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SUMMARY

The loss of natural habitats is a major threat to
biodiversity, and protected area designation is one of
the standard responses to this threat. However, greater
understanding of the drivers of habitat loss and of the
circumstances under which protected areas succeed
or fail is still needed. We use visual assessment of
satellite images to quantify land-cover change over
periods of up to 30 years in and around a matched
sample of protected and unprotected Important Bird
and Biodiversity Areas (IBAs) in Africa. We modelled
the annual survival of forests and other natural land
covers as a function of a range of environmental
and anthropic predictors of plausible drivers. The
best-supported model indicated that survival rates of
natural land cover were highest in steeper areas, at
higher altitudes, in areas with lower human population
densities and in areas where the cover of natural
habitats was already higher at the start of the period.
Survival rates of natural land cover in protected areas
were, on average, around twice those in unprotected
areas, but the differences between them varied
along different environmental gradients. The overall
survival rates of both protected and unprotected forests
were significantly lower than those of other natural
land-cover types, but the net benefit of protection, in
terms of the absolute difference in rates of loss between
protected and unprotected sites, was higher in forests.
Interaction terms indicated that as slope and altitude
increased, the natural protection offered by topography
increasingly nullified the additional benefits of
legislative protection. Furthermore, protected area
designation offered reduced additional benefits to
the survival of natural land cover in areas where
rates of conversion were higher at the start of
the observation period. Variation in the impacts of
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protected area status along different environmental
gradients indicates that targets to improve the world’s
protected area network, such as Aichi Target 11 of
the Convention on Biological Diversity, need to look
beyond simple area-based metrics. Our methods and
results contribute to the development of a protocol for
prioritizing places where protection is likely to have the
greatest effect.
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INTRODUCTION

Conversion of natural habitats is one of the biggest threats
to global biodiversity (Pereira et al. 2010), and designation
of protected areas (PAs) is one of the most widespread
approaches to mitigating this threat. It is now well established
that PAs can be effective at reducing rates of loss of natural
land cover (e.g. Andam et al. 2008; Gaveau et al. 2009; Selig
& Bruno 2010; Beresford et al. 2013; Geldmann et al. 2013;
Butsic et al. 2015), but that they vary greatly in the extent
to which they achieve this (Andam et al. 2008; Joppa &
Pfaff 2011; Francoso et al. 2015; Paiva et al. 2015). Targets
for expanding PA networks are often based largely or solely
on the area covered. Aichi Target 11 of the Convention on
Biological Diversity (CBD) sets targets for the coverage of
land and sea by PAs, but then simply states that these need
to be effectively managed. It does not set a target against
which this effectiveness can be assessed. Thus, designation
alone is an insufficient measure of the effectiveness of a
PA network. Conservation also requires an understanding of
the effectiveness of protection and how this varies between
locations. Estimates of both extent and effectiveness are
needed in order to develop effective networks of PAs capable
of meeting conservation targets at local to global scales.

As there have been inconsistencies in the way that terms
such as ‘impact’ and ‘effectiveness’ of PAs have been applied
and interpreted across different studies, we identify three
key elements determining the overall impact of a PA: (i) the
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conservation value of the site, which is a function of the biota
it holds and its area; (ii) the degree of threat to the site; and
(iii) the degree to which that threat is reduced by designation
(i.e. the effectiveness of protection).

Analysis of the effectiveness of PAs is not as simple as
comparing rates of change with surrounding areas or randomly
chosen points due to the non-random distribution of PAs
within the landscape (Joppa & Pfaff 2009; Nelson & Chomitz
2011; Joppa & Pfaff 2011; Beresford et al. 2013; Pfaff et al.
2015a) and to other effects, such as the potential ‘leakage’ of
conversion from within to outside the PA boundary (Ewers
& Rodrigues 2008; Robalino et al. 2015). Consequently, it
is necessary to match protected (treatment) and unprotected
(control) sites in order to control for confounding effects that
might drive the likelihood of both designation and conversion.
Matching by appropriate characteristics that may influence
these rates can effectively control for locational bias in the
siting of PAs (Joppa & Pfaff 2011; Nelson & Chomitz 2011;
Beresford et al. 2013).

A number of studies have been undertaken on regional
to global scales in which sites have been matched by
variables such as ecoregion, rainfall, agricultural suitability,
elevation, slope and distance from roads and urban areas,
with an consensus emerging that impacts in terms of avoided
conversion are greatest on flatter land and at sites near to
roads and cities (Joppa & Pfaff 2011; Pfaff et al. 2015a).
The effectiveness of PAs in meeting their potential can be
influenced by a range of factors, such the type of designation
and the level and effectiveness of enforcement, as well as the
siting and accessibility of the PA (Nelson & Chomitz 2011;
Pfaff et al. 2014; Pfaff et al. 2015b).

Even in studies in which matching is used to assess more
accurately PA impacts, it can still be difficult to disentangle
the relative effects of different elements of impact, as there
are often complex interactions between them (Geldmann et
al. 2013). In particular, there are often negative correlations
between threat and effectiveness, with protection being more
effective on sites with lower impact in terms of avoided
conversion (e.g. Ahrends et al. 2010; Boakes et al. 2010; Brun
et al. 2015). On the other hand, threat and conservation value
are often positively correlated, with sites containing the most
threatened habitats being considered to be those of highest
conservation value.

These relationships are further complicated by the fact
that a single variable such as slope, elevation or accessibility
can often influence – or correlate with – more than one
element of impact. For example, protected sites on steeper
slopes may be more effective than those on flatter ground,
but may have a lower impact in terms of avoided conversion
if rates of conversion are already low because of the steeper
ground (Joppa & Pfaff 2011). Depending on how conservation
value is measured, the tendency for low rates of conversion
may mean that the site is considered of high conservation
value (i.e. pristine condition) or of relatively low value (if low
conversion rates result in it being relatively abundant in the
landscape).

Much conservation effort is focused on the designation and
management of PAs across the globe, so a better understanding
of the factors influencing their effectiveness in reducing the
conversion of natural land cover is needed in order to assess
the relative benefits of existing PAs and to identify sites whose
future protection would bring the greatest benefits. This
is especially true given that they represent the mechanism
through which so many conservation issues are tackled. Of
the 20 Aichi Biodiversity Targets set under the CBD, Target
11 relates directly to the designation of PAs. PA networks
can also make a major contribution to other targets (e.g.
Target 1, relating to the awareness of people of the values
of biodiversity; Target 5, relating to loss of natural habitats;
Target 12, on preventing the extinction of known threatened
species; Target 14, on the preservation of ecosystem services;
and Target 15, on carbon storage; Scharlemann et al. 2010;
Beresford et al. 2016). They also have a recognized role to
play in mitigating the impacts of climate change on people
and biodiversity (Loarie et al. 2009; Thomas & Gillingham
2015).

In a previous study (Beresford et al. 2013), we focused
on measuring the impact of protection in terms of avoided
conversion by comparing rates of loss of natural land
cover between protected and unprotected sites of recognized
conservation value (Important Bird and Biodiversity Areas
(IBAs)) in Africa. IBAs are sites of global significance
for the conservation of the world’s birds, identified using
semi-quantitative criteria (Fishpool & Evans 2001), and are
Key Biodiversity Areas (IUCN 2016). The most prevalent
threats to African IBAs are associated with land-cover
change (Buchanan et al. 2009). Use of this set of sites
eliminates from our study the influence of PAs of relatively
low conservation value that were designated primarily
because of their low opportunity cost and low likelihood of
conversion.

We previously established that protection is effective at
reducing – but not halting – land-cover change on protected
IBAs compared to unprotected IBAs (Beresford et al. 2013).
Here, we develop this work by using the same database of
spatially explicit information on land-cover change in and
around African IBAs in order to identify the characteristics of
points that were (and were not) converted during the study. In
doing so, we hope to identify potential drivers of conversion
and enable proactive conservation. This information could be
used to better target monitoring of sites. Additionally, and
perhaps more importantly, we could identify areas most at
risk from habitat loss and potentially increase the rapidity
with which threats are tackled on the ground in these places.
We produce statistical models of relationships (generalized
linear mixed models (GLMMs)) and consider the interaction
between correlate variables and whether or not the point is
protected. By examining output-fitted relationships, we can
determine whether the form of the relationship varies within
and outside PAs. This allows differing conservation strategies
to be developed within and outside PAs, if appropriate.
By investigating changes on sites of objectively defined
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high conservation importance (IBAs), this is the first study
to control for variation in potential impact in terms of
conservation value, as well as avoided conversion, which we
account for using site-level matching.

METHODS

Site selection

Protected and unprotected IBAs were matched at the site level
to reduce the known problem of the non-random distributions
of PAs, which are often designated in remote and inaccessible
areas where the risk of damage is inherently lower than in
more accessible areas (Joppa & Pfaff 2009). Matching ensures
that protected sites are compared with unprotected sites with
a comparable risk of sustaining damage by controlling for
some of the most likely correlates of environmental risk.
Full details of the selection process are given in Beresford
et al. (2013). This selection process resulted in a set of 54
protected and 49 unprotected IBAs from the 793 IBAs in
continental sub-Saharan Africa and Madagascar for which
digital boundaries were available. Our sample of 103 sites
differs slightly from Beresford et al. (2013) because we
include IBAs from countries for which only a single site was
selected by the matching process. We obtained site protection
status by intersecting the boundaries of all IBAs with the
boundaries of all 1580 nationally designated PAs in Africa
from the World Database on Protected Areas (International
Union for Conservation of Nature (IUCN) categories I to
VI) that had digitized boundaries (IUCN & UNEP-WCMC
2010). We defined protected IBAs as those that fell wholly or
mostly (>90%) within the boundaries of PAs that had been
designated before 1985. Partially (<90%) protected sites and
those whose protection status changed immediately before or
during the assessment period were excluded from the selection
process. We defined unprotected IBAs as those that did not
overlap any PAs, irrespective of PA designation date. We
excluded from our analysis all IBAs smaller than 10 km2,
because the number of points at which we could have assessed
land cover would have been small. We matched protected
and unprotected IBAs using the command ‘subclass’ in the
MatchIt package (Ho et al. 2011) in R (R Development
Core Team 2010). We matched sites on the basis of area,
mean altitude (both from BirdLife International (2011)), mean
distance from roads (National Imagery and Mapping Agency
2000), mean human population density (CIESIN & CIAT
2005) and the most extensive GLC2000 land-cover class in the
IBA (Mayaux et al. 2004). Site-level matching ensured that
protected and unprotected IBAs were similar at the landscape
level.

Assessment of land-cover change

We used visual interpretation of satellite imagery to assess
dominant land cover within 300 × 300-m sample boxes
(‘points’) in each IBA and in a surrounding 20-km buffer using

a dedicated graphical user interface (Bastin et al. 2013). Points
were distributed on a regular grid and spaced 0.5 km apart in
IBAs of <50 km2, 1.5 km apart in IBAs of >50 km2 and 3 km
apart in the 20-km buffers. Excluding points where cloud-free
images were unavailable for any one time period, this gave a
total of 20,481 points assessed within IBAs and 17,870 points
in their buffers. We recorded land cover at each point once in
each of three time periods: 1981–1994, 1995–2004 and 2005–
2009. The years of sampling varied according to the availability
of high-quality, cloud-free images. Variation between sites in
years of sampling was controlled in the analyses by modelling
survival of natural land cover as a point-specific exposure
period (see below).

For the years from 1981 to 2002, we used freely available
imagery from Landsat (http://www.landcover.org; Tucker
et al. 2004). For the years 2003–2009, we used a combination
of Landsat imagery (http://glovis.usgs.gov) and purchased
Aster images. All images had a spatial resolution of 30
m. We excluded points for which no data were available
(because of cloud, poor image quality or the failure of
Landsat 7’s scan line corrector after 2003) in one or more
of the sampling periods. We also excluded the small number
of points in some IBA buffers that overlapped other PAs
or IBAs.

The dominant land cover at each point in each time period
was allocated to one of 11 broad categories: closed tree
cover; open tree cover; mosaic of natural and agricultural
vegetation; shrub; herbaceous; tree and shrub crops; arable
crops; open water; flooded shrub and herbaceous; urban; and
bare (classification based on Di Gregorio & Jansen (2000)).
Of these categories, we considered four as ‘non-natural’ land
covers: mosaic of natural and agricultural vegetation; tree
and shrub crops; arable crops; and urban. The others were
considered ‘natural’ land covers. For points at which the
initial land cover was closed or open tree cover (forests),
subsequent change to any other land cover was counted as
conversion. For other natural land covers, only conversion to
non-natural land covers was counted as conversion. Across all
land-cover types, natural and non-natural land covers could
be separated with an estimated accuracy of c. 94%; further
details on interpretation and validation are given in Beresford
et al. (2013).

Correlates of land-cover change

In addition to the potential correlates of land-cover change
used in the initial site matching (area, altitude, distance to
roads, human population density and most extensive land
cover), we obtained maps of market accessibility (Nelson
2008), elevation (Jenness et al. 2007), slope (USGS 2006),
agricultural suitability (Fischer et al. 2002), cropland cover in
1990 (Ramankutty et al. 2008) and biome (Olson et al. 2001).
We included a four-level ‘class’ factor denoting whether a
point fell within a protected IBA or its buffer or an unprotected
IBA or its buffer, and a covariate indicating the distance of
each point from the edge of the IBA, with negative values
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Table 1 Variables used to model land-cover change in and around 103 Important Bird and Biodiversity Areas (IBAs) in Africa. Categorical
variables are shown in bold. SRTM = Shuttle Radar Topography Mission.

Variable Source Description/units Mean Range/classes
Distance from edge This study Kilometres from edge of

protected area or (for
unprotected sites) from edge of
IBA

6.31 0–27.13

Protection class IUCN &
UNEP-WCMC 2010

Four classes NA Protected IBA, unprotected
IBA, buffer of protected
IBA, buffer of unprotected
IBA

Human population
density

CIESIN & CIAT 2005 Thousands of people per km2 at
2.5-arc-minute (�5-km)
resolution, adjusted to match
UN totals

0.04 0–13.99

Market accessibility Nelson 2008 Hours of travel time to nearest
city of 50,000 people or more,
at 30-arc-second (�1-km)
resolution

5.74 0–43.52

Altitude Jenness et al. 2007 Elevation above sea level in
metres from SRTM 30
arc-second (�1-km) digital
elevation model

959.2 0–4774

Slope USGS 2006 Mean slope in degrees derived
from 300-m resolution SRTM
data and averaged to 1 km

4.58 0–50.5

Agricultural
suitability

Fischer et al. 2002 Eight-level suitability index, for
rain-fed crops at 5-arc-minute
(�10-km) resolution

4.50 1–8
(very high suitability–not
suitable)

Cropland cover Ramankutty et al. 2008 Proportion cropland at
5-arc-minute (�10-km) grid
resolution

0.11 0–0.69

Biome Olson et al. 2001 Simplified into five biome
classes

NA Wet forest, dry forest,
grassland/savanna,
montane grassland, arid

Initial land cover This study: Landsat
(Thematic Mapper)
imagery

Visual interpretation into
seven ‘natural’ land-cover
classes

NA Closed tree cover, open tree
cover, shrub, herbaceous,
open water, flooded, bare

Initial adjacent
conversion

This study: Landsat
(Thematic Mapper)
imagery

Proportion of points within 5 km
of a point with artificial land
cover in initial time period
(1981–1994)

0.10 0–0.96

indicating points within the IBA and positive values indicating
points outside the IBA (Beresford et al. 2013). A summary
of the explanatory variables and their sources is given in
Table 1. We included the initial land-cover category at each
point as a categorical variable and calculated the proportions
of other points within 5 km of each point that were already
dominated by non-natural land cover in the initial time period
(1981–1994). Spatial data manipulation and processing were
undertaken in ArcGIS 10.1. Human population density, slope
and altitude were log-transformed prior to analysis.

Data analysis

Land-cover conversion was modelled as a Bernoulli process
in a generalized linear mixed model framework using the

‘glmer’ package in R (R Development Core Team 2010).
The natural land cover at each point was considered to have
survived (if it remained as natural land cover) or not (if it
was converted to a non-natural land cover) during a point-
specific exposure period, thus controlling for different periods
of observation across points. Exposure in the case of points at
which natural land cover was not converted was the number
of years over which each point was observed (the period
between the earliest and latest years of satellite imagery used
for each point). For points at which land cover was converted
between the first and second or between the second and third
assessments, we assumed that loss occurred halfway between
the first assessment at which conversion was first recorded and
the previous assessment, and calculated the exposure period
accordingly.
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A binary survival/conversion variable was fitted as the
dependent variable and the point-specific exposure period
(in years) was fitted as a binomial denominator, allowing us
to derive annual survival probabilities that were comparable
across all points. Country and site (IBA code) were included
in initial models as random effects, either in separate models
or as a nested random effect in the same model. Once the
best-supported set of random effects had been decided using
the ‘anova’ command in ‘glmer’, the best combination of fixed
effects was assessed.

Given the large number of explanatory variables and the
many plausible interactions between them, we adopted a
pragmatic approach to model selection. First, we fitted all
possible combinations of up to a maximum of five explanatory
variables (excluding the selected random effects, which
remained in all models, and without interactions) using the
‘dredge’ function of the R package ‘MuMIn’ (Bartoń 2012).
These models were ranked by the Akaike information criterion
(AIC) and that with the lowest AIC was used as a base
from which to assess support for more heavily parameterized
models. To the five-or-fewer-variable model selected, we
next added the quadratic terms of any covariates in that
model; these were retained if they significantly improved the
model (reflected in an AIC of 2 or more units lower than
the model without the quadratic term(s)). We then added
and removed each remaining explanatory variable in turn
to select the best-supported model and compared each of
these to the previous model using the AIC and likelihood
ratio tests in order to assess whether fitting an extra variable
to the previous model improved the fit. The process was
repeated until the addition of any further variable could
not reduce the AIC by at least 2. We then fitted a number
of plausible interactions to the model and compared the
resulting candidate models using the AIC and likelihood
ratio tests. Finally, we assessed whether any simplification
of the final model was justified by comparing the AIC of
the final model with the AICs of all subsets of that model
that lacked each explanatory variable in turn. The relative
importance of each predictor was also assessed from this
comparison. Once a final model was adopted, we assessed
its goodness of fit using the method of Nakagawa and
Schielzeth (2013) with the ‘r.squaredGLMM’ command in
‘MuMIn’.

RESULTS

When accounting for the random effect of IBA, the overall
annual survival rate across all natural habitats was 0.996,
equating to an overall survival rate of 88.7% over 30 years.
The best-supported model of five or fewer variables contained
slope, human population density, the four-level protection
class, initial land-cover type and the extent of already
converted land within 5 km at the start of the observation
period (Table 2). This model carried an AIC weight relative
to the other competing models of 1, and all other candidate

models of five or fewer variables had �AIC >37.5 with respect
to this model. Likelihood ratio tests supported simplification
of this model by reducing the four-level protection class
variable to a binary classification in which unprotected IBAs
and the buffers of both protected and unprotected IBAs were
all classed as ‘unprotected’, and protected IBAs were classed
as ‘protected’. A model in which the quadratic term of slope
was fitted received greater support than a model without this
term, but the same was not true for the quadratic terms of
human population density or the proportion of points within
5 km that had been converted to non-natural habitats by the
start of the exposure period (Table 2). The addition of altitude
and its quadratic term further improved the model (Table 2).
The best-supported model was that which also included
interactions between protected status and slope, protected
status and altitude, protected status and initial conversion
and protected status and initial land-cover type (Table 2).
Removal of each variable in turn from this model confirmed
that no simpler model received greater support, although a
model that lacked the interaction between protected status and
altitude was within 2 AIC units. The marginal R2 of the final
model (i.e. the variation explained only by the fixed effects)
was 0.265, and the conditional R2 (fixed + random effects) was
0.382. This model indicated that the survival rate of natural
land cover increased with increasing slope and altitude and
with decreasing human population density, that it was higher
in PAs then in unprotected sites, that it varied between major
land-cover classes and that it was lower in already heavily
converted areas. The interactions indicated that the effects
on survival rates of slope, altitude, initial conversion and
land-cover types varied between protected and unprotected
areas.

Predicted values were generated for each parameter
included in the final model by holding each of the other
variables in the model, except the binary variable relating
to protected status, at its mean or, in the case of factors, at
its reference level. This revealed that PAs had lower rates
of loss than unprotected areas, but the interactions in the
model indicated that this pattern varied across the range of
values of other parameters (Fig. 1). Survival of natural habitats
increased with increasing slope and altitude, and at high
values of both there was little difference between protected
and unprotected areas. Survival declined with increasing
human population density and with the amount of adjacent
land that had already been converted by the start of the
observation period. There was little effect of protected status
on subsequent rates of loss of natural land cover where land
conversion of nearby cells was already high at the start of
the exposure period (Fig. 1). Survival varied by major land-
cover type, as did the relative benefits of protected status
within land-cover types; closed and open forest suffered the
greatest overall rates of loss, but the difference between rates
of loss in protected and unprotected IBAs was greater in
these habitats than was the case in other habitats, indicating
a greater impact of PAs in terms of avoided conversion
(Fig. 2).
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Table 2 Model selection table showing the relative support for the null model (random effects only), the best-supported model of
five or fewer variables (‘best-5-var’), the same model with quadratic terms fitted for one or more of the covariates decided using the
Akaike information criterion (AIC; ‘best-5-var-quad’), the best-supported model that added an extra variable to the previous model
(‘best-6-var’), the same model with quadratic terms fitted for the covariate added in the previous step (‘best-6-var-quad’) and the
same model with the best-supported combination of interactions assessed by �AIC (‘best-6-var-quad-i’). No model with seven or
more variables received as much support from the data as the best-supported six-variable models. Important Bird and Biodiversity
Area was fitted as a random effect in all models and is not shown. S = slope; A = altitude; H = human population density; I = initial
land-cover type; P = protected area status; C = proportion of surrounding points already converted to non-natural land-cover
types by start of exposure period; K = number of parameters estimated. Asterisks indicate interactions between variables whose
main effects were also included in the model.

Model Terms K AIC �AIC Weight
best-6-var-quad-i P∗A + P∗C + P∗S + P∗I + S2 + H 23 22,060.2 0 1
best-6-var-quad P + A + A2 + C + S + S2 + H + I 15 22,101.9 41.7 0
best-6-var P + A + C + S + S2 + H + I 14 22,122.5 62.3 0
best-5-var-quad P + C + S + S2 + H + I 13 22,139.4 79.2 0
best-5-var P + C + S + H + I 12 22,167.1 106.9 0
Null – 2 24,769.4 2709.2 0

Figure 1 Variation in modelled values (±1 SE) of annual survival
rate of natural habitats with slope, altitude, human population
density and the amount of conversion that had already taken place
by the start of the observation period. Grey = unprotected sites;
black = protected areas. Curves were generated using the
best-supported model in Table 2 fitted to data in which all variables
except the covariate of interest and protected area status were
constrained to their mean or reference values.

Figure 2 Estimates of annual survival of each of seven broad
natural land-cover classes and of all land-cover types combined
(±1 SE). Grey = unprotected sites; black = protected sites.
Estimates were derived using the best-supported model in Table 2
fitted to data in which all variables except land-cover class and
protected area status (or just protected area status in the case of
‘All’) were constrained to their mean or reference values.

DISCUSSION

Our analyses identify a number of environmental and
anthropic correlates of natural land-cover conversion, which
have additive and sometimes interactive effects. Slope,
altitude, human population density and initial adjacent
conversion prior to the exposure period were all retained in the
final model. In addition, as shown by Beresford et al. (2013),
rates of conversion differed significantly between land-cover
types.

Our results also confirm many previous assessments (e.g.
Andam et al. 2008; Gaveau et al. 2009; Selig & Bruno
2010; Geldmann et al. 2013; Butsic et al. 2015), including

https://doi.org/10.1017/S0376892917000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0376892917000157


Land-cover change and protected areas 55

our own analysis of these data (Beresford et al. 2013), in
showing that protection significantly reduces conversion.
Rates of conversion in PAs were less than half those in
unprotected areas, even when accounting for a range of
covariates. However, the beneficial effects of PAs are not
universal (e.g. Western et al. 2009; Brun et al. 2015; Wendland
et al. 2015), and the extent to which protection yields net
conservation gains varies greatly, even within relatively small
regions (Paiva et al. 2015).

We found that the net impact of protection, in terms of the
difference in land-cover conversion rates between protected
and unprotected areas (i.e. avoided conversion), declined with
both slope and altitude (Fig. 1), such that on steeper slopes
and at higher altitudes, the annual survival rates of natural land
cover in protected and unprotected sites converged. This was
presumably because the increased natural protection offered
by topography increased survival rates in unprotected areas
to a level close to that recorded in PAs, and confirms that the
over-representation of PAs in high and steep areas (Joppa &
Pfaff 2009) reduces the potential impact of the PA network as
a whole.

Furthermore, by considering the interaction between
protection and proximity of converted points, we found that
PA designation did little to halt the loss of natural cover
when sites were already heavily degraded. This is consistent
with previous findings that protection is least effective in
areas where the threat of conversion is greatest and supports
suggestions that degradation is a contagious process (e.g.
Ahrends et al. 2010; Boakes et al. 2010; Brun et al. 2015).
The lack of statistical support for an interaction between
PA status and human population density suggests – perhaps
unexpectedly – that PAs are as effective in heavily populated
areas as in areas with low human populations. This result
supports the assertion of Fisher (2010), who suggested that
population growth and urbanization alone do not explain
deforestation in Africa as they do in other parts of the
developing world.

Some land-cover types were more susceptible to conversion
than others, with both open and closed forest sustaining higher
than average rates of decline (Fig. 2). This supports previous
suggestions that forest is a particularly threatened habitat in
Africa, with multiple threats existing that include clearance for
agricultural land (including temporary rotational agriculture),
small-scale collection of firewood and commercial logging
(Buchanan et al. 2009). However, the difference between
rates of loss in protected and unprotected forests, and
therefore their impact in terms of avoided conversion, was
greater than for other natural land-cover types. Protection
was more effective in closed compared to open forests. This
may reflect an inability to distinguish between forest types
with naturally more open canopies and areas of degraded
forest that would naturally have closed canopies using our
methods and Landsat and Aster imagery. If so, the observed
difference in effectiveness between open and closed forest
would further support the negative correlation between threat
and effectiveness.

Our results support the assertions of (among others)
Andam et al. (2008) and Paiva et al. (2015) in showing that
the effectiveness of PAs can vary greatly along different
environmental gradients and between land-cover types. As
PA networks are further developed, it is essential that all
aspects of their impacts are considered: the species and habitats
they contain; the ecosystem services they could conserve; the
probable losses in the absence of protection; and how likely
legal designation is to prevent those losses in practice. The
variation in the effectiveness of protection shows the need to
have objective, measurable targets on the effectiveness of PAs,
in addition to targets on the extent of their coverage (Woodley
et al. 2012). Ideally, these would extend beyond assessment
of land-cover retention and conversion and include a range of
metrics of effectiveness.
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