the downstream region, as more eigenmodes contribute to the motion at the dominant
wavenumbers, the influence of the velocity fluctuations was examined using aggregated
contributions qk = ∑N

n=1 En
k , with En

k = λn
k |an

k |2 and N = 10 (which represents about
50 % of the kinetic energy at this wavenumber). The cross-correlation between these
aggregated contributions and the downstream backflow volume Vds is shown in figure 21.
No significant correlation was observed for the spanwise invariant modes, which can
be expected in view of their low contribution to the fluctuations in the downstream
recirculation. In contrast, a significant negative correlation (−0.49) was obtained for the
dominant first wavenumber. The maximal anti-correlation reached −0.7 when higher
spanwise wavenumbers were included (up to k = 9), which confirms the importance of
the lowest mode k = 1. The optimal time delays were small, i.e. of the order of 1–2 time
units, and negative. Although it may be difficult to interpret these time delays, the fact
that they are negative is consistent with the idea that the downstream separation zone is
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Figure 21. Correlation between the temporal variations of the downstream backflow volume Vds and the
amplitudes of the global POD modes.

influenced by the development of the shear layer above it as well as the dominant POD
modes at k = 1 that characterize it.

We also computed various cross-correlations between the upstream fluctuations and the
downstream backflow area (not shown). No correlation larger than 0.25 in absolute value
was obtained. This points to a significant reorganization of the flow past the edge of the
step, which we attempt to track using local indicators in the next section.

6.2. Local dynamics at the edge
We now discuss the connection between the upstream velocity fluctuations and the
downstream recirculation with a focus on the dynamics at the edge of the step. Figure 22
shows, for two different instants tmin and tmax, a horizontal and a vertical section of
the streamwise velocity field respectively located upstream of the step at a height of
y = 0.9 and directly downstream of the edge at x = 0.02 (the sections are represented
in figure 23a). The two instants correspond to the times tmin and tmax for which the
downstream backflow volume Vds is respectively minimal and maximal. For both times,
the streamwise velocity is organized into a similar streaky pattern that persists from the
horizontal to the vertical plane. However, the streaks are more intense when the volume
of reverse flow is maximal: the plane-averaged backflow in the horizontal plane at tmax is
larger by 70 %, and its maximum value is more than twice as high than at tmin, while the
vertical extent of the most intense streaks in the vertical plane at tmax is higher, and can
reach above the recirculation height (0.25). This suggests that the downstream separation
zone is influenced by the incoming flow and, in particular, the streaks associated with
ejections of low-speed fluid at the step edge.

A quantity of interest to characterize instantaneous upstream dynamics is therefore the
spanwise-averaged flux of streamwise velocity that crosses the plane y = 1 at the edge, a
measure of which is given by the momentum deficit

− Me = − 1
Lz

∫ Lz

0
[uv](x = −e, y = 1, z) dz where e = 0.02. (6.6)
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Bottom: evolution of the momentum injected at the edge M1/2

e along the line (x = −0.02, y = 1). The dashed
lines correspond to the time-averaged values.

A local characteristic time scale τ up for the ejection process can be built from the velocity
scale Ue = M1/2

e and a characteristic distance dup, which should be a fraction of the step
height and can be tentatively estimated as dup ≈ 0.2 − 0.4, based on the location of the
fluctuation peaks. This yields

τ up = dup

M1/2
e

with dup ≈ 0.3. (6.7)

Downstream of the step, the development of perturbations in the shear layer should
occur on a time scale τ ds that varies like 1/δω, where δω is a characteristic length
scale. From Ho & Huerre (1984), the initial maximal spatial growth rate of the shear
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Low-dimensional analysis and modelling

layer instability is of the order of 0.12/δS where δS is the shear layer thickness, so that
δω ∼ CdsδS with Cds = 1/0.12 ≈ 8. A measure of the shear layer thickness δS can be
obtained from the inverse of the largest positive eigenvalue λS of the mean strain rate
1
2 (∇U + ∇UT), which was used by Fang et al. (2021) to track the position of the shear
layer. In a similar fashion, we define an instantaneous shear layer thickness based on the
maximal value of the largest positive eigenvalue of the spanwise-averaged strain rate in
the vertical plane directly downstream of the edge:

λmax
S (t) = maxyλS(x = 0.01, y, t). (6.8)

The time-averaged location of the maximum corresponds to a vertical distance of y = 0.02
above the edge. The local time scale at the edge of the shear layer τ ds can therefore be
estimated as

τ ds = 1
δω

= Cds

δS
∼ Cds

λmax
S

with Cds ∼ 8. (6.9)

Figure 23 compares the time evolution of the characteristic velocity for the ejection
process Ue = M1/2

e with the shear layer time scale λmax
S . Both signals are almost perfectly

correlated with a correlation coefficient of 0.95. We point out that we computed several
other correlation coefficients based on the spanwise-averaged velocity, such as that
between the wall shear and Me, as well as that between λmax

S and the velocity modulus.
All coefficients were significantly inferior to the 0.95 value, which means that the match
does not simply reflect the fact that the two signals Me and λmax

S are based on the
spanwise-averaged velocity measured at two nearby locations. In addition, both signals
have nearly the same root mean square to mean value, which suggests that they are directly
proportional to each other, with a ratio 〈λmax

S 〉/〈M1/2
e 〉 of about 60. This leads to a ratio for

τ up/τ ds of about 60dup/Cds ≈ 2.25, which is sufficiently close to 1 for τ up and τ ds to be
considered of the same order, given the crudeness of our estimates. This suggests that the
shear layer dynamics instantaneously adapt to the upstream ejections, so that a decrease
in ejections will immediately trigger a faster development of the shear layer perturbations.
A direct connection is therefore established between the momentum deficit associated with
the ejections and the strength of the shear layer downstream of the step.

To get a better understanding of this connection, we define an extended correlation
coefficient to measure the cross-correlation between the complex Fourier amplitudes of
the momentum deficit −M̂e,k and those of the backflow areas Âα

k with α ∈ {up, ds}. Since
Me is a small-scale, highly intermittent quantity, the signals were time filtered using a
moving average of 5 convective time units corresponding to less than one characteristic
shedding time. The extended correlation coefficient C̄ is defined as

C̄(q1, q2) = Re[〈(�q1 − 〈q1〉)(�q2 − 〈q2〉)∗〉]
�|q1|rms �|q2|rms , (6.10)

where q̄ represents the time-filtered version of q, 〈q〉 its time average and |q̄|rms the
standard deviation of its filtered modulus. Results are presented in figure 24 for the
upstream recirculation (a) and the downstream recirculation (b). For Fourier modes
1 ≤ k ≤ 5, the correlation between −M̂e,k and the upstream recirculation is strong – larger
than 0.6 – with optimal time delays inferior to one time unit (a slightly larger time delay of
3 units is observed for the less energetic mode k = 1). This shows that the modulations of
the recirculation at the bottom of the step are directly connected with the ejections at the
edge, and that both match the variations of the characteristic structure identified in § 4.
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Figure 24. Cross-correlation C̄ between the spanwise Fourier components of the upstream (a) and downstream
(b) areas of the reverse flow Âk and those of the momentum deficit −M̂e,k. The signals are filtered with a moving
average of 5 time units. See text for a definition of C̄.

It is interesting to contrast these results with those obtained for the downstream
recirculation. Only the spanwise-averaged area (or volume) of reverse flow Vds is well
correlated – with a correlation coefficient larger than 0.6 – with the average momentum
deficit −M̂e,0, indicating that an increase in momentum deficit at the edge of the step
results in a larger recirculation downstream. The corresponding optimal time delay was
positive and of the order of 2 convective time units. Interestingly, no such correlation was
detected for higher modes, which confirms a fast reorganization of the flow downstream
of the step (and was also substantiated by examination of instantaneous fields).

We therefore propose the following description, summarized in figure 25: low-speed
fluid is entrained into the upstream recirculation bubble and ejected with a strong spanwise
motion into low-velocity streaks over the edge of the step. The global momentum deficit
due to these local ejections impacts the development of the shear layer and the downstream
recirculation, although the fluctuations are quickly reorganized. A higher ejection rate (low
Me) leads to a weaker development of the shear layer and a larger recirculation zone. The
flow in the shear layer is characterized by a low spanwise modulation, but becomes more
two dimensional downstream of the reattachment.

7. A model for the dominant POD velocity amplitudes

7.1. The POD-based models
In this section we propose a model to reconstruct the dynamics of the most energetic POD
modes, which are characterized by a range of low frequencies. The model is based on a
simplified version of the POD-based models obtained by projection of the Navier–Stokes
equations onto the basis of the spatial POD modes. The construction of dynamical systems
to predict the amplitudes of the POD modes was first proposed by Aubry et al. (1988) and
a thorough discussion can be found in Holmes et al. (1996).
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Figure 25. Sketch of the dynamics of the forward-facing step.

Its general form for the set of normalized amplitudes an
k with k ∈ {−K, . . . K} and n ∈

{1, . . . NT} can be given as

ȧn
k = Anm

k am
k + Qnmp

kk′ am
k ap

k−k′ + Tn
k , (7.1)

where Einstein notation has been used.
The linear component Anm

k can be further decomposed as

Anm
k = Dnm

k + Lnm
k , (7.2)

where Dnm
k corresponds to the diffusion term

Dnm
k = 1

Re

√
λm

k
λn

k

∫∫
φ

n,i∗
k

(
−k2

z + ∂2

∂x2 + ∂2

∂y2

)
φ

m,i
k dx dy, (7.3)

and Lnm
k represents the interaction with the mean mode

Lnm
k = −

√
λm

k
λn

k

∫∫ (
φ

n,i∗
k Uj

∂φ
m,i
k

∂xj
+ φ

n,i∗
k φ

j,m
k

∂Ui

∂xj

)
dx dy. (7.4)

We denote by Qnmp
kk′ the interaction coefficient due to the nonlinear term q.∇q in the

Navier–Stokes equations (q.∇q represents the velocity fluctuation). It can also include the
effect of the pressure gradient if it is not neglected (see Noack, Papas & Monkewitz 2005).

We denote by Tn
k the effect of the modes that are excluded from the truncation

Tn
k =

∫
τ̂ i

kφ
m,i∗
k dx dy − Qnmp

kk′ am
k ap

k−k′, (7.5)

where τ̂ i
k is the Fourier transform of qj(∂qi/∂xj).

Here Tn
k is similar to a subgrid-scale stress term that needs to be modelled with

additional assumptions in order to close the equations. The most general form is to assume
that

Tn
k = αn

k Dnm
k akm, (7.6)

where αn
k is a function that is equivalent to a turbulent eddy viscosity νt/ν. In early

derivations of the model, αn
k was assumed to be constant (Aubry et al. 1988) but in more
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recent implementations (see, for instance, Podvin et al. 2021), αk can be a nonlinear
function of the resolved modes an

k . Following Osth et al. (2014), the turbulent eddy
viscosity is assumed to scale with the characteristic velocity of the resolved modes√∑NT

m=1 |am
k |2, which can be expanded into a sum of a constant term and a quadratic term

1/2
∑NT

m=1(λ
m
k + |am

k |2) (Podvin & Sergent 2017). The proportionality constant is negative
so that the effect of Tn

k is to prevent the unphysical growth of fluctuations in the model.

7.2. Linear model
We derive a linearized version of the model for the most energetic POD modes an

k ,
with k = 0, 1 and n ≤ 10. The linear model is based on the assumption that the driving
mechanism for the fluctuations is their direct interaction with the mean flow – through
convection and deformation by the mean shear. Some justification for this can be found on
the large separation between the intensity of the mean velocity and that of the fluctuations
(the largest POD eigenvalue is less than 1 %). We therefore assume that the quadratic
interaction terms Q, the effect of which is to redistribute energy among the resolved modes,
can be neglected.

A second assumption is that the effect of both molecular (D) and turbulent (T)
viscosity is also small and is limited to preventing non-physical unbounded growth
of the fluctuations without modifying their characteristic frequencies. Figure 26 (top
row) shows the spectrum of the matrix L0 and L1 for a truncation of 10 modes. Each
eigenvalue μn

k has a small positive real part, which is much smaller than its imaginary part
μn

k = Re[μn
k] + i Im[μn

k] with Re[μn
k] � |Im[μn

k]| (the fact that the real part is positive is
physically consistent with the fact that the fluctuations are extracting energy from the mean
flow). Figure 26 (bottom row) shows the values of the matrix Dk for the wavenumber k = 1
(a similar behaviour was observed for k = 0). We can see that D1 is essentially diagonal.
Its values Dnn

1 are mostly real and negative, and their relatively small magnitudes increase
only slightly with n. Therefore, Dk can be considered roughly proportional to the identity
matrix as a first approximation,

Dk ≈ −ηkI, with 0 < ηk � 1. (7.7)

This means that Lk + Dk can be assumed to diagonalize in the same basis B as L with
eigenvalues μn

k − ηk = Re[μn
k] − ηk + i Im[μn

k].
Since the closure for the unresolved stresses Tk is based on the properties of the

dissipation matrix Dk (7.6), we can further assume that the additional effect of the
unresolved stresses is to merely modify the real part of the eigenvalues, with |Re[μn

k] −
ηk(1 + Suppα

p
k )| � Im[μn

k]. Equation (7.1) can then be approximated as

ȧn
k = (Lnm

k + (1 + αn
k )Dnm

k )am
k ≈ L̃nm

k am
k , (7.8)

where L̃k diagonalizes in the same basis B as Lk with purely imaginary eigenvalues
i Im[μn

k]:

L̃k = B

⎡⎣i Im[μ1
k] 0 . . .

0 i Im[μ2
k] . . .

. . . . . . i Im[μNT
k ]

⎤⎦B−1. (7.9)

The nth column of the matrix B contains the eigenvector bn
k associated with the eigenvalue

i Im[μn
k] and expressed in the basis an

k . Conversely, each POD amplitude an
k can be

1000 A69-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
51

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1051


Low-dimensional analysis and modelling

1

1

2

2

3

3

4

4

5

5

6

6

7

7

n

m m

8

8

9

9

10

10

–2

–1.5

–1.0

–0.5

0.5

1.0

1.5

0

–1.5

–1.0

–0.5

0.5

1.0

1.5

0

–1 0

Re[μ0
p]

Im
[μ

0p ]

1 2 –2 –1 0

Re[μ1
p]

Im
[μ

1p ]

1 2

1

2

3

4

5

6

7

8

9

10

0

–0.005

–0.010

–0.015

0

Re[D1
mn] Im[D1

mn]

–0.005

–0.010

–0.015

1 2 3 4 5 6 7

n
8 9 10

(b)(a)

(c) (d )

Figure 26. (a,b) Eigenvalues of Lk for a ten-mode truncation for k = 0 (a) and k = 1 (b). (c,d) Dissipation
matrix D1 real part (c) and imaginary part (d).

represented as a sum of eigenmodes bp
k : an

k = ∑NT
p=1 β

np
k bp

k . Predicted amplitudes for the
model can then be reconstructed using

an,pred
k (t) = β

np
k ei Im[μp

k ]t. (7.10)

Figure 27 compares the spectra of the POD amplitudes extracted from the DNS
with the frequencies obtained by considering NT = 10 and NT = 6 systems for k = 0
and k = 1. The predicted spectra shown for each mode n are arbitrarily rescaled by
Maxpβnp/Maxf |ân

k( f )| for comparison purposes. We see that in all cases, the prediction
provides a good identification of the dominant frequencies of the amplitude spectra, which
supports the assumption of the fundamentally linear nature of the dynamics. We emphasize
that the model frequencies are solely determined from the spatial modes extracted from
the sampled autocorrelation tensor, independently of the sampling rate used to compute
the tensor.

7.3. Time-varying linear model
Unlike those of the DNS, the spectra shown in figure 27 are discrete and limited to NT
frequencies, since the linear model has constant coefficients. To make the model more
physical, we modify the model so that the strength of the mean mode is allowed to vary in
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06
|2

|â
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Figure 27. Predicted frequencies of the dominant POD amplitudes with the linear autonomous model (LM)
for two different truncations NT = 6 (black lines) and NT = 10 (red lines): (a) |ân

0|2 for n ∈ {1, . . . 6} and
(b) |ân

1|2n ∈ {1, . . . 6}.

time. As a first approximation, we assume that this variation is solely driven by the local
time fluctuations of the mean shear at the edge, which is determined by the maximum
stretching eigenvalue λmax

S and, therefore, the ejections over the edge (as evidenced in
figure 23). The modified model will be called the forced model.

If ε is the time-dependent modulation of the shear layer ε = λmax
S /〈λmax

S 〉 − 1, the forced
model is defined as

ȧn
k = L̃nm

k (1 + ε)am
k . (7.11)

For all wavenumbers, the model was integrated from the initial condition an
k = 1.

Using arbitrary initial phases between the modes did not affect the general characteristics
reported below. Figures 28(a) and 28(b) show the spectra of the forced model for the modes
k = 0 and k = 1, which can be respectively compared with figures 14 and 16. Although
complete agreement should not be expected given the crudeness of our assumption, it
can be seen that the model roughly reproduces the widths and heights of the spectral
bands of an

k observed in the DNS. Figures 28(c) and 28(d) compare the probability
distribution functions of the amplitude moduli |an

k | for k = 0 and k = 1 in the DNS, the
linear and the forced models. Although some discrepancies are occasionally observed in
the distribution tails, both models capture equally well the shape of the distributions, which
are characterized by frequent low values for the spanwise invariant modes and a non-zero
maximum around 0.5–1 for the spanwise modes.

8. Conclusion

The dynamics of the flow over a forward-facing step have been investigated in a 3-D
POD framework using a Fourier representation in the spanwise direction. An energy-rich
characteristic structure was extracted from the fluctuations in the upstream region.
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Figure 28. (a) Predicted spectrum of the dominant POD amplitudes |ân
0|2 with the forced model (FM).

(b) Predicted spectrum of the dominant POD amplitudes |ân
1|2. (c) Histograms of the amplitude moduli |an

0|,
n ∈ {1, 8} for the DNS, linear model (LM) and FM. (d) Histograms of the amplitude moduli |an

1|, n ∈ {1, 6} for
the DNS, LM and FM.

The spanwise size of the structure scales with the step height H and its formation appears
to be associated with a centrifugal instability, the origin of which is located close to the
edge of the step. Through the flow modulation created by the structure, incoming fluid
close to the bottom wall can get trapped in or around the upstream recirculation then be
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ejected over the step into longitudinal packets, along with low-speed fluid collected along
the step face through strong spanwise motions.

The following scenario connecting the dynamics of the upstream and the downstream
recirculations is proposed: the strong ejections associated with the upstream flow
deformation create an instantaneous momentum deficit at the edge of the step, which
directly modifies the maximal shear rate in the downstream shear layer, thus impacting its
development and the size of the downstream recirculation. A higher volume of ejections
reduces the shear rate and increases the downstream recirculation. The flow immediately
behind the step is dominated by a spanwise modulation of characteristic wavelength λz =
πH, while spanwise rolls are observed downstream of reattachment. Since the wavelength
λz corresponds to the span of the periodic domain, more investigations would be needed to
establish whether this result can be generalized to wider domains. Both 3-D fluctuations in
the shear layer and 2-D motions behind the recirculation are characterized by convection
velocities of about 0.6 U, where U is the incoming velocity.

A linear model based on the direct interaction of the mean flow with the POD spatial
modes at these dominant wavenumbers was able to predict the characteristic frequencies
of the mode amplitudes. The modulations in the frequency spectra appear to be consistent
with the variations of the instantaneous maximal shear rate at the edge of the step, and
therefore, with those of the ejections. This suggests that linear mechanisms play a key role
in the global flow dynamics and that these dynamics could be monitored through local
indicators at the step edge, which opens up interesting possibilities for control. However,
more investigations are needed to confirm this potential. In particular, linear stability
analysis as well as resolvent-based approaches would be helpful to better understand the
formation and characteristics of the upstream structure.
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