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Abstract Given a sequence of matrices (Am)m∈N whose Lyapunov exponents are limits, we show that
this asymptotic behaviour is reproduced by the sequences xm+1 = Amxm + fm(xm) for any sufficiently
small perturbations fm. We also consider the general case of exponential rates ecρm for an arbitrary
increasing sequence ρm. Our approach is based on Lyapunov’s theory of regularity.
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1. Introduction

In this paper, we show that if all Lyapunov exponents associated with a sequence of
matrices (Am)m∈N are limits, then the asymptotic exponential behaviour persists under
sufficiently small perturbations. More precisely, we show that for any sequence

xm+1 = Amxm + fm(xm) (1.1)

that is not eventually zero, the limit

λ = lim
m→+∞

1
m

log ‖xm‖

exists and coincides with a Lyapunov exponent of the sequence (Am)m∈N. We also con-
sider the general case of exponential rates ecρm for an arbitrary sequence ρm. The required
smallness of the perturbation is that

∞∑
m=1

eδm sup
x�=0

‖fm(x)‖
‖x‖ < +∞ (1.2)

for some δ > 0, or simply that the particular sequence xm in (1.1) satisfies
∞∑

m=1

eδm ‖fm(xm)‖
‖xm‖ < +∞
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for some δ > 0. We note that (1.2) has the advantage that one does not need to know
the sequence a priori.

Now, we formulate a special case of our main result. Namely, let (Am)m∈N be a sequence
of invertible n × n matrices with complex entries such that

sup
m∈N

‖Am‖ < +∞.

For each m, � ∈ N, with m � �, we set

A(m, �) =

⎧⎪⎨
⎪⎩

Am−1 · · ·A� if m > �,

Id if m = �,

A−1
m · · ·A−1

�−1 if m < �.

The Lyapunov exponent λ : C
n → R ∪ {−∞} associated with the sequence (Am)m∈N is

defined by

λ(x) = lim sup
m→+∞

1
m

log ‖A(m, 1)x‖.

We assume that the following hold.

(C1) There exists a decomposition

C
n = F1 ⊕ F2 ⊕ · · · ⊕ Fp,

with respect to which Am can be written in the block form

Am =

⎛
⎜⎝

A1
m 0

. . .
0 Ap

m

⎞
⎟⎠ .

(C2) There exist numbers λ1 < · · · < λp such that

lim
m→+∞

1
m

log ‖A(m, 1)x‖ = λi

for each i = 1, . . . , p and x ∈ Fi \ {0}.

The following is a particular case of our main result in Theorem 3.1 for the special case
of the rates ρm = m.

Theorem 1.1. Let xm be a sequence satisfying (1.1) for some continuous functions
fm : C

n → C
n such that

‖fm(xm)‖ � γm‖xm‖, m ∈ N, (1.3)

where the sequence γm satisfies

∞∑
m=1

eδmγm < +∞

https://doi.org/10.1017/S0013091513000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000382


On the exponential behaviour of non-autonomous difference equations 645

for some δ > 0. Then, one of the following alternatives holds:

(1) xm = 0 for all sufficiently large m;

(2) the limit

lim
m→+∞

1
m

log ‖xm‖

exists and coincides with some Lyapunov exponent of the sequence (Am)m∈N.

In the particular case of perturbations xm+1 = Axm + f(xm) of an autonomous linear
difference equation (in which case all Lyapunov exponents of the linear dynamics are
limits), the result in Theorem 1.1 was obtained by Coffman [5]. For perturbations of a
differential equation x′ = Ax, with constant coefficients, a related result can be found
in Coppel’s book [6]. Earlier results were obtained by Perron [10], Lettenmeyer [8] and
Hartman and Wintner [7]. Corresponding results for perturbations of autonomous delay
equations were obtained by Pituk [11,12] (for values in C

n and finite delay) and Matsui
et al . [9] (for values in a Banach space and infinite delay). We emphasize that all these
references consider only perturbations of autonomous dynamics.

Our approach is based on Lyapunov’s theory of regularity (we refer the reader to [2]
for a modern exposition), which allows one to obtain precise exponential bounds for the
dynamics in terms of the Lyapunov exponents and of the so-called regularity coefficient.
This is used to show that the Lyapunov exponent of any sequence satisfying (1.1) is a limit
and coincides with some Lyapunov exponent of the sequence (Am)m∈N. The remaining
part of the argument is inspired by the work of Pituk [11], where he established a
corresponding result for perturbations of a linear delay equation x′ = Lxt (although only
autonomous).

We considered earlier, in [4], the case of difference equations with infinite delay,
although the lack of a general theory of regularity in infinite-dimensional spaces forced
us to use a different approach.

2. Preliminaries

Let (ρm)m∈N ⊂ R
+ be an increasing sequence. Also, let (Am)m∈N be a sequence of

invertible n × n matrices with complex entries such that

lim sup
m→+∞

1
ρm

log ‖A(m, 1)‖ < +∞. (2.1)

The Lyapunov exponent λ : C
n → R ∪ {−∞} associated with the sequence (Am)m∈N is

defined by

λ(x) = lim sup
m→+∞

1
ρm

log ‖A(m, 1)x‖,

with the convention that log 0 = −∞ (it follows from (2.1) that λ never takes the
value +∞). By the general theory of Lyapunov exponents (see, for example, [1]), the
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function λ can take at most n values in C
n \ {0}, say −∞ � λ1 < · · · < λp for some

integer p � n. Furthermore, for i = 1, . . . , p the set

Ei = {x ∈ C
n : λ(x) � λi} (2.2)

is a linear subspace over C. We also set ki = dimEi − dim Ei−1 (with the convention
that E0 = {0}).

Now, we assume that each matrix Am is in block form, with each block corresponding
to a Lyapunov exponent. More precisely, we assume the following.

(H1) There exist decompositions

C
n = F 1

m ⊕ F 2
m ⊕ · · · ⊕ F p

m, m ∈ N,

into subspaces of dimension dimF i
m = ki such that, for each m, � ∈ N and i =

1, . . . , p,
A(m, �)F i

� = F i
m.

(H2) For each i = 1, . . . , p and x ∈ F i
1 \ {0},

lim
m→+∞

1
ρm

log ‖A(m, 1)x‖ = λi.

(H3) For each i, j = 1, . . . , p, x ∈ F i
1 \ {0} and y ∈ F j

1 \ {0},

lim
m→+∞

1
ρm

log ∠(A(m, 1)x,A(m, 1)y) = 0.

One can easily verify that
Ei =

⊕
j�i

F j
1

(see (2.2)) for each i.
We also describe some consequences of conditions (H1)–(H3). Given a number b ∈ R

that is not a Lyapunov exponent, we consider the decompositions

C
n = Em ⊕ Fm, (2.3)

where
Em =

⊕
λi<b

F i
m and Fm =

⊕
λi>b

F i
m

are subspaces for each m ∈ N. Let Pm and Qm be the projections associated with
the decomposition (2.3). Take also a < b < c such that the interval [a, c] contains no
Lyapunov exponent.

Theorem 2.1. The following properties hold.

(1)
E1 = {x ∈ C

n : λ(x) < b} and λ(x) > b for x ∈ F1 \ {0}.
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(2) Given ε > 0, there exists L = L(ε) > 0 such that

‖A(m, �) | E�‖ � Lea(ρm−ρ�)+ερ� , m � �, (2.4)

and

‖A(m, �)−1 | Fm‖ � Lec(ρ�−ρm)+ερm , m � �.

(3) Given ε > 0, there exists M = M(ε) > 0 such that

‖Pm‖ � Meερm and ‖Qm‖ � Meερm (2.5)

for every m ∈ N.

Proof. Property (1) follows readily from (H1) and (H2), and (2) can be obtained as
in [3, Proof of Theorem 10.6]. For (3), we recall that

1
αm

� ‖Pm‖ � 2
αm

and
1

αm
� ‖Qm‖ � 2

αm
, (2.6)

where αm is the angle between the subspaces Em and Fm (see, for example, [3]). Also,
let αi

m be the angle between F i
m and

⊕
j �=i F j

m. Clearly, for each i such that λi < b we
have that

αm � αi
m for m ∈ N. (2.7)

On the other hand, by (H3), given ε > 0, there exists M ′ > 0 such that

αi
m = min

j �=i
∠(F i

m, F j
m) � M ′e−εm

for every m ∈ N. Together with (2.6) and (2.7) this yields (3). �

Since

‖A(m, �)P�‖ � ‖A(m, �) | E�‖ · ‖P�‖

and

‖A(m, �)−1Qm‖ � ‖A(m, �)−1 | Fm‖ · ‖Qm‖,

it follows from Theorem 2.1 that, given ε > 0, there exists K = K(ε) > 0 such that

‖A(m, �)P�‖ � Kea(ρm−ρ�)+ερ�

and

‖A(m, �)−1Qm‖ � Kec(ρ�−ρm)+ερm

for every m � �. In particular, taking d > λp it follows from (2.4) that, given ε > 0, there
exists N = N(ε) > 0 such that

‖A(m, �)‖ � Ned(ρm−ρ�)+ερ� , m � �. (2.8)
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3. A non-autonomous Perron-type theorem

Now, we consider nonlinear perturbations of the dynamics defined by a sequence of matri-
ces (Am)m∈N. Namely, we consider the collection of sequences (xm)m∈N in C

n satisfying

xm+1 = Amxm + fm(xm), m ∈ N, (3.1)

for some continuous functions fm : C
n → C

n. We show that if a given sequence xm does
not grow too fast, then its Lyapunov exponent (see (3.3)) coincides with some Lyapunov
exponent of the unperturbed difference equation (obtained from setting all fm equal
to 0).

Theorem 3.1. Let (xm)m∈N be a sequence such that (3.1) and (1.3) hold for some
numbers γm ∈ R satisfying

∞∑
k=1

e(−λ1+δ)(ρk+1−ρk)+δρk+1γk < ∞ (3.2)

for some δ > 0. Then, one of the following alternatives hold.

(1) xm = 0 for all sufficiently large m.

(2) There exists i such that

λi = lim
m→+∞

1
ρm

log ‖xm‖. (3.3)

Proof. Let b ∈ R be a number that is not a Lyapunov exponent and set ε = 1
4δ. Also,

let a < b < c be as in § 2. We consider the norm

‖x‖m = sup
σ�m

(e−a(ρσ−ρm)‖A(σ, m)Pmx‖) + sup
σ�m

(e−c(ρσ−ρm)‖A(σ, m)Qmx‖)

for each m ∈ N and x ∈ C
n. Clearly,

‖x‖m = ‖Pmx‖m + ‖Qmx‖m (3.4)

and

‖x‖ � ‖x‖m � 2Keερm‖x‖. (3.5)

Lemma 3.2. We have that

‖A(m, �)P�x‖m � ea(ρm−ρ�)‖P�x‖� for m � �

and

‖A(m, �)Q�x‖m � ec(ρm−ρ�)‖Q�x‖� for m � �.
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Proof of the lemma. For m � � we have that

‖A(m, �)P�x‖m = sup
σ�m

(‖A(σ, m)A(m, �)P�x‖e−a(ρσ−ρm))

= ea(ρm−ρ�) sup
σ�m

(‖A(σ, �)P�x‖e−a(ρσ−ρ�))

� ea(ρm−ρ�) sup
σ��

(‖A(σ, �)P�x‖e−a(ρσ−ρ�))

� ea(ρm−ρ�)‖P�x‖�. (3.6)

Similarly, for m � � we have that

‖A(m, �)Q�x‖m = sup
σ�m

(‖A(σ, m)A(m, �)Q�x‖e−c(ρσ−ρm))

= ec(ρm−ρ�) sup
σ�m

(‖A(σ, �)Q�x‖e−c(ρσ−ρ�))

� ec(ρm−ρ�) sup
σ��

(‖A(σ, �)Q�x‖e−c(ρσ−ρ�))

� ec(ρm−ρ�)‖Q�x‖�. (3.7)

This completes the proof of the lemma. �

Now, let (xm)m∈N be a sequence satisfying (3.1). Using the decomposition in (2.3), one
can write that xm = ym + zm, where

ym = Pmxm and zm = Qmxm.

Lemma 3.3. One of the following alternatives holds.

(1)

lim sup
m→+∞

1
ρm

log ‖xm‖ < b (3.8)

and

lim
k→+∞

‖zk‖k

‖yk‖k
= 0. (3.9)

(2)

lim inf
m→+∞

1
ρm

log ‖xm‖ > b (3.10)

and

lim
k→+∞

‖yk‖k

‖zk‖k
= 0. (3.11)
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Proof of the lemma. We have that

yk+1 = AkPkxk + Pkfk(xk) (3.12)

and

zk+1 = AkQkxk + Qkfk(xk). (3.13)

By (3.5) and (3.7), it follows from (3.13) and (2.5) that

‖zk+1‖k+1 � ‖AkQkxk‖k+1 − ‖Qkfk(xk)‖k+1

� ec(ρk+1−ρk)‖zk‖k − 2Keερk+1‖Qkfk(xk)‖
� ec(ρk+1−ρk)‖zk‖k − D1‖xk‖δk (3.14)

for some constant D1 > 0, where δk = eερk+1γk. By (3.12) and (3.6), it follows from
similar estimates that

‖yk+1‖k+1 � ea(ρk+1−ρk)‖yk‖k + D2‖xk‖kδk (3.15)

for some constant D2 > 0. Inequalities (3.14) and (3.15) yield that

‖zk+1‖k+1 � αk‖zk‖k − Dδk(‖yk‖k + ‖zk‖k) (3.16)

and

‖yk+1‖k+1 � βk‖yk‖k + Dδk(‖yk‖k + ‖zk‖k) (3.17)

for all integers k, where

D = D1 + D2, αk = ec(ρk+1−ρk) and βk = ea(ρk+1−ρk). (3.18)

Now, we claim that either

‖zk‖k � ‖yk‖k for all large k (3.19)

or

‖yk‖k < ‖zk‖k for all large k. (3.20)

We show that if (3.19) fails, then (3.20) holds. We assume that (3.19) does not hold.
Then,

‖zk‖k > ‖yk‖k for infinitely many k. (3.21)

By (3.16),

‖zk+1‖k+1 � (αk − Dδk)‖zk‖k − Dδk‖yk‖k (3.22)

and

‖yk+1‖(k+1)r � (βk + Dδk)‖yk‖k + Dδk‖zk‖k. (3.23)
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By (3.21), there exists k1 � 1 arbitrarily large such that ‖yk1‖k1 < ‖zk1‖k1 . We show by
induction on k that

‖yk‖k < ‖zk‖k for k � k1. (3.24)

We assume that ‖yk‖k < ‖zk‖k for some k � k1. By (3.22) and (3.23), this implies that

‖zk+1‖k+1 � (αk − 2Dδk)‖zk‖k > 0

and

‖yk+1‖k+1 � (βk + 2Dδk)‖zk‖k.

Now, it follows from (3.2) that

e(−λ1+4ε)(ρk+1−ρk)+4ερk+1γk → 0

when k → ∞. Taking d sufficiently close to λp, this implies that ck = δk/αk → 0 and
dk = δk/βk → 0 when k → ∞. Therefore,

‖yk+1‖k+1 � βk + 2Dδk

αk − 2Dδk
‖zk+1‖k+1 < ‖zk+1‖k+1,

provided that k is sufficiently large. This shows that (3.24) holds. Thus, we have shown
that if (3.19) fails, then (3.20) holds. As a consequence, we have the following two cases.

Case 1. Assume that (3.19) holds. We show that (3.8) and (3.9) hold. We note that
‖yk‖k > 0 for all large k, since otherwise (3.4) and (3.19) would yield

‖xk‖k = ‖yk‖k + ‖zk‖k � 2‖yk‖k = 0

for infinitely many k, contradicting the hypothesis that ‖xm‖m � ‖xm‖ > 0 for all
sufficiently large m. Define

S = lim sup
k→+∞

‖zk‖k

‖yk‖k
.

By (3.19), we have 0 � S � 1. It follows from (3.19) and (3.17) that, for all large k,

‖yk+1‖(k+1)r � (βk + 2Dδk)‖yk‖k.

Together with (3.16), this yields that, for all large k,

‖zk+1‖k+1

‖yk+1‖k+1
� αk − Dδk

βk + 2Dδk
· ‖zk‖k

‖yk‖k
− Dδk

βk + 2Dδk
.

Since αk/βk → +∞ when k → ∞ (see (3.18)), taking lim sup on both sides, we obtain
S � +∞ · S. This implies that S = 0, and that (3.9) holds. Now, take k0 so large that
‖zk‖k � ‖yk‖k for all k � k0. By (3.17), we find that, for k � k0,

‖yk+1‖k+1 � (βk + 2Dδk)‖yk‖k
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and, hence,

‖yk‖k � ‖yk0‖k0

k−1∏
j=k0

(1 + 2Dcj)
k−1∏
j=k0

βj

= ‖yk0‖k0

k−1∏
j=k0

(1 + 2Dcj)ea(ρk−ρk0 ) (3.25)

for k � k0. On the other hand, it follows from (3.2) that
∞∑

j=1

log(1 + 2Dcj) � 2D

∞∑
j=1

cj < ∞,

and, hence, by (3.25),

lim sup
m→+∞

1
ρm

log ‖xm‖ � a < b.

This establishes (3.8).

Case 2. Now assume that (3.20) holds. We show that (3.10) and (3.11) hold. We
define

R = lim sup
k→+∞

‖yk‖k

‖zk‖k
.

By (3.20), we have 0 � R � 1. It follows from (3.20) in (3.16) that, for all large k,

‖zk+1‖k+1 � (αk − 2Dδk)‖yk‖k.

Together with (3.17), this yields that, for all large k,

‖yk+1‖k+1

‖zk+1‖k+1
� βk + Dδk

αk − 2Dδk
· ‖yk‖k

‖zk‖k
+

Dδk

αk − 2Dδk
.

Since βk/αk → 0 when k → ∞, taking lim sup on both sides, we obtain R � 0 · R. This
implies that R = 0 and that (3.11) holds. Now, take k0 such that ‖yk‖k < ‖zk‖k for
k � k0. By (3.16), we find that, for k � k0,

‖zk+1‖k+1 � αk(1 − 2Ddk)‖zk‖k,

and, hence,

‖zk‖k � ‖zk0‖k0

k−1∏
j=k0

(1 − 2Ddj)ec(ρk−ρk0 ).

On the other hand, it follows from (3.2) that

−
∞∑

j=1

log(1 − 2Ddj) �
∞∑

j=1

log
1

1 − 2Ddj
�

∞∑
j=1

2Ddj

1 − 2Ddj
< ∞.

Therefore,

lim inf
m→∞

1
ρm

log ‖xm‖ � c > b.

This establishes (3.10). �
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Now we establish an auxiliary result.

Lemma 3.4. There exists C > 0 such that

‖xm‖ � C‖x�‖ed(ρm−ρ�)+ερ� (3.26)

for all m � �.

Proof of the lemma. For each m � � we have that

xm = A(m, �)x� +
m−1∑
j=�

A(m, j + 1)fj(xj).

Therefore, by (2.8) and (1.3),

‖xm‖ � Ned(ρm−ρ�)+ερ�‖x�‖ + N

m−1∑
j=�

ed(ρm−ρj+1)+ερj+1γj‖xj‖

� Ned(ρm−ρ�)+ερ�‖x�‖ + N

m−1∑
j=�

ed(ρm−ρj)+ερj+1γj‖xj‖,

where in the last inequality we have used that ρ is increasing. Hence,

e−d(ρm−ρ�)‖xm‖ � Neερ�‖x�‖ + N

m−1∑
j=�

e−d(ρj−ρ�)+ερj+1γj‖xj‖.

One can use induction to show that

e−d(ρm−ρ�)‖xm‖ � Neερ�‖x�‖
m−1∏
j=�

(1 + Neερj+1γj)

for m � �. Hence,

‖xm‖ � Ned(ρm−ρ�)+ερ�‖x�‖ exp
( m−1∑

j=�

Neερj+1γj

)

� Ned(ρm−ρ�)+ερ�‖x�‖eNS ,

where

S =
∞∑

j=1

eερj+1γj < +∞.

This completes the proof of the lemma. �

We proceed with the proof of Theorem 3.1. Let (xm)m∈N be a sequence satisfying (3.1).
If xk = 0 for some k, then it follows from (3.26) that xm = 0 for all m � k, and, hence,
the first alternative in the theorem holds. Now, we assume that xm �= 0 for all m � �.
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Also, let λ1 < · · · < λp be the Lyapunov exponents of the sequence (Am)m∈N. Take real
numbers bj such that

λj < bj < λj+1 for 1 � j < p.

Also, take b0 < λ1 (when λ1 �= −∞) and bp > λp. By Lemma 3.3 applied to each b = bj ,
there exists j ∈ {1, . . . , p} such that

lim sup
m→+∞

1
ρm

log ‖xm‖ < bj

and

lim inf
m→+∞

1
ρm

log ‖xm‖ > bj−1.

Letting bj ↘ λ1 and bj−1 ↗ λj , we find that

lim
m→+∞

1
ρm

log ‖xm‖ = λj .

This completes the proof of the theorem. �

Now, we show that any sequence satisfying (3.1) and the second alternative in The-
orem 3.1 is essentially asymptotically tangent to the spaces F i

m, with i as in (3.3). We
consider the decompositions

C
n = Em ⊕ Fm ⊕ F i

m,

where

Em =
⊕
j<i

F j
m and Fm =

⊕
j>i

F j
m

for each m ∈ N. Also, let Pm, Qm and Rm be the projections associated with this
decomposition.

Theorem 3.5. Let (xm)m∈N be a sequence such that (3.1) and (1.3) hold for some
numbers γm ∈ R satisfying (3.2) for some δ > 0. If (3.3) holds, then

lim
m→+∞

‖Pmxm‖m

‖Rmxm‖m
= 0

and

lim
m→+∞

‖Qmxm‖m

‖Rmxm‖m
= 0.

Proof. We write that
xm = ym + zm + wm,

where
ym = Pmxm, zm = Qmxm and wm = Rmxm.
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Take b < λi such that the interval [b, λi) contains no Lyapunov exponent of the sequence
(Am)m∈N. Then,

lim
m→+∞

1
ρm

log ‖xm‖ = λi > b,

and it follows from Lemma 3.3 that

lim
m→+∞

‖ym‖m

‖zm + wm‖m
= 0. (3.27)

Now, take c > λi such that the interval (λi, c] contains no Lyapunov exponent of the
cocycle (Am)m. Then,

lim
m→∞

1
ρm

log ‖xm‖ = λi < c,

and it follows from Lemma 3.3 that

lim
m→+∞

‖zm‖m

‖ym + wm‖m
= 0. (3.28)

Given δ > 0, take η ∈ (0, 1) such that η(1 + η)(1 − η2)−1 < δ. By (3.28), for all large m

we have that
‖zm‖m � η‖ym + wm‖m.

Furthermore, (3.27) implies that, for all large m,

‖ym‖m � η‖zm + wm‖m

and, hence,

‖zm‖m � η(1 + η)‖wm‖m + η2‖zm‖m

� η(1 + η)(1 − η2)−1‖wm‖m � δ‖wm‖m.

Since δ is arbitrary, this yields the identity

lim
m→+∞

‖zm‖m

‖wm‖m
= 0.

Reversing the roles of P and Q, we find that

lim
m→+∞

‖ym‖m

‖zm‖m
= 0.

This completes the proof of the theorem. �

Finally, we formulate two non-trivial results that are consequences of Theorem 1.1. We
first consider perturbations of linear dynamics with negative Lyapunov exponents.
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Theorem 3.6. Let fm : C
n → C

n be continuous functions such that

‖fm(x)‖ � γm‖x‖, m ∈ N, x ∈ C
n,

for a sequence γm satisfying (3.2) for some δ > 0. If all values of the Lyapunov exponent
λ of the sequence (Am)m∈N are negative, then all solutions xm of (1.1) satisfy

lim
m→+∞

1
ρm

log ‖xm‖ < 0.

Now, we consider the particular case of linear perturbations.

Theorem 3.7. If Bm are n × n matrices with complex entries such that the sequence
γm = ‖Bm‖ satisfies (3.2) for some δ > 0, then the Lyapunov exponents of the sequences
(Am)m∈N and (Am + Bm)m∈N have the same values.
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