
1 Preview

As an academic discipline, robotics is a relatively young field with highly am-

bitious goals, the ultimate one being the creation of machines that can behave

and think like humans. This attempt to create intelligent machines naturally

leads us first to examine ourselves – to ask, for example, why our bodies are

designed the way they are, how our limbs are coordinated, and how we learn and

perform complex tasks. The sense that the fundamental questions in robotics

are ultimately questions about ourselves is part of what makes robotics such a

fascinating and engaging endeavor.

Our focus in this book is on mechanics, planning, and control for robot mech-

anisms. Robot arms are one familiar example. So are wheeled vehicles, as are

robot arms mounted on wheeled vehicles. Basically, a mechanism is constructed

by connecting rigid bodies, called links, together by means of joints, so that rel-

ative motion between adjacent links becomes possible. Actuation of the joints,

typically by electric motors, then causes the robot to move and exert forces in

desired ways.

The links of a robot mechanism can be arranged in serial fashion, like the

familiar open-chain arm shown in Figure 1.1(a). Robot mechanisms can also

have links that form closed loops, such as the Stewart–Gough platform shown

in Figure 1.1(b). In the case of an open chain, all the joints are actuated, while

in the case of mechanisms with closed loops, only a subset of the joints may be

actuated.

Let us examine more closely the current technology behind robot mechanisms.

The links are moved by actuators, which typically are electrically driven (e.g.,

by DC or AC motors, stepper motors, or shape memory alloys) but can also

be driven by pneumatic or hydraulic cylinders. In the case of rotating electric

motors, these would ideally be lightweight, operate at relatively low rotational

speeds (e.g., in the range of hundreds of RPM), and be able to generate large

forces and torques. Since most currently available motors operate at low torques

and at up to thousands of RPM, speed reduction and torque amplification are

required. Examples of such transmissions or transformers include gears, cable

drives, belts and pulleys, and chains and sprockets. These speed-reduction de-

vices should have zero or low slippage and backlash (defined as the amount of

rotation available at the output of the speed-reduction device without motion at
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(a) An open-chain industrial manipulator,
visualized in V-REP (Rohmer et al., 2013).

(b) Stewart–Gough platform. Closed
loops are formed from the base plat-
form, through the legs, through the
top platform, and through the legs

back to the base platform.

Figure 1.1 Open-chain and closed-chain robot mechanisms.

the input). Brakes may also be attached to stop the robot quickly or to maintain

a stationary posture.

Robots are also equipped with sensors to measure the motion at the joints.

For both revolute and prismatic joints, encoders, potentiometers, or resolvers

measure the displacement and sometimes tachometers are used to measure ve-

locity. Forces and torques at the joints or at the end-effector of the robot can

be measured using various types of force–torque sensors. Additional sensors may

be used to help localize objects or the robot itself, such as vision-only cameras,

RGB-D cameras which measure the color (RGB) and depth (D) to each pixel,

laser range finders, and various types of acoustic sensor.

The study of robotics often includes artificial intelligence and computer percep-

tion, but an essential feature of any robot is that it moves in the physical world.

Therefore, this book, which is intended to support a first course in robotics for

undergraduates and graduate students, focuses on mechanics, motion planning,

and control of robot mechanisms.

In the rest of this chapter we provide a preview of the rest of the book.

Chapter 2: Configuration Space

As mentioned above, at its most basic level a robot consists of rigid bodies

connected by joints, with the joints driven by actuators. In practice the links

may not be completely rigid, and the joints may be affected by factors such as
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elasticity, backlash, friction, and hysteresis. In this book we ignore these effects

for the most part and assume that all links are rigid.

With this assumption, Chapter 2 focuses on representing the configuration

of a robot system, which is a specification of the position of every point of the

robot. Since the robot consists of a collection of rigid bodies connected by joints,

our study begins with understanding the configuration of a rigid body. We see

that the configuration of a rigid body in the plane can be described using three

variables (two for the position and one for the orientation) and the configuration

of a rigid body in space can be described using six variables (three for the position

and three for the orientation). The number of variables is the number of degrees

of freedom (dof) of the rigid body. It is also the dimension of the configuration

space, the space of all configurations of the body.

The dof of a robot, and hence the dimension of its configuration space, is the

sum of the dof of its rigid bodies minus the number of constraints on the motion

of those rigid bodies provided by the joints. For example, the two most popular

joints, revolute (rotational) and prismatic (translational) joints, allow only one

motion freedom between the two bodies they connect. Therefore a revolute or

prismatic joint can be thought of as providing five constraints on the motion of

one spatial rigid body relative to another. Knowing the dof of a rigid body and

the number of constraints provided by joints, we can derive Grübler’s formula

for calculating the dof of general robot mechanisms. For open-chain robots

such as the industrial manipulator of Figure 1.1(a), each joint is independently

actuated and the dof is simply the sum of the freedoms provided by each joint.

For closed chains like the Stewart–Gough platform in Figure 1.1(b), Grübler’s

formula is a convenient way to calculate the dof. Unlike open-chain robots, some

joints of closed chains are not actuated.

Apart from calculating the dof, other configuration space concepts of interest

include the topology (or “shape”) of the configuration space and its repre-

sentation. Two configuration spaces of the same dimension may have different

shapes, just like a two-dimensional plane has a different shape from the two-

dimensional surface of a sphere. These differences become important when de-

termining how to represent the space. The surface of a unit sphere, for example,

could be represented using a minimal number of coordinates, such as latitude

and longitude, or it could be represented by three numbers (x, y, z) subject to

the constraint x2 + y2 + z2 = 1. The former is an explicit parametrization

of the space and the latter is an implicit parametrization of the space. Each

type of representation has its advantages, but in this book we will use implicit

representations of configurations of rigid bodies.

A robot arm is typically equipped with a hand or gripper, more generally

called an end-effector, which interacts with objects in the surrounding world.

To accomplish a task such as picking up an object, we are concerned with the

configuration of a reference frame rigidly attached to the end-effector, and not

necessarily the configuration of the entire arm. We call the space of positions

and orientations of the end-effector frame the task space and note that there is
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not a one-to-one mapping between the robot’s configuration space and the task

space. The workspace is defined to be the subset of the task space that the

end-effector frame can reach.

Chapter 3: Rigid-Body Motions

This chapter addresses the problem of how to describe mathematically the mo-

tion of a rigid body moving in three-dimensional physical space. One convenient

way is to attach a reference frame to the rigid body and to develop a way to

quantitatively describe the frame’s position and orientation as it moves. As a

first step, we introduce a 3 × 3 matrix representation for describing a frame’s

orientation; such a matrix is referred to as a rotation matrix.

A rotation matrix is parametrized by three independent coordinates. The most

natural and intuitive way to visualize a rotation matrix is in terms of its expo-

nential coordinate representation. That is, given a rotation matrix R, there

exists some unit vector ω̂ ∈ R
3 and angle θ ∈ [0, π] such that the rotation matrix

can be obtained by rotating the identity frame (that is, the frame corresponding

to the identity matrix) about ω̂ by θ. The exponential coordinates are defined as

ω = ω̂θ ∈ R
3, which is a three-parameter representation. There are several other

well-known coordinate representations, e.g., Euler angles, Cayley–Rodrigues pa-

rameters, and unit quaternions, which are discussed in Appendix B.

Another reason for focusing on the exponential description of rotations is that

they lead directly to the exponential description of rigid-body motions. The lat-

ter can be viewed as a modern geometric interpretation of classical screw theory.

Keeping the classical terminology as much as possible, we cover in detail the

linear algebraic constructs of screw theory, including the unified description of

linear and angular velocities as six-dimensional twists (also known as spatial

velocities), and an analogous description of three-dimensional forces and mo-

ments as six-dimensional wrenches (also known as spatial forces).

Chapter 4: Forward Kinematics

For an open chain, the position and orientation of the end-effector are uniquely

determined from the joint positions. The forward kinematics problem is to find

the position and orientation of the reference frame attached to the end-effector

given the set of joint positions. In this chapter we present the product of expo-

nentials (PoE) formula describing the forward kinematics of open chains. As

the name implies, the PoE formula is directly derived from the exponential coor-

dinate representation for rigid-body motions. Aside from providing an intuitive

and easily visualizable interpretation of the exponential coordinates as the twists

of the joint axes, the PoE formula offers other advantages, like eliminating the

need for link frames (only the base frame and end-effector frame are required,

and these can be chosen arbitrarily).

In Appendix C we also present the Denavit–Hartenberg (D–H) representation
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for forward kinematics. The D–H representation uses fewer parameters but re-

quires that reference frames be attached to each link following special rules of

assignment, which can be cumbersome. Details of the transformation from the

D–H to the PoE representation are also provided in Appendix C.

Chapter 5: Velocity Kinematics and Statics

Velocity kinematics refers to the relationship between the joint linear and angular

velocities and those of the end-effector frame. Central to velocity kinematics is the

Jacobian of the forward kinematics. By multiplying the vector of joint-velocity

rates by this configuration-dependent matrix, the twist of the end-effector frame

can be obtained for any given robot configuration. Kinematic singularities,

which are configurations in which the end-effector frame loses the ability to

move or rotate in one or more directions, correspond to those configurations at

which the Jacobian matrix fails to have maximal rank. The manipulability

ellipsoid, whose shape indicates the ease with which the robot can move in

various directions, is also derived from the Jacobian.

Finally, the Jacobian is also central to static force analysis. In static equilib-

rium settings, the Jacobian is used to determine what forces and torques need to

be exerted at the joints in order for the end-effector to apply a desired wrench.

The definition of the Jacobian depends on the representation of the end-effector

velocity, and our preferred representation of the end-effector velocity is as a six-

dimensional twist. We touch briefly on other representations of the end-effector

velocity and their corresponding Jacobians.

Chapter 6: Inverse Kinematics

The inverse kinematics problem is to determine the set of joint positions

that achieves a desired end-effector configuration. For open-chain robots, the

inverse kinematics is in general more involved than the forward kinematics: for

a given set of joint positions there usually exists a unique end-effector position

and orientation but, for a particular end-effector position and orientation, there

may exist multiple solutions to the joint positions, or no solution at all.

In this chapter we first examine a popular class of six-dof open-chain structures

whose inverse kinematics admits a closed-form analytic solution. Iterative nu-

merical algorithms are then derived for solving the inverse kinematics of general

open chains by taking advantage of the inverse of the Jacobian. If the open-chain

robot is kinematically redundant, meaning that it has more joints than the

dimension of the task space, then we use the pseudoinverse of the Jacobian.

Chapter 7: Kinematics of Closed Chains

While open chains have unique forward kinematics solutions, closed chains often

have multiple forward kinematics solutions, and sometimes even multiple solu-

https://doi.org/10.1017/9781316661239.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316661239.004


6 Preview

tions for the inverse kinematics as well. Also, because closed chains possess both

actuated and passive joints, the kinematic singularity analysis of closed chains

presents subtleties not encountered in open chains. In this chapter we study the

basic concepts and tools for the kinematic analysis of closed chains. We begin

with a detailed case study of mechanisms such as the planar five-bar linkage and

the Stewart–Gough platform. These results are then generalized into a system-

atic methodology for the kinematic analysis of more general closed chains.

Chapter 8: Dynamics of Open Chains

Dynamics is the study of motion taking into account the forces and torques

that cause it. In this chapter we study the dynamics of open-chain robots. In

analogy to the notions of a robot’s forward and inverse kinematics, the forward

dynamics problem is to determine the resulting joint accelerations for a given

set of joint forces and torques. The inverse dynamics problem is to determine

the input joint torques and forces needed for desired joint accelerations. The

dynamic equations relating the forces and torques to the motion of the robot’s

links are given by a set of second-order ordinary differential equations.

The dynamics for an open-chain robot can be derived using one of two ap-

proaches. In the Lagrangian approach, first a set of coordinates – referred to

as generalized coordinates in the classical dynamics literature – is chosen to

parametrize the configuration space. The sum of the potential and kinetic ener-

gies of the robot’s links are then expressed in terms of the generalized coordinates

and their time derivatives. These are then substituted into the Euler–Lagrange

equations, which then lead to a set of second-order differential equations for

the dynamics, expressed in the chosen coordinates for the configuration space.

The Newton–Euler approach builds on the generalization of f = ma, i.e., the

equations governing the acceleration of a rigid body given the wrench acting on it.

Given the joint variables and their time derivatives, the Newton–Euler approach

to inverse dynamics is: to propagate the link velocities and accelerations outward

from the proximal link to the distal link, in order to determine the velocity and

acceleration of each link; to use the equations of motion for a rigid body to

calculate the wrench (and therefore the joint force or torque) that must be acting

on the outermost link; and to proceed along the links back toward the base of

the robot, calculating the joint forces or torques needed to create the motion of

each link and to support the wrench transmitted to the distal links. Because of

the open-chain structure, the dynamics can be formulated recursively.

In this chapter we examine both approaches to deriving a robot’s dynamic

equations. Recursive algorithms for both the forward and inverse dynamics, as

well as analytical formulations of the dynamic equations, are presented.
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Chapter 9: Trajectory Generation

What sets a robot apart from an automated machine is that it should be easily

reprogrammable for different tasks. Different tasks require different motions, and

it would be unreasonable to expect the user to specify the entire time-history

of each joint for every task; clearly it would be desirable for the robot’s control

computer to “fill in the details” from a small set of task input data.

This chapter is concerned with the automatic generation of joint trajectories

from this set of task input data. Formally, a trajectory consists of a path, which

is a purely geometric description of the sequence of configurations achieved by a

robot, and a time scaling, which specifies the times at which those configura-

tions are reached.

Often the input task data is given in the form of an ordered set of joint values,

called control points, together with a corresponding set of control times. On

the basis of this data the trajectory generation algorithm produces a trajectory

for each joint which satisfies various user-supplied conditions. In this chapter

we focus on three cases: (i) point-to-point straight-line trajectories in both joint

space and task space; (ii) smooth trajectories passing through a sequence of timed

“via points”; and (iii) time-optimal trajectories along specified paths, subject to

the robot’s dynamics and actuator limits. Finding paths that avoid collisions is

the subject of the next chapter on motion planning.

Chapter 10: Motion Planning

This chapter addresses the problem of finding a collision-free motion for a robot

through a cluttered workspace, while avoiding joint limits, actuator limits, and

other physical constraints imposed on the robot. The path planning problem

is a subproblem of the general motion planning problem that is concerned with

finding a collision-free path between a start and goal configuration, usually with-

out regard to the dynamics, the duration of the motion, or other constraints on

the motion or control inputs.

There is no single planner applicable to all motion planning problems. In

this chapter we consider three basic approaches: grid-based methods, sampling

methods, and methods based on virtual potential fields.

Chapter 11: Robot Control

A robot arm can exhibit a number of different behaviors depending on the task

and its environment. It can act as a source of programmed motions for tasks

such as moving an object from one place to another, or tracing a trajectory for

manufacturing applications. It can act as a source of forces, for example when

grinding or polishing a workpiece. In tasks such as writing on a chalkboard, it

must control forces in some directions (the force pressing the chalk against the

board) and motions in other directions (the motion in the plane of the board).
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In certain applications, e.g., haptic displays, we may want the robot to act like

a programmable spring, damper, or mass, by controlling its position, velocity, or

acceleration in response to forces applied to it.

In each of these cases, it is the job of the robot controller to convert the

task specification to forces and torques at the actuators. Control strategies to

achieve the behaviors described above are known as motion (or position) con-

trol, force control, hybrid motion–force control, and impedance control.

Which of these behaviors is appropriate depends on both the task and the envi-

ronment. For example, a force-control goal makes sense when the end-effector is

in contact with something, but not when it is moving in free space. We also have

a fundamental constraint imposed by the mechanics, irrespective of the environ-

ment: the robot cannot independently control both motions and forces in the

same direction. If the robot imposes a motion then the environment determines

the force, and vice versa.

Most robots are driven by actuators that apply a force or torque to each joint.

Hence, precisely controlling a robot requires an understanding of the relationship

between the joint forces and torques and the motion of the robot; this is the

domain of dynamics. Even for simple robots, however, the dynamic equations

are complex and dependent on a precise knowledge of the mass and inertia of

each link, which may not be readily available. Even if it were, the dynamic

equations would still not reflect physical phenomena such as friction, elasticity,

backlash, and hysteresis.

Most practical control schemes compensate for these uncertainties by using

feedback control. After examining the performance limits of feedback control

without a dynamic model of the robot, we study motion control algorithms, such

as computed torque control, that combine approximate dynamic modeling

with feedback control. The basic lessons learned for robot motion control are then

applied to force control, hybrid motion–force control, and impedance control.

Chapter 12: Grasping and Manipulation

The focus of earlier chapters is on characterizing, planning, and controlling the

motion of the robot itself. To do useful work, the robot must be capable of

manipulating objects in its environment. In this chapter we model the contact

between the robot and an object, specifically the constraints on the object mo-

tion imposed by a contact and the forces that can be transmitted through a

frictional contact. With these models we study the problem of choosing contacts

to immobilize an object by form closure and force closure grasping. We also

apply contact modeling to manipulation problems other than grasping, such as

pushing an object, carrying an object dynamically, and testing the stability of a

structure.
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Chapter 13: Wheeled Mobile Robots

The final chapter addresses the kinematics, motion planning, and control of

wheeled mobile robots and of wheeled mobile robots equipped with robot arms.

A mobile robot can use specially designed omniwheels or mecanum wheels to

achieve omnidirectional motion, including spinning in place or translating in any

direction. Many mobile bases, however, such as cars and differential-drive robots,

use more typical wheels, which do not slip sideways. These no-slip constraints are

fundamentally different from the loop-closure constraints found in closed chains;

the latter are holonomic, meaning that they are configuration constraints, while

the former are nonholonomic, meaning that the velocity constraints cannot be

integrated to become equivalent configuration constraints.

Because of the different properties of omnidirectional mobile robots versus

nonholonomic mobile robots, we consider their kinematic modeling, motion plan-

ning, and control separately. In particular, the motion planning and control of

nonholonomic mobile robots is more challenging than for omnidirectional mobile

robots.

Once we have derived their kinematic models, we show that the odometry

problem – the estimation of the chassis configuration based on wheel encoder

data – can be solved in the same way for both types of mobile robots. Similarly,

for mobile manipulators consisting of a wheeled base and a robot arm, we show

that feedback control for mobile manipulation (controlling the motion of the

end-effector using the arm joints and wheels) is the same for both types of mobile

robots. The fundamental object in mobile manipulation is the Jacobian mapping

joint rates and wheel velocities to end-effector twists.

Each chapter concludes with a summary of important concepts from the chap-

ter, and Appendix A compiles some of the most used equations into a handy

reference. Videos supporting the book can be found at the book’s website,

http://modernrobotics.org. Some chapters have associated software, down-

loadable from the website. The software is meant to be neither maximally robust

nor efficient but to be readable and to reinforce the concepts in the book. You are

encouraged to read the software, not just use it, to cement your understanding

of the material. Each function contains a sample usage in the comments. The

software package may grow over time, but the core functions are documented in

the chapters themselves.
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