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ON CUPPING AND AHMAD PAIRS

ISKANDER SH. KALIMULLIN, STEFFEN LEMPP , KENG NG, AND MARS M. YAMALEEV

Abstract. Working toward showing the decidability of the ∀∃-theory of the Σ0
2-enumeration degrees,

we prove that no so-called Ahmad pair of Σ0
2-enumeration degrees can join to 0′e .

§1. Introduction. Enumeration reducibility is a natural counterpart to its more
famous cousin, Turing reducibility, and arises naturally as a notion of relative
computability especially in computable model theory as well as, in slightly modified
form, Ziegler reducibility in group theory.

This paper is devoted to the study of enumeration reducibility in terms of a
degree structure, more specifically, the degree structure of the enumeration degrees
of the Σ0

2-sets, which can be defined also as those enumeration degrees below the
degree 0′e , i.e., the enumeration degree of the complement K of the halting problem
K = {e | ϕe(e)↓ }. (By this double characterization, the Σ0

2-enumeration degrees
can be viewed as the counterpart of both the c.e. Turing degrees and the Turing
degrees ≤ 0′, i.e., the Δ0

2-Turing degrees.)
One of the common questions about a degree structure viewed as a partial order is

that of the complexity of its first-order theory as well as the decidability of fragments
thereof. For most degree structures commonly being considered, the theory turns
out to be as complicated as possible (i.e., equivalent to first-order or second-order
arithmetic), while the ∃-and often even the ∀∃-fragment is decidable and the ∃∀∃-
fragment is not.

For the Σ0
2-enumeration degrees, the first of these questions has been completely

settled: The full first-order theory was shown to be undecidable by Slaman
and Woodin [13], and equivalent to full first-order arithmetic by Ganchev and
Soskova [3].

As for the second question, the ∃-fragment is easily seen to be decidable, whereas
Kent [6] showed the ∃∀∃-fragment to be undecidable. On the other hand, the
decidability of the ∀∃-fragment remains open.

The decidability of the ∀∃-fragment can be rephrased algebraically as (uniformly
effectively) deciding the following.

Question 1.1. For any given finite partial orders P and Qi ⊇ P ( for i ≤ n), can
any embedding of P into the Σ0

2-enumeration degrees be extended to an embedding of
Qi for some i ≤ n (where i may depend on the particular embedding of P)?
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ON CUPPING AND AHMAD PAIRS 1359

Two major subproblems of Question 1.1 have been shown to be decidable:

• Lempp, Slaman, and Sorbi [9] showed that the above question is decidable
for n = 0, i.e., given any finite partial orders P ⊆ Q, it is decidable whether
any embedding of P into the Σ0

2-enumeration degrees can be extended to an
embedding of Q.

• Lempp and Sorbi [10] showed that all finite lattices can be embedded, even
preserving 0 and 1. (The lattice embeddings question can be seen as a
disjunction of extending embeddings to certain one-point extensions Qi of
a finite lattice P viewed as a partial order.)

The Σ0
2-enumeration degrees are often compared to the c.e. Turing degrees, where

the situation is somewhat similar but also quite different in other respects: The
full first-order theory is as complicated as first-order arithmetic by Slaman and
Woodin (unpublished; see [11]); the∃-fragment is easily seen to be decidable, whereas
Lempp, Nies, and Slaman [8] showed the ∃∀∃-fragment to be undecidable; the lattice
embeddings problem for the c.e. Turing degrees remains one of the main open
problems dating back to the 1960s (see [7] for the most recent update), and thus the
decidability of the ∀∃-theory of the c.e. Turing degrees remains wide open as well.

The main algebraic difference between the c.e. Turing degrees and the
Σ0

2-enumeration degrees was discovered by Ahmad in her Ph.D. thesis [1] (see
[2, Corollary 3.2]): There are incomparable Σ0

2-enumeration degrees a, b (called
an “Ahmad pair”) such that any degree x < a is also < b. (This makes a “non-
splitting” (i.e., join-irreducible) and thus cannot happen in the c.e. Turing degrees by
the Sacks Splitting Theorem [12].) More interestingly, even Ahmad also showed (see
[2, Theorem 3.3]) that this phenomenon is not symmetric: For any two incomparable
Σ0

2-enumeration degrees a, b, there is either a degree x < a which is � b, or there is
a degree y < b which is � a.

In the language of Question 1.1, Ahmad’s results can be rephrased as stating that
not every embedding of an antichain P = {a, b} can be extended to an embedding
of Q0 = {a, b, x} where x < a and x � b, but that every embedding of P can be
extended to an embedding of either Q0 or of Q1 = {a, b, y} where y < b and y � a.

One of the two main open questions extending the work of the second author,
Slaman, and Sorbi [9] asks whether an Ahmad pair of Σ0

2-enumeration degrees can
join to the greatest Σ0

2-enumeration degree 0′e . In this paper, we answer this question
(communicated to the second author in 2007 by Kent) in the negative:

Main Theorem. There is no cupping Ahmad pair of Σ0
2-enumeration degrees;

i.e., given any two incomparable Σ0
2-enumeration degrees a and b, there is either a

Σ0
2-enumeration degree x < a with x � b, or else a ∪ b < 0′e .

This result is a small part of a proposed framework for deciding the ∀∃-theory of
the Σ0

2-degrees, which is equivalent to deciding Question 1.1.
Given the difficulty of the overall problem of deciding the ∀∃-theory, researchers

are currently concentrating on the following question concerning 1-point extensions:

Question 1.2. Given a finite antichain P = {a0, ... , an} and 1-point extensions
QS = {a0, ... , an, xS} and QT = {a0, ... , an, x

T } for some sets S ∈ S and T ∈ T
(where S, T ⊆ P({0, ... , n}) – {∅}); xS < ai iff i ∈ S; and xT > ai iff i ∈ T ), does
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1360 ISKANDER SH. KALIMULLIN ET AL.

any embedding of P into the Σ0
2-degrees extend to an embedding into the Σ0

2-degrees
of QS for some S ∈ S or to an embedding of QT for some T ∈ T ?

Note that it is always possible to extend an embedding of a finite antichain P to
an embedding of a larger antichain, so the case S = T = ∅ is not interesting. The
subproblem involving only extensions QT is easy to see: We have extendibility iff
there is a singleton T ∈ T .

Recent work of Goh, the second and third authors, and Soskova [4, 5] gives a
complete (and quite complicated) characterization of the subproblem involving only
extensions QS .

We have no working conjecture that combines the QS and the QT ; our main result
is the only result known to us in this direction.

§2. The proof of the Main Theorem. This section is devoted to the proof of our
Main Theorem.

2.1. Requirements. Rather than proving the result directly, we use an indirect
approach, trying to “weakly split” the degree of A. Specifically, given two Σ0

2-sets A
and B and an enumeration operator Λ such thatK = Λ(A⊕ B) (K here denotes the
usual Halting set), we construct two sets X0 = Φ0(A) and X1 = Φ1(A) with these
enumeration operators and an enumeration operator Γ, and meet the following
requirements for all enumeration operators Δ:

Global : A = Γ(B ⊕ X0 ⊕ X1),

N 0
Δ : A = Δ(X0) ⇒ ∃Ω (A = Ω(B)),

N 1
Δ : A = Δ(X1) ⇒ ∃Ω (A = Ω(B)).

Here, the enumeration operators Ω are built locally by N -requirements; indeed, as
we will see below, each N -requirement will build different versions of Ω based on
different guesses about the higher-priority requirements.

If we succeed with these requirements, then we have that A ≤e B , or that X0,
X1 <e A andA ≤e B ⊕ X0 ⊕ X1, and so the degrees of A and B clearly cannot form
an Ahmad Pair. This corollary is non-uniform in two ways, in that we do not know
whetherA ≤e B or which one (or both) of theXi is not below B, and even assuming
A ≤e B , we cannot tell uniformly which of X0 or X1 (or both) is now below B (in
fact, these non-uniformities are unavoidable, as can be shown).

The construction will be a finite-injury construction. The global requirement
should proceed carefully to ensure that we do not end up with a “runaway”
Γ-axiom. The other requirements will be ordered in some way in order type �
which determines their priority.

Our construction uses the Recursion Theorem with Parameters in that we will
define “agitators” that we enumerate into the Halting set K, which will then force
A⊕ B to change. More precisely, we assume that we are given an infinite computable
list of indices i0, i1, ... for which we are able to defineϕiy for every y. This allows us to
be able to use any of these indices as an “agitator.” For any choice ofN -requirement,
stage s, and potentially numbers a and strings � ∈ 2<� , we may define agitators pa,�
and q for the N -requirement at stage s, picked from the aforementioned list of
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agitators, and the Recursion Theorem with Parameters allows us to assume that we
know what corresponding number will enter K when we enumerate an agitator.

2.1.1. Agitators and the use of the Recursion Theorem. We provide more details
about agitators and the use of the Recursion Theorem here; the reader who is familiar
with this may skip this subsection. As mentioned above, we assume that we are given
an infinite computable list of indices i0, i1, ... for which we are able to control the
value of K(iy) for every y. What this means is that for any y, we can assume that
iy ∈ K until we choose to enumerate it into K (via making a definition ϕiy (iy)). If
we never choose to enumerate iy into K, then it will never appear in Ks for any s;
otherwise, if we choose to enumerate it into K, then it must appear in Ks for some
large s which we can then wait for by speeding up the approximation to Ks .

Now it remains to justify the existence of the sequence i0, i1, ... . To do this, we
require the use of the Recursion Theorem with Parameters, applied in the following
way. We perform infinitely many constructions, rather than just the one described in
the proof, and each construction is given a different label c ∈ �. These constructions
are performed uniformly, and each differs only on the assigned label c. In each
construction, we build infinitely many partial computable functions hc,0, hc,1, ...
representing the list of potential agitators in that construction. The construction
will guess that hc,y has index ϕc(c, y) for each y, where c is its assigned label. That is,
the construction believes that hc,y = ϕϕc (c,y) for every y. All constructions proceed in
exactly the same way, except for its guess on the indices for the sequence hc,0, hc,1, ... .
This allows us to use the s-m-n Theorem to obtain a computable function f such
that hc,y = ϕf(ϕc (c,y),c,y) for every c and y. The Recursion Theorem with Parameters
gives an index c such that hc,y = ϕf(ϕc (c,y),c,y) = ϕϕc (c,y) holds for every y. Now the
construction which was assigned label c will have the correct guesses on the indices
of the agitators.

2.2. Basic strategies for the requirements. We fix a computable enumeration {Ks}
of K, and let Ks be the complement of Ks . By speeding up the enumeration of
Λ and the approximations to A and B, we may assume at any stage s that for all
numbers p < s , if p ∈ Ks , then currently p ∈ Λ(A⊕ B), and if p /∈ Ks , then any
axiom putting p into Λ(A⊕ B) at stage s – 1 will no longer apply at stage s.

The global requirement constructing the operator Γ will enumerate axioms into
Γ taking into account more and more of the other requirements’ action; the basic
action of the global requirement is to just enumerate an axiom for a into Γ whenever
it sees a enter A. Specifically, for each a ∈ A, we associate with a fresh numbers
cia > a targeted for Xi for i < 2; we then enumerate cia into Xi via the Φi -axioms
〈cia , {a}〉, and we enumerate a new axiom 〈a, Ba ⊕ C 0

a ⊕ C 1
a 〉 into Γ where Ba is

some finite subset of B, and C ia is a finite subset of Xi containing cia and possibly
other numbers determined later; this will result in a ∈ Γ(B ⊕ X0 ⊕ X1). Now, when
a leaves A, this will remove c0

a fromX0 and c1
a fromX1 unless we introduce additional

axioms for either of these numbers. (More generally, ensuring C 0
a ⊆ X0 or C 1

a ⊆ X1

or Ba ⊆ B would suffice, as will be required later.)
The basic strategy for the N iΔ-requirement is to try to show that A = Ω(B) as

follows: At each stage, the N iΔ-requirement determines the oldest a ∈ A (if any)
which has not yet been confirmed (as defined precisely below) and checks if there
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is currently some F such that a ∈ Δ(F ); if no such F exists, the requirement does
nothing for now. If there is such F, the requirement declares a to be confirmed and
dumps all x ∈ F into Xi by enumerating axioms 〈x, ∅〉 into Φi (and thus ensures
that a ∈ Δ(Xi) permanently); it also chooses a fresh agitator pa , keeps pa ∈ K for
now, and waits for pa ∈ Λ(A⊕ B) (which must happen by the first stage s > pa)
via a Λ-axiom 〈pa, Fa ⊕Ga〉, say, for which all a′ ∈ Fa have been confirmed already
(which need not ever happen). The N iΔ-requirement then enumerates a into Ω(B)
via the Ω-axiom 〈a,Ga〉. If pa leaves Λ(A⊕ B) before we enumerate pa into K
(if ever), then we wait again for a to re-enter Λ(A⊕ B) via a possibly different
Λ-axiom 〈pa, F ′

a ⊕G ′
a〉 (such that again all a′ ∈ F ′

a are confirmed); then we will use
the (possibly different) set G ′

a in redefining a ∈ Ω(B), etc.; this can happen only
finitely often for this fixed pa . If a leaves A after a is confirmed, then we enumerate
the current agitatorpa into K ; if later a re-enters A, then we pick a new, fresh agitator
p′a , say, for which we proceed as above (finding sets F ′

a and G ′
a and enumerating

an Ω-axiom 〈a,G ′
a〉, etc.). From now on, whenever some agitator pa ∈ K and for

any corresponding set Ga , we see Ga ⊆ B , then the N iΔ-requirement stops (since it
believes that Fa ⊆ A while Fa ⊆ Δ(Xi) by dumping). Note that if a is truly in A,
then the final agitator pa for a will stabilize and be inK ; on the other hand, if a /∈ A
then a will either appear to be outside A at cofinitely many stages, or the agitator
will never stabilize, and any temporary agitator pa will eventually be in K.

We need to check two things: First of all, note that the N iΔ-requirement can
act only finitely often unless A = Ω(B) (which would contradict our hypotheses):
If the requirement acts for the sake of infinitely many distinct a, then, since we
always choose a by age, we will have for each a ∈ A that a will be confirmed and
that a ∈ Ω(B) by an axiom using the final agitator pa ∈ K and the B-part Ga of
its Λ-use; and for each a /∈ A we will have that a /∈ Ω(B) since no Ω-axiom can
apply: If a ∈ Ω(B) via some axiom 〈a,Ga〉, say, but a /∈ A, then Ga is the B-part of
the Λ-use of some agitator pa , but every such agitator pa will be enumerated into
K and thus Ga ⊆ B will eventually stop the N iΔ-requirement permanently. On the
other hand, the N iΔ-requirement cannot act infinitely often for some fixed a0 since
that would mean that a0 /∈ A and so the age of a0 would keep increasing and we
would choose other numbers infinitely often (assuming here, of course, that A is
infinite).

The second item we need to check is that the N iΔ-requirement satisfies its
requirement, so assume that indeed A = Δ(Xi): Then every a truly in A must be
confirmed eventually, but since we may assume A to be infinite, this means that the
N iΔ-requirement acts infinitely often and thus ensures A = Ω(B) as shown in the
previous paragraph.

2.3. Conflicts between the N -requirements and the global requirement. A single
N i -requirement will not conflict with the global requirement building and correcting
Γ since when a leaves A, Γ can always be corrected by extracting c1–i

a from X1–i (as
no requirement has dumped that number into X1–i so far).

So let’s consider the case of a higher-priority N 0-requirement above a lower-
priority N 1-requirement: The main difficulty is that any number x0 dumped by the
N 0-requirement is associated with some number a potentially in A, which in turn
may be associated with a number x1 that the N 1-requirement may dump intoX1, so

https://doi.org/10.1017/jsl.2022.84 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.84


ON CUPPING AND AHMAD PAIRS 1363

if both x0 and x1 are dumped, then we may not be able to correct Γ(B ⊕ X0 ⊕ X1)
if a leaves A, injuring the global requirement.

So the N 1-requirement, assuming that the N 0-requirement acts only finitely
often, will be modified as follows: Each time the N 0-requirement acts, the
N 1-requirement’s action will be completely undone by enumerating an agitator
q (chosen by the N 0-requirement) into K, which will force an (A⊕ B)-change
undoing all Γ-axioms enumerated since the N 0-requirement was last active (and
thus any Γ-axioms enumerated while the N 1-requirement was active since then),
where q ∈ Λ(A⊕ B) via a Λ-axiom 〈q, Fq ⊕Gq〉, say; now the numbers in Fq
are associated with sets of numbers F iq in Xi for i < 2, and so we may assume
that each Γ-axiom enumerated since the N 0-requirement was last active contains
Bq ⊕ C 0

q ⊕ C 1
q in its use; thus we will now ensure that when q enters K, this will entail

Bq ⊕ C 0
q ⊕ C 1

q ⊆ B ⊕ X0 ⊕ X1. This feature will thus prevent the N 1-requirement
from interfering with the global requirement as long as the N 1-requirement cannot
unconditionally dump numbers into X1 like the N 0-requirement.

In addition to this extra initialization, we will now modify the strategy for the N 1-
requirement as follows: Let r be a strict bound on the largest number ever considered
by the N 0-requirement up to this stage, and assume that this bound is reset each
time the computation for q ∈ Λ(A⊕ B) changes. (If the N 0-requirement acts only
finitely often, then this number will stabilize eventually.)

The N 1-requirement will now be prevented from making any changes toX1 at any
number < r and will work with all possible guesses � ∈ 2r about A � r. (Recall here
that any number x potentially in X1 is associated with a number a < x potentially
in A, or with no number at all, so a guess about A � r will eventually give complete
information aboutX1 � r.) Each version of the strategy for the N 1-requirement (let’s
call it the N 1

� -strategy) will build its own version of the enumeration operator Ω
(call it Ω�); each N 1

� -strategy will now act independently, building not only its own
Ω� but also define its own agitators pa = pa,� . (On the other hand, the agitator q is
attached to an entire requirement and so can be joint for all N -strategies working
for the same requirement since this is a finite-injury argument.)

Each N 1
� -strategy will then, instead of dumping a number x < r into X1, simply

check if its guess about A � r and about Φ1 puts x into X1, and this guess will
eventually be correct about each such x; for numbers x ≥ r, the N 1

� -strategy can
still simply “dump” numbers into X1 but only with the set Fq (from the Λ-axiom
〈q, Fq ⊕Gq〉) in the A-part of the Φ1-use. (Also, the strategy will stop if it sees a
number a ∈ A � r with �(a) = 0.) Note that this is sufficient to allow the global
strategy to correct Γ whenever necessary: If any number a leaves A, then the global
strategy can either use X0 to correct Γ if the Γ-axiom for a ∈ Γ(B ⊕ X0 ⊕ X1) was
defined after the stage sr , say, at which the N 0-requirement last acted (since no
strategy will have dumped any number ≥ r into X0 up to this point), or it can
use X1 or B if the Γ-axiom for a ∈ Γ(B ⊕ X0 ⊕ X1) was defined before stage sr
(since any number dumped into X1 before stage sr must have been dumped by an
N 1
� -strategy before r was last increased, and thus the corresponding agitator q of the

N 0-requirement from that time was enumerated into K, resulting in a B-change, or
in an A- and thus an X0-change, invalidating any Γ-axiom for a that might involve
a number dumped by an N 1

� -strategy in its use).
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We now have to verify two things: Firstly, the N 1
� -strategy with the correct

guess � = A � r will ensure the satisfaction of the N 1-requirement. And secondly,
any N 1

� -strategy will act at most finitely often even if its guess � about A � r is
incorrect.

So suppose first that r is the final value of this parameter and fix � = A � r. Then,
starting at some stage sr , any number x ∈ X1 � r will forever be in X1 = Φ1(A). So
starting at stage sr , the N 1

� -strategy can act like the N -strategy in isolation except
that it cannot dump any number x < r into X1, but no such number will be truly in
X1 unless it is so by stage sr , so this does not cause more than finitely many mistakes
for Ω� in case the N 1

� -strategy acts infinitely often.
Next, fix any N 1

� -strategy (irrespective of whether � = A � r or not). In order
to show that this strategy acts at most finitely often, we distinguish two cases: If
A � r ⊆ �, fix the oldest element a ∈ A � r with �(a) = 0; in that case, the strategy
clearly stops as soon as a no longer leaves A. On the other hand, if A � r ⊆ �, then
the strategy will act as in isolation (since it will never want to dump a number into
X1 that it cannot dump) and so must also eventually stop unless A ≤e B .

This concludes the presentation of the intuition behind our construction; we are
now ready to describe it formally in full.

2.4. The full construction. Recall that we are given approximations to Σ0
2-sets A

and B and an enumeration operator Λ such that at any stage s, for any numberp < s ,
ifp ∈ Ks thenp ∈ Λ(A⊕ B)[s], and ifp ∈ Ks then p is not in both Λ(A⊕ B)[s – 1]
and Λ(A⊕ B)[s] via the same axiom. Furthermore, we may assume to be given a
good approximation {As ⊕ Bs}s∈� (of finite sets) to A⊕ B , i.e., there are infinitely
many true stages, namely, stages s with As ⊕ Bs ⊆ A⊕ B .

Since we have a finite-injury construction with one global requirement, the action
at each stage s will consist of a single action for the highest-priority N -requirement
requiring attention, followed by some global action. At stage 0, all N -requirements
are initialized and all functionals and agitators are set to be undefined.

We say that an N iΔ,�-strategy (for � ∈ 2r and some r ∈ �) requires attention if:

• there is no a ∈ As � r with �(a) = 0; and
• there is no agitator pa ∈ Ks with Ga ⊆ Bs for the corresponding Λ-axiom
〈pa, Fa ⊕Ga〉 where pa = pa,�′ is any agitator ever used by an N iΔ,�′ -strategy

working for the same N iΔ-requirement; and
• one of the following four conditions holds:

(1) there is some a ∈ Ω(B)[s] – As (with the oldest Ω-axiom applicable); or
(2) there is some (oldest) a ∈ As – Ω(B)[s] which has already been

confirmed by the N iΔ,� -strategy (since its last initialization) via F, say,
and each a′ ∈ F has also already been confirmed by the N iΔ,� -strategy
(since its last initialization); or

(3) there is some (oldest) a ∈ As which has not yet been confirmed by the
N iΔ,� -strategy (since its last initialization) and for which there is a finite
set F (of least canonical index) with F � r = Φi (�) � r and a ∈ Δs (F );
or

(4) all the strategies for this N -requirement have not acted since they were
last initialized.
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If an N iΔ,�-strategy requires attention, we also say that the corresponding N iΔ-
requirement requires attention.

At a stage s > 0, we first check if there is a (highest-priority) N iΔ-requirement
requiring attention; if so, allow all N iΔ,�-strategies working for this N iΔ-requirement
to act if they require attention. Each such N iΔ,�-strategy will now act according to
the first clause of the third bullet that applies.

If (1) applies, then the N iΔ,�-strategy enumerates into K the agitator pa = pa,�
which was chosen when the current Ω�-axiom for a ∈ Ω�(B) was defined. (Note that
pa /∈ Ks since otherwise, the second bullet would have prevented theN iΔ-requirement
from requiring attention.)

If (2) applies, then the N iΔ,�-strategy, for the current agitator pa = pa,� and the
(oldest) Λ-axiom putting pa ∈ Λ(A⊕ B) with use Fa ⊕Ga , enumerates the axiom
〈a,Ga〉 into Ω� .

If (3) applies, then the N iΔ,�-strategy declares a to be confirmed via F, chooses a
fresh agitator pa , and enumerates all of F – [0, r) (for the threshold r imposed on
this requirement) into Φi(A) with use including all Fq for all agitators q ∈ K defined
by strategies for higher-priority requirements (where q ∈ Λ(A⊕ B) via an (oldest)
Λ-axiom 〈q, Fq ⊕Gq〉). If now (2) applies to this a, then continue as for that case,
else proceed to the global action for this stage.

If one of (1)–(3) applies, then we also enumerate into K the agitator q of the
N -requirement for which we acted at this stage, choose a new fresh agitator q,
choose a new threshold r above all numbers mentioned so far which will be imposed
on the lower-priority strategies, and initialize all lower-priority N -strategies.

If (4) applies, then the N iΔ-requirement, i.e., the N iΔ,�-strategies (for all � ∈ 2r ,
where r is the threshold imposed by the higher-priority strategies) simply defines
a new threshold r′ above all numbers mentioned so far which is imposed on all
lower-priority N -strategies.

After the strategies for an N -requirement have acted, the global requirement
building Γ will act. First of all, as we will show in the verification below (see Lemma
2.3), since all corrections will be automatic there will never be a number a and a
stage s such that a ∈ Γ(B ⊕ X0 ⊕ X1) – A. So the global requirement will simply
identify the (oldest) a ∈ A – Γ(B ⊕ X0 ⊕ X1) (which must exist since A is infinite),
let Q be the set of all current agitators q of N -requirements whose current threshold
r is less than< a, and then enumerate an axiom 〈a, Ba ⊕ C 0

a ⊕ C 1
a 〉 into Γ where:

• Ba contains all setsGq such that q ∈ Λ(A⊕ B) via a Λ-axiom 〈q, Fq ⊕Gq〉 for
some q ∈ Q and some finite set Fq ,

• C 0
a contains all c0

a′ for all a′ ∈ Fq such that q ∈ Λ(A⊕ B) via a Λ-axiom
〈q, Fq ⊕Gq〉 for some q ∈ Q and some finite sets Fq andGq , as well as a freshly
chosen number c0

a for which we enumerate c0
a intoX0 via a Φ0-axiom 〈c0

a, {a}〉,
and

• C 1
a contains all c1

a′ for all a′ ∈ Fq such that q ∈ Λ(A⊕ B) via a Λ-axiom
〈q, Fq ⊕Gq〉 for some q ∈ Q and some finite sets Fq andGq , as well as a freshly
chosen number c1

a for which we enumerate c1
a intoX1 via a Φ1-axiom 〈c1

a, {a}〉.
In the last two bullets above, for each a′, if there is no ci

a′ (for i < 2) which has not
yet been dumped and for which there is a Φi -axiom 〈ci

a′ , {a′}〉, then we pick a fresh
such number ci

a′ for the Γ-axiom, enumerate a corresponding axiom 〈ci
a′ , {a′}〉 into
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Φi , and use it in the above Γ-axiom. Also, recall here that each current agitator
q ∈ Q must be in K and thus in Λ(A⊕ B).

This concludes the formal description of the construction.

2.5. Verification. We now verify that our construction satisfies the requirements
in a number of lemmas. In addition to assuming thatK = Λ(A⊕ B) and thatA⊕ B
has a good approximation, we will also assume tacitly throughout that A ≤e B and
in particular that A is infinite.

We start by verifying that our construction is indeed finite injury:

Lemma 2.1. EachN -requirement acts at most finitely often and eventually defines a
final threshold r and a final agitator q which is inK(unless it does not have an eventual
agitator at all).

Proof. We proceed by induction on the priority of the N -requirement. So fix
an N iΔ-requirement and assume the lemma for all higher-priority N -requirements.
Fix a (least) stage s0 such that no higher-priority N -requirement acts after stage
s0. Let r0 be the maximum of the final thresholds of all these higher-priority
N -requirements, and let Q be the set of the final agitators of all these higher-priority
N -requirements.

Let’s now analyze how the N iΔ-requirement can require attention after stage s0:
First of all, observe that clause (4) of the third bullet can apply at most once after
stage s0.

For the sake of a contradiction, assume that an N iΔ,�-strategy acts infinitely often.
By the first bullet in the conditions for requiring attention, there can be no a ∈ A
with �(a) = 0.

Furthermore, clause (3) of the third bullet must apply infinitely often (and thus
infinitely many a will be confirmed by the N iΔ,�-strategy), since clauses (1) and (2)
of the third bullet can possibly apply to a fixed a only if a /∈ A, but then the age of
a keeps increasing and, since A is infinite, infinitely many other numbers must take
precedence in requiring attention. This implies, by age and clause (3) of the third
bullet, that each a ∈ A must eventually be confirmed, and so, since the first bullet
fails for �, a ∈ Δ(Xi). But then there will be a final agitator pa = pa,� , which will be
in K and thus in Λ(A⊕ B) via a Λ-axiom 〈pa, Fa ⊕Ga〉, say. Thus a ∈ Ω�(B) via
the axiom 〈a,Ga〉. Conversely, if a /∈ A, then any axiom 〈a,Ga〉 enumerated into Ω�
cannot apply and put a ∈ Ω�(B) since otherwise, Ga ⊆ B while the corresponding
agitator pa /∈ K , so the second bullet for requiring attention will eventually prevent
any N iΔ-strategy from acting. We have thus shown that an N iΔ,�-strategy acting
infinitely often will imply A = Ω�(B), contrary to assumption.

Thus the N iΔ-requirement will act at most finitely often and eventually define a
final threshold r and a final agitator q (if there is an agitator q ever defined).

Note that the action of the global requirement does not interfere with any of the
above argument. �

We next verify that each N -requirement is satisfied.

Lemma 2.2. Each N iΔ-requirement is satisfied.
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Proof. Suppose that A = Δ(Xi). Fix the final threshold r of the higher-priority
N -requirements and set � = A � r. We will show that the N iΔ,�-strategy acts infinitely
often, contradicting Lemma 2.1.

First, note that for each a, the first and second bullets of requiring attention
will eventually not prevent the N iΔ,�-strategy from acting. (This is clear for the first
bullet by definition of �, and for the second bullet, we argue that otherwise, pa ∈ K
and Ga ⊆ B implies pa /∈ Λ(A⊕ B) and so Fa ⊆ A, say, a′ ∈ Fa – A. But a′ is
confirmed, so ∈ Δ(Xi) – A, contradicting our assumption.)

But now A = Δ(Xi) implies that every a ∈ A will be confirmed, implying that the
N iΔ,�-strategy acts infinitely often, again contradicting Lemma 2.1. �

Finally, we need to verify that the global requirement is satisfied.

Lemma 2.3. The global requirement is satisfied: A = Γ(B ⊕ X0 ⊕ X1).

Proof. We need to prove two directions. Assume first that a ∈ A, so we need
to verify that some Γ-axiom will eventually put a into Γ(B ⊕ X0 ⊕ X1). So find a
stage s such that all thresholds r of N -requirements with r < a, as well as their
potential agitators q, have settled down. Then for each such agitator q, q ∈ K and
thus there will be a stable Λ-axiom 〈q, Fq ⊕Gq〉 putting q ∈ Λ(A⊕ B), say, all
of this happens by a stage s ′ ≥ s . Then by stage s ′, the global strategy will have
enumerated a Γ-axiom 〈a, Ba ⊕ C 0

a ⊕ C 1
a 〉 with Ba ⊆ B and C ia ⊆ Xi for i < 2, and

so a ∈ Γ(B ⊕ X0 ⊕ X1).
Conversely, suppose a /∈ A, so we need to show that no valid Γ-axiom puts a into

Γ(B ⊕ X0 ⊕ X1). For the sake of a contradiction, suppose that at some stage s, while
a ∈ As , the global strategy enumerates a valid axiom 〈a, Ba ⊕ C 0

a ⊕ C 1
a 〉 into Γ. We

now distinguish two possibilities:
Assume first that after this stage s, noN -requirement with current threshold r ≤ a

acts; then the N -requirements with threshold r ≤ a cannot dump any numbers ci
a′

into Xi involved in the Γ-axiom putting a into Γ(B ⊕ X0 ⊕ X1) (for either i < 2);
and only the highest-priority N -requirement with threshold r > a can dump any
such numbers into only one of the Xi , so a /∈ Γ(B ⊕ X0 ⊕ X1) by an X1–i -change.

On the other hand, suppose that some N -requirement with current threshold
r ≤ a acts, say, the first such requirement is an N j-requirement acting at a stage
s ′ > s . In that case, the N j-requirement’s current agitator q will be enumerated into
K, and so the Λ-axiom involving Fq ⊕Gq will no longer apply. Now ifGq ⊆ B , then
the Γ-axiom will clearly no longer apply for a. If only Fq ⊆ A, then we will need to
argue thatC 0

a ⊆ X0 orC 1
a ⊆ X1 to invalidate the Γ-axiom for a, but by the choice of

the numbers ci
a′ in the definition of the Γ-axiom for a, both c0

a′ and c1
a′ will leave X0

andX1, respectively, unless they will be dumped. However, since any N -requirement
of lower priority than the N j-requirement is prevented from dumping a number in
C 1–j
a into X1–j after the N j-requirement acts at stage s ′, we know that C 1–j

a ⊆ X1–j

as long as no N -requirement of higher priority acts later. If that should happen,
we repeat the above argument until there is no even higher-priority N -requirement
acting to dump even smaller numbers. So eventually, we see that this Γ-axiom cannot
apply to a anymore, as desired.

This establishes that the global requirement does indeed succeed as desired,
completing the proof. �
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