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Rectifiable Sets in Metric Spaces

7.1 Definition and Norm

Let (X, d) be a metric space. There is no problem with the definition:

Definition 7.1 A set E ⊂ X is m-rectifiable if there are Lipschitz maps fi :
Ai → X, Ai ⊂ Rm, i = 1, 2, . . . such that

Hm

⎛
⎜⎜⎜⎜⎜⎝E

∖ ∞⋃

i=1

fi(Ai)

⎞
⎟⎟⎟⎟⎟⎠ = 0.

A set E ⊂ X is purely m-unrectifiable ifHm(E ∩F) = 0 for every m-rectifiable
set F ⊂ X.

But everything else is problematic. What properties can we prove? There are
no linear subspaces, so can we talk about tangent planes or projections? Any
metric space X can be embedded isometrically into a Banach space, and if X
is separable, which rectifiable sets are, into l∞. Thus we may consider X as a
metric subspace of a Banach space Y , that is, we can assume that the metric d
is given by a norm ‖·‖. This is often convenient and it gives us linear subspaces.
But it does not solve everything. Anyway, Lipschitz maps from subsets of Rm

to Banach spaces can be extended to all of Rm, so in the definition we could
consider fi : Rm → Y . But not necessarily fi : Rm → X.

Let us begin with densities, which anyway are defined as before.

7.2 Densities when m = 1

Using [16, Example 6.4], we first observe that there is no hope, even in Hilbert
spaces, to get the Besicovitch–Preiss theorem’s ‘existence of density implies
rectifiability’: let X= (0, 1) with the metric d(x, y)=

√
|x−y|. ThenH2

d=(π/4)L1,
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7.2 Densities when m = 1 53

so Θ2(X, x) = 1/2 for all x ∈ X. However, X is purely 2-unrectifiable by The-
orem 7.7. To see the same in Hilbert spaces, consider E = {χ[0,t] : 0 < t <
1} ⊂ L2([0, 1]). Nevertheless, maybe the weaker ‘density 1 implies rectifiabil-
ity’ could be true?

There is no counter-example to Besicovitch’s 1/2-conjecture 3.11 even in
general metric spaces. The best result known is the following theorem of Preiss
and Tiser [384], which improves and extends Besicovitch’s 3/4 Theorem 3.10:

Theorem 7.2 If E ⊂ X isH1 measurable,H1(E) < ∞ and

Θ1
∗(E, x) >

2 +
√

46
12

forH1 almost all x ∈ E, then E is 1-rectifiable.

Notice that 2+
√

46
12 is between 58

80 and 59
80 , so it is less than but close to 3

4 .

Corollary 7.3 If E ⊂ X is H1 measurable and H1(E) < ∞, then E is 1-
rectifiable if and only if Θ1(E, x) = 1 forH1 almost all x ∈ E.

That rectifiable sets have density 1 also in metric spaces follows from Kirch-
heim’s theorem which we shall soon discuss.

The proof of Theorem 7.2 has similar basic ingredients as that of Theorem
3.10; Besicovitch circle pairs, in a generalized form, are used to find a contin-
uum C with finite measure which intersects E in a set of positive measure. By
Theorem 2.1 such a C is rectifiable even in metric spaces. This result of Eilen-
berg and Harrold is perhaps the first result on rectifiability in metric spaces.

To say a bit more, recall from the discussion on the proof of Theorem 3.10
that for any α > 0 we had for some compact subset F of E withH1(F) > 0: if
σ = 3

4 + α,

H1(E ∩ U(x, r)) > σ2r for x ∈ F, 0 < r < r0, (7.1)

and

H1(E ∩ B) ≤ (1 + α)d(B) whenever E ∩ B � ∅ and d(B) < r0, (7.2)

then

H1(E ∩ U(x, y)) ≥ α|x − y| for x, y ∈ F with d(x, y) < r0/3, (7.3)

where U(x, y) = U(x, r) ∩ U(y, r), r = |x − y|. For this one cannot push σ

below 3/4. But Preiss and Tiser showed that it is possible to use other sets in
place of U(x, y) to reduce σ to 2+

√
46

12 . More precisely (but not quite precisely),

they showed that the following condition holds with any σ > 2+
√

46
12 and some

τ > 0: whenever (7.2) holds with small α > 0 and E1, E2 are Borel subsets
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54 Rectifiable Sets in Metric Spaces

of E with d(E1, E2) > 0 small satisfying (7.1) in place of F, then there is
U ⊂ X meeting both E1 and E2 such that H1(E ∩ U \ (E1 ∪ E2)) > τd(U).
Then they showed that this condition together with Θ1

∗(E, x) > σ (with any
σ > 0) implies that some continuum with finite measure intersects E in a set
of positive measure. To relate the Preiss–Tiser condition to (7.3), observe that
E ∩ U(x1, x2) \ (E1 ∪ E2) = E ∩ U(x1, x2) if d(E1, E2) = |x1 − x2|, xi ∈ E1.

Recently Bate [59] proved the analogue of Theorem 4.11 for one-dimension-
al measures in a large class of metric spaces. In the following, doubling means
that there is N such that every ball of radius 2r can be covered with N balls
of radius r and geodesic means that the distance between any two points is the
minimal length of the curves connecting them.

Theorem 7.4 Let (X, d) be a doubling geodesic metric space and let μ ∈
M(X) be such that the positive and finite limit limr→0 r−1μ(B(x, r)) exists for μ
almost all x ∈ X. Then μ is 1-rectifiable.

This result follows from a complete classification of 1-uniform metric mea-
sure spaces, of which there are three up to scaled isometry. The conditions on
X imply that two of these spaces cannot be tangent spaces to (X, d, μ, x) for
positively many x and so the rectifiability of μ follows from Theorem 7.13.

Bate’s method applies to Heisenberg groups, which extends Antonelli’s and
Merlo’s result Theorem 8.12.

7.3 Densities and Area Formula for General m

We still consider X as a metric subspace of a Banach space Y and we would
like to use Rademacher’s theorem. However, Lipschitz maps from Rm to Y
need not be differentiable in the standard sense. Kirchheim found a useful sub-
stitute in [276]. This paper has been very influential in analysis and geometric
measure theory in metric spaces.

Kirchheim’s idea was to introduce metric differentials MD( f , x), which are
seminorms on Rm, by

MD( f , x)(v) = lim
r→0
‖ f (x + rv) − f (x)‖/r, x, v ∈ Rm,

whenever the limit exists. He showed that if f is Lipschitz, it does exist for
almost all x ∈ Rm, and then for all y, z ∈ Rm,

‖ f (z) − f (y)‖ − MD( f , x)(z − y) = o(|z − x| + |y − x|). (7.4)

So we have something like (4.1) and a substitute for Rademacher’s theorem.

https://doi.org/10.1017/9781009288057.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009288057.008


7.3 Densities and Area Formula for General m 55

Then Kirchheim proceeded to prove an area formula. For this define for any
seminorm s on Rm the ‘Jacobian’

J(s) = α(m)m

(∫

S m−1
s(x)−mdHm−1x

)−1

.

Then

Theorem 7.5 If f : Rm → X is Lipschitz and A ⊂ Rm Lebesgue measurable,
then

∫

card A ∩ f −1{y} dHmy =
∫

A
J(MD( f , x)) dLmx.

The proof is based on the following lemma, [276, Lemma 4], going back to
Federer’s proof of the Euclidean area theorem and [203, Lemma 3.2.2]:

Lemma 7.6 Let f : Rm → X be Lipschitz and let B be the set of x ∈ Rm for
which MD( f , x) exists and is a norm. Then for any λ > 1 there are norms ‖ · ‖i
on Rm and a Borel partition (Bi) of B such that

‖x − y‖i/λ ≤ d( f (x), f (y)) ≤ λ‖x − y‖i for x, y ∈ Bi, i = 1, 2, . . . .

After this one gets

Theorem 7.7 If E ⊂ X is Hm measurable, m-rectifiable and Hm(E) < ∞,
then Θm(E, x) = 1 forHm almost all x ∈ E.

As we saw, for m = 1 this is a characterization of rectifiability. Whether
it is a characterization when m > 1 is open; perhaps surprisingly no counter-
example is known. To emphasize this problem I state it as a conjecture, al-
though I am rather suspicious about its validity (but for no good reason):

Conjecture 7.8 An Hm measurable set E ⊂ X with Hm(E) < ∞ is m-
rectifiable if and only if Θm(E, x) = 1 forHm almost all x ∈ E.

So this is true in the Euclidean case and when m = 1. Examples of non-
Euclidean homogeneous groups where it is true are due to Julia and Merlo
[267]. If we replace the Hausdorff measure Hm by the spherical Hausdorff
measure Sm, then Heisenberg groups give us purely m-unrectifiable metric
spaces X with Sm(X) < ∞ and Θm(Sm X, x) = 1 for Sm almost all x ∈ X. We
shall come back to these facts at the end of Section 8.5.
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56 Rectifiable Sets in Metric Spaces

7.4 Tangent Planes

Since we are considering X as a subspace of a Banach space Y , we have linear
subspaces and we can hope for a tangent plane characterization of rectifiability.
Now Y is l∞, or more generally the dual of a separable Banach space. In ad-
dition to Kirchheim’s metric differentiability result, Ambrosio and Kirchheim
[16] proved the weak star differentiability for a Lipschitz map f : Rm → Y: for
almost all x ∈ Rm there exists a w∗-differential of f at x, that is, a linear map
wd fx : Rm → Y such that

w∗ − lim
y→x

( f (y) − f (x) − wd fx(y − x))/|y − x|) = 0. (7.5)

If E ⊂ X is Hm measurable and m-rectifiable, then by Lemma 7.6 we can
decompose almost all of it into sets fi(Bi), where Bi ⊂ Rm is a Borel set and fi
is bi-Lipschitz on Bi. Then for Hm almost all a ∈ E, we can define the weak
approximate tangent plane of E at a = fi(x) ∈ fi(Bi) as

Tan(m)(E, a) = wd fix(Rm).

It further follows that if πa : Y → Tan(m)(E, a) is a weak star continuous
projection (πa(x) = x for x ∈ Tan(m)(E, a)), then ‖πa(x) − a‖/‖x − a‖ → 1 as
x→ a, x ∈ Ea, where Θm(E \ Ea, a) = 0.

Ambrosio and Kirchheim also had a converse in [16, Theorem 6.3]:

Theorem 7.9 Let E ⊂ Y beHm measurable withHm(E) < ∞. Then E is m-
rectifiable if and only if forHm almost all a ∈ E there is a weak star continuous
linear map πa : Y → Y, dim πa(Y) = m such that for some s > 0,

lim
r→0

r−mHm({x ∈ E ∩ B(a, r) : ‖πa(x − a)‖ < s‖x − a‖}) = 0.

Ambrosio and Kirchheim had this with positive lower density condition, but
using the argument from the Euclidean case one easily sees that this is not
needed, see [321, Lemma 15.14].

Ambrosio and Kirchheim also proved in [16] an area formula for Lipschitz
maps between rectifiable sets and a coarea formula for Rk valued Lipschitz
maps on rectifiable subsets of metric spaces.

7.5 Cheeger’s Differentiability Spaces and Alberti
Representations

As discussed above, Kirchheim showed that Lipschitz maps from Rm to X are
differentiable in a sense. In [90], Cheeger introduced conditions under which
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7.5 Cheeger’s Differentiability Spaces and Alberti Representations 57

the differentiability of Lipschitz maps from X to Rm also makes sense and is
true. This was further developed and generalized by Keith [273]. Suppose that
X is equipped with a Borel measure μ. We say that (X, d, μ) is an m-dimensional
Lipschitz differentiability space, LDS, if there is a countable collection of local
Lipschitz charts φi : Ui → Rm,Ui ⊂ X, X =

⋃

i Ui, with respect to which every
Lipschitz function f : X → R is differentiable at μ almost all x ∈ Ui in the
sense that there is a unique linear function D f (x) : Rm → R such that

f (y) − f (x) = D f (x)(φi(y) − φi(x)) + o(d(x, y)), y ∈ Ui.

Clearly, Euclidean spaces and Riemannian manifolds with the Lebesgue
measure are LDS. Not all, even compact, metric measure spaces are LDS, but
there are a lot of non-Euclidean ones that are, for example, Heisenberg groups.

Recall the role of Alberti representations in Euclidean spaces from Section
4.8. Alberti representation of a measure μ on X is a Fubini-type decomposition
of μ into 1-rectifiable measures μγ:

μ(B) =
∫

μγ(B) dPγ, B ⊂ X Borel. (7.6)

Here P is a probability measure on the space of curve fragments, that is, bi-
Lipschitz mappings γ : Cγ → X,Cγ ⊂ R compact, and the measures μγ are
absolutely continuous with respect toH1 γ(Cγ).

For φ : X → Rm, the Alberti representations γi, i = 1, . . . ,m are said to be
φ-independent if the derivatives of φ ◦ γi, i = 1, . . . ,m are linearly independent
and belong to disjoint cones.

Bate characterized in [56] the Lipschitz differentiability spaces via Alberti
representations. The following theorem tells us a great deal of relations be-
tween Lipschitz differentiability spaces, Alberti representations and
rectifiability:

Theorem 7.10 Suppose that Hm(X) < ∞ and Θm
∗ (X, x) > 0 for Hm almost

all x ∈ X. Then the following conditions are equivalent.

(1) X is m-rectifiable.
(2) There are Borel sets Ui ⊂ X, i = 1, 2, . . . , with Hm(X \ ⋃

i Ui) = 0 such
that each (Ui, d,Hm Ui) is an m-dimensional LDS.

(3) There are Borel sets Ui ⊂ X, i = 1, 2, . . . , with Hm(X \ ⋃

i Ui) = 0 and
Lipschitz functions φi : Ui → R

m such that each Hm Ui has m φi-
independent Alberti representations.

That (1) implies (2) follows from Kirchheim’s work [276]. He showed that in
the definition of rectifiable sets, Lipschitz maps can be replaced by bi-Lipschitz
maps, recall Lemma 7.6. Then these can be used to find the required charts. The
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58 Rectifiable Sets in Metric Spaces

implication from (2) to (3) follows from [56]. Rectifiability from independent
Alberti representations was proved by Bate and Li in [61]. They used some
of the ideas of David from [152], who proved related weaker results. A key
feature in this technically very complicated argument is to show that the maps
φi are bi-Lipschitz on large subsets.

Notice that m in the assumptions and in (2) is the same. This leaves out many
interesting LDSs. For example, the Hausdorff dimension of the Heisenberg
group H1 is 4 but it is a 2-dimensional LDS.

David and Kleiner [153] proved a general result for a measure μ in a metric
space without any density conditions: if at μ almost all points, μ is pointwise
doubling, it has two independent Alberti representations, and its pointed
Gromov–Hausdorff limits (see Section 7.7) are homeomorphic to R2, then μ
is 2-rectifiable.

7.6 Projections as Lipschitz Images

First some bad news. The Besicovitch–Federer projection theorem fails in ev-
ery infinite-dimensional separable Banach space Y: Bate, Csörnyei and Wilson
[60] constructed a purely unrectifiable set E ⊂ Y with H1(E) < ∞ for which
L1(L(E)) > 0 for every non-zero continuous linear function L : Y → R. An
earlier weaker result was given by De Pauw in [172].

However, instead of linear maps, Bate [57] considered Lipschitz maps from
the metric space X to Rn and obtained a rectifiability characterization in the
spirit of the Besicovitch–Federer projection theorem. There is no natural mea-
sure on the space of Lipschitz maps (at least for this purpose), but the Baire
category gives a notion of typical maps. Related results were proven by Pugh
[385] and Galeski [218].

For the rest of this section we shall assume that X is complete. To state Bate’s
result, let us equip the space of bounded Lipschitz functions f : X → Rn such
that Lip( f ) ≤ 1 with the supremum norm to have the complete metric space
Lip1(X, n). A subset of Lip1(X, n) is residual if it contains a countable intersec-
tion of dense open sets. These are the complements of the ‘small’ first category
sets, countable unions of nowhere dense sets. Bate proved the following:

Theorem 7.11 Let 0 < m ≤ n. If E ⊂ X is purely m-unrectifiable with
Hm(E) < ∞ and Θm

∗ (E, x) > 0 for Hm almost all x ∈ E, then the set of all
f ∈ Lip1(X, n) withHm( f (E)) = 0 is residual.

Conversely, if F ⊂ X is m-rectifiable with Hm(F) > 0, then the set of all
f ∈ Lip1(X, n) withHm( f (F)) > 0 is residual.
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7.6 Projections as Lipschitz Images 59

Bate also showed that the positive lower density assumption is not needed
if X = Rn or m = 1. It may be that it is never needed, but this depends on an
announced but unpublished result of Csörnyei and Jones.

The first statement of the theorem is the more essential one. To prove it one
needs to approximate well any f ∈ Lip1(X, n) with g ∈ Lip1(X, n) for which
Lm(g(E)) = 0, or at least arbitrarily small. There are several very interesting
ingredients in this argument.

The main tools consist of Alberti representations and weak tangent fields.
Recall from Section 4.8 that both play essential roles in the investigation of
differentiability of Lipschitz maps in [3] and [4]. According to Definition 4.23,
a set E ⊂ Rn has a weak (m − 1)-dimensional tangent field if, generically, the
tangents of its 1-rectifiable subsets span at most (m−1)-dimensional subspaces.
In the metric space X this spanning condition is interpreted via Lipschitz maps
f : E → Rn, 0 < m ≤ n. A little more precisely, a Borel function τ : E →
G(n,m − 1) is a weak tangent field with respect to f if for 1-rectifiable sets
γ ⊂ E at almost all points x ∈ γ the tangent of f (γ) at f (x) lies in τ(x).

If E is purely m-unrectifiable, then by Theorem 7.10 E can have at most
m − 1 independent Alberti representations, which roughly means that one can
move along E from the points of E at most to m − 1 directions. This leads
to the existence of a weak tangent field. The next step in the proof of Theorem
7.11 is to perturb f slightly to a Lipschitz function g with Hm(g(E)) small.
This can be done contracting along directions orthogonal to the planes τ(x).
As these planes are (m − 1)-dimensional, the small measure is achieved.

In connection with their study of Lipschitz analysis of metric spaces, Aliaga,
Gartland, Petitjean and Prochzka [6] used Bate’s work [57] to verify that a
compact metric space is purely 1-unrectifiable if and only if locally flat (local
Lipschitz constants tend to 0) Lipschitz functions separate its points uniformly,
a result conjectured by Weaver. They also gave an independent proof.

As an application of Bate’s result, David and Le Donne proved in [154] that
if a subset of a compact metric space has finite Hm measure, positive lower
density and topological dimension m, then it is not purely m-unrectifiable. In
Euclidean spaces this follows, without positive lower density assumption, from
the Besicovitch–Federer projection theorem, see [200].

There exist easy examples of sets in Euclidean spaces with positive Haus-
dorff m-measure which project to measure zero in all m-planes. This is true in
the Lipschitz setting too. Vitushkin, Ivanov and Melnikov [432] constructed
a purely 1-unrectifiable subset E of the plane with H1(E) = 1 such that
L1( f (E)) = 0 for every Lipschitz function f : E → R, see [274] for a simplifi-
cation. Modifying an idea of Konyagin, Ambrosio and Kirchheim [16] showed
that for any m > 0, not necessarily an integer, there exists a compact metric
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space X such that Hm(X) = 1 and Hm( f (X)) = 0 for every Lipschitz map f
from X into a Euclidean space.

Kun, Maleva and Máthé [283] proved that an analytic subset A ⊂ Rn is
purely 1-unrectifiable if and only if for any compact subset F of A,L1( f (F)) =
0 for every local Lipschitz quotient map f : F → R. A Lipschitz function
f : F → R is a local Lipschitz quotient if there is c > 0 such that f (F) ∩
B( f (x), cr) ⊂ f (B(x, r)) for all x ∈ F, r > 0.

7.7 Metric Tangents

In Theorem 7.9 we had a characterization of rectifiability in terms of ap-
proximate tangent planes, which are linear subspaces of the bigger Banach
space. Bate [58] proved corresponding results approximating in the Gromov–
Hausdorff distance by m-dimensional Banach spaces. Even more, he proved an
analogue of Theorem 4.9 in metric spaces.

First we have to define the relevant concepts. The Gromov–Hausdorff dis-
tance dGH(X1, X2) between metric spaces (Xi, di), i = 1, 2 is the infimum of
those ε > 0 for which there exists a metric space Z and isometric embedddings
Z1 and Z2 of X1 and X2 into Z such that the Hausdorff distance dH(Z1,Z2) < ε.
Then dGH(X1, X2) = 0 if and only if the completions of (X1, d1) and (X2, d2) are
isometric. If (Xi, di), i = 0, 1, 2, . . . are metric spaces and xi ∈ Xi, we say that
the sequence (Xi, di, xi) of pointed metric spaces converges to (X0, d0, x0) if for
any r > 0 there is a sequence ri → r such that dGH(Bdi (xi, ri), Bd0 (x0, r))→ 0 as
i → ∞. A pointed metric measure space (X, d, μ, x) consists of a metric space
(X, d), a locally finite (bounded sets have finite measure) Borel measure μ on
X and a distinguished point x ∈ spt μ.

Let (X, d) be a complete metric space. For K ≥ 1 let biLip(K) be the set
of metric spaces Y = (Rn, ρ) such that ρ is K-bi-Lipschitz equivalent to the
Euclidean norm. Denote by biLip(K)∗ the set of pointed metric measure spaces
(X, d, μ, x) with (X, d) ∈ biLip(K). First a geometric version from [58]:

Theorem 7.12 Let E ⊂ X be Hm measurable with Hm(E) < ∞. Suppose
that for Hm almost all x ∈ E, Θm

∗ (E, x) > 0 and there exists Kx ≥ 1 such that
for each r > 0 there exist Yr ∈ biLip(Kx) and Er ⊂ E ∩ B(x, r) for which

lim
r→0

r−mHm(E ∩ B(x, r) \ Er) = 0

and

lim
r→0

r−1dGH(Yr ∩ B(0, r), Er) = 0.
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Then E is m-rectifiable.

This result is new also in Euclidean spaces because to conclude rectifiability,
it allows much more general approximating sets than planes.

Next we define the tangent measure spaces. For a pointed metric measure
space (X, d, μ, x) let Tan(X, d, μ, x) be the set of all pointed metric measure
spaces (Y, ρ, ν, y) such that there exist ri > 0 for which ri → 0 and

(

X, r−1
i d, μ(B(x, ri))

−1μ, x
)

→ (Y, ρ, ν, y). (7.7)

Finding a metric that is suitable to define this convergence is a bit of a
delicate matter, since for the standard metric measure space convergence there
may not be any tangent measure spaces. Standard meaning that one uses the
Hausdorff distance for the spaces Z, as in the definition of dGH , and a distance
metrizing the weak convergence for the push-forwards of the measures. In-
stead, Bate defined a metric d∗ that only considers the distance between the
measures and disregards the Hausdorff distance between the embedded metric
spaces.

Theorem 7.13 Let E ⊂ X be Hm measurable with Hm(E) < ∞ and with
Θm
∗ (E, x) > 0 forHm almost all x ∈ E. Then the following are equivalent:

(1) E is m-rectifiable.

(2) For Hm almost all x ∈ E there exists an m-dimensional Banach space
(Rm, ‖ · ‖x) such that

Tan(X, d,Hm E, x) = {(Rm, ‖ · ‖x,Lm, 0)}.

(3) ForHm almost all x ∈ E there exists Kx ≥ 1 such that

Tan(X, d,Hm E, x) ⊂ biLip(Kx)∗.

That (1) implies (2) uses Kirchheim’s results in [276] discussed above. The
main and hardest arguments involve the proofs of Theorem 7.12 and the im-
plication (3) ⇒ (1) in Theorem 7.13. They use Bate’s Lipschitz projection
Theorem 7.11. Recall that the proof of the Euclidean Theorem 4.9 also used
projections. Another basic tool needed consists of approximation of E with
continuous images of cubes in Rm. Its formulation is rather complicated, so
I only give Bate’s own informal description from his introduction. Roughly
speaking, it shows that, under the hypotheses of Theorem 7.12, forHm almost
all x ∈ E, the following is true: for any ε > 0 and any sufficiently small r > 0,
there exists a metric space Ẽ containing E and a continuous (in fact Hölder)
map ι : [0, r]m → Ẽ such that ι|∂[0, r]m is close to having Lipschitz inverse
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and Hm
∞(ι([0, r]m) \ E) < εrm. Here Hm

∞ denotes the m-dimensional Hausdorff
content.

To finish the proofs Bate showed that as a consequence of Theorem 7.11 E is
rectifiable if all of its subsets possess this approximation property. To get some
(not quite correct) idea how Theorem 7.11 is applied, imagine that for some
x ∈ E, r > 0, withHm(E∩B(x, r)) ∼ rm we would have ι([0, r]m) = E∩B(x, r)
for ι as above. Extending, if possible, (ι|∂[0, r]m)−1 to a Lipschitz map f from
E ∩ B(x, r) onto [0, r]m we would then have Lm( f (E ∩ B(x, r))) ∼ rm. By some
topology the same would be true for small perturbations of f . If E were purely
unrectifiable this would contradict Theorem 7.11.

In addition, for the proof of Theorem 7.13 Bate extensively developed the
properties of the metric d∗ and the metric tangent measure spaces.

7.8 Menger Curvature

The curvature of a smooth plane curve C at a point p can be defined as the
limit of the reciprocals of the largest radii of the circles approaching and only
touching C at p. The obstruction for not being able to make the radii bigger
comes from triples of points on the curve near p. So the curvature at p is also
the limit of c(x, y, z), where x, y, z ∈ C go to p and c(x, y, z) = 1/R, with R equal
to the radius of the circle passing through x, y and z. If we take three points in
a metric space X, there is an isometric triple in the plane. Thus we can define
the Menger curvature c(x, y, z) for any x, y, z ∈ X. It is not necessary to pass
through the plane because there is a formula that gives c(x, y, z) in terms of
the three distances, see [229], [230] or [336].

Menger introduced his curvature in [336] as a part of extensive studies of
geometry of metric spaces. In particular, he characterized in terms of this cur-
vature the metric arcs which are isometric to Euclidean line segments. An in-
terested reader might also wish to have a look at the book [68].

We already discussed this topic in Section 3.4. In [229], Hahlomaa proved a
variant of Jones’s Theorem 3.16 in general metric spaces. Now β(F) is defined
in terms of the Menger curvature. In [230], he generalized the David–Léger
Theorem 3.18 to metric spaces:

Theorem 7.14 IfH1(X) < ∞ and
∫

X

∫

X

∫

X
c(x, y, z)2 dH1x dH1y dH1z < ∞,

then X is 1-rectifiable.

The proof follows lines similar to David’s original proof in the plane, but
much also has to be changed.
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