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Abstract

For a graph G, let f (G) denote the maximum number of edges in a bipartite subgraph of G. Given a
positive integer m and a fixed graph H, let f (m, H) denote the minimum possible cardinality of f (G), as
G ranges over all graphs on m edges that contain no copy of H. We prove bounds on f (m, H) for some
bipartite graphs H and give a bound for a conjecture of Alon et al. [‘MaxCut in H-free graphs’, Combin.
Probab. Comput. 14 (2005), 629–647] concerning f (m, K4,s).
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1. Introduction

Graph partitioning problems have a long history in discrete mathematics and theo-
retical computer science. One classical example is the well-known max-cut problem:
given a graph G, find the maximum bipartite subgraph of G. From the algorithmic
perspective, it is non-deterministic polynomial-time (NP)-hard to determine the size
of a max-cut [17]. In combinatorics, it is interesting to estimate the extremal values of
a max-cut in terms of its number of edges.

For a graph G, let f (G) denote the max-cut of G, that is, the maximum number
of edges in a bipartite subgraph of G. For a positive integer m, let f (m) denote the
minimum value of f (G), as G ranges over all graphs with m edges. It is easy to
see that f (m) ≥ m/2, for instance by considering a probabilistic argument or a suitable
greedy algorithm of a graph with m edges. This elementary result can be improved by
providing a more accurate estimate for the error term after the main term m/2.

Answering a question of Erdős [9], Edwards [7, 8] proved that for every m,

f (m) ≥ m
2
+

1
4

(√
2m +

1
4
− 1

2

)
,

and noticed that this is tight for complete graphs on an odd number of vertices. For a
certain range of m, Alon [1] gave an additive improvement of Ω(m1/4).
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The situation is more complicated if we consider H-free graphs, that is, graphs
containing no copy of a fixed given graph H. Let f (m, H) denote the minimum possible
cardinality of f (G), as G ranges over all H-free graphs on m edges. It was shown in
[2] that for every fixed graph H, there exist constants ε = ε(H) > 0 and c = c(H) > 0
such that f (m, H) ≥ m/2 + cm1/2+ε for all m. The problem of estimating the error term
more precisely is not easy and the following conjecture is still wide open.

CONJECTURE 1.1 [2]. For any fixed graph H, there exists a positive constant ε = ε(H)
such that

f (m, H) ≥ m
2
+ Ω(m3/4+ε).

In fact, we do not even know whether there exists a constant α > 1/2 such that
for all H, we have f (m, H) ≥ m/2 + Ω(mα). An even more ambitious problem, first
explicitly posed in [2], is to determine the asymptotic growth rate of f (m, H) for every
fixed graph H. The case H = C3 was initially studied by Erdős and Lovász (see [10]).
After a series of papers by various researchers, Alon [1] proved that f (m, C3) = m/2 +
Θ(m4/5) for all m.

Motivated by a conjecture of Erdős and Lovász (see [10]), Alon et al. [2] studied
the max-cut of graphs without short cycles. They showed that every m-edge graph not
containing any cycle of length at most r has max-cut at least m/2 + Ω(m(r+1)/(r+2)). For
even integers r = 2k, this was improved in [4] to

f (m, C2k) ≥ m
2
+ Ω(m(2k+1)/(2k+2)). (1.1)

This bound is tight for k ∈ {2, 3, 5}. The theta graph Θk,t denotes the graph consisting
of t paths of length k with the same endpoints but no inner intersection. Obviously,
Θk,2 = C2k. Recently, Lin [19] improved (1.1) by showing that f (m,Θk,t) ≥ m/2 +
Ω(m(2k+1)/(2k+2)). For more problems and results on f (m, H), see [15, 16, 20, 23].

To generalise the degenerate extremal graph result of theta graphs (and thus of even
cycles), Faudree and Simonovits [13] introduced the following definition.

DEFINITION 1.2 [13]. Let T be an arbitrary bipartite graph with a fixed 2-colouring C
using red and blue. Take a vertex w not belonging to T and join it to each red vertex
of T by pairwise vertex-independent paths of length k − 1. The resulting graph will be
denoted by Lk = Lk(T , C).

Obviously, if T = K1,t and C colours the t-vertex class of K1,t by red, then
Lk(K1,t, C) = Θk,t. In this paper, we study f (m, H) and extend some known results for
some general bipartite graphs H. Our first result shows that the lower bound in (1.1)
holds for any Lk(T , C)-free graph when T is a tree.

THEOREM 1.3. If T is a tree, then there is a constant c = c(k, T) > 0 such that

f (m, Lk(T , C)) ≥ m
2
+ cm(2k+1)/(2k+2).
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We claim here that in the construction of Lk(T , C), if w is also connected to each
blue vertex of T, then Theorem 1.3 is not true. Let H be a graph obtained by connecting
a single vertex w to all vertices of a fixed nontrivial forest, Alon et al. [4] proved that

f (m, H) =
m
2
+ Θ(m4/5).

To split a vertex v is to replace v by two adjacent vertices, say v′ and v′′, and to replace
each edge incident to v by an edge incident to either v′ or v′′ (but not both), the other
end of the edge remaining unchanged. Our next result concerns the bipartite graph
obtained by splitting w of the above H. To be more specific, let L be a tree (when
regarded as a bipartite graph) with partite sets X and Y, and let Kt,t ∗ L denote the
graph obtained by completely joining one partite set of Kt,t to X and the other to Y.

THEOREM 1.4. Let L be a tree. For all m, there is a positive constant c(L) such that

f (m, K1,1 ∗ L) ≥ m
2
+ c(L)m5/6.

Setting L = K1,s−1 in Theorem 1.4, f (m, K1,1 ∗ L) = f (m, K2,s) ≥ m/2 + Ω(m5/6).
This was improved by Zeng and Hou [22], who proved the same bound when H is
a bipartite graph with maximum degree 2 on one side. We give a further improvement.

THEOREM 1.5. If H is bipartite and has a 2-colouring where in the first colour class
all but two vertices are of degree at most 2, then there is a positive constant c(H) such
that

f (m, H) ≥ m
2
+ c(H)m5/6.

For s ≥ t ≥ 2, Alon et al. [4] considered Kt,s-free graphs and proposed the following
conjecture.

CONJECTURE 1.6 [4]. For all s ≥ t ≥ 2 and all m, there exists a positive constant c(s)
such that

f (m, Kt,s) ≥
m
2
+ c(s)m(3t−1)/(4t−2).

If true, this is tight at least for all s ≥ (t − 1)!+1, as shown by the projective norm
graphs [5]. In [4], the authors confirmed Conjecture 1.6 for the cases t ∈ {2, 3}. In this
paper, we consider the first unsettled case f (m, K4,s).

THEOREM 1.7. For each s ≥ 4 and all m, there is a positive constant c(s) such that

f (m, K4,s) ≥
m
2
+ c(s)m5/7.

All graphs considered here are finite, undirected, and have no loops and no parallel
edges, unless otherwise indicated. In the course of the paper, we will make no serious
attempt to optimise the absolute constants involved. For the sake of simplicity of
presentation, we will occasionally drop floor and ceiling signs whenever they are not
crucial.
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2. Lemmas

In this section, we give several lemmas which drive the proof of our theorems. The
proof of our theorems will be given in Section 3.

A graph G is d-degenerate if each subgraph of G contains a vertex of degree at
most d. We need the following well-known fact.

LEMMA 2.1 (See [1, 2, 4]). Let G be a d-degenerate graph on n vertices. Then there
is a labelling v1, v2, . . . , vn of the vertices of G so that, for each i with 1 ≤ i ≤ n, the
vertex vi has at most d neighbours vj with j < i.

In the study of the max-cut of triangle-free graphs, Shearer [21] proved an important
bound in terms of the degree sequence d1, d2, . . . , dn of a graph:

f (m, C3) ≥ m
2
+ Ω

( n∑
i=1

√
di

)
. (2.1)

The bound (2.1) implies immediately that any triangle-free d-degenerate graph with
m edges has max-cut m/2 + Ω(m/

√
d). Alon et al. [4] further extended Shearer’s

argument to graphs with few triangles and proved the following result.

LEMMA 2.2 [4]. There exists an absolute positive constant ε such that for every
positive constant C, there is a δ = δ(C) > 0 with the following property. Let G = (V , E)
be a graph with n vertices (with positive degrees), m edges and degree sequence
d1, d2, . . . , dn. Suppose, further, that the induced subgraph on any set of d ≥ C vertices,
all of which have a common neighbour, contains at most εd3/2 edges. Then,

f (G) ≥ m
2
+ δ

n∑
i=1

√
di.

Recently, Carlson et al. [6] showed that the local assumption can be relaxed to a
global condition, namely, any d-degenerate graph with m edges and O(m

√
d) triangles

has max-cut m/2 + Ω(m/
√

d). They believed that a stronger statement is true and
proposed the following conjecture.

CONJECTURE 2.3 [6]. For any graph H, there exists a constant c = c(H) > 0 such that,
for all H-free d-degenerate graphs with m ≥ 1 edges,

f (G) ≥
(1
2
+

c
√

d

)
m.

It was noted in [6] that Conjecture 2.3 implies Conjecture 1.1, thus making
Conjecture 2.3 a plausible stepping stone to Conjecture 1.1.

Next, we employ the following lemmas, which establish the lower bounds of f (G)
for graphs G in terms of different parameters.
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LEMMA 2.4 [11]. Let G be a graph with n vertices, m edges and positive minimum
degree. Then,

f (G) ≥ m
2
+

n
6

.

LEMMA 2.5 [1]. Let G = (V , E) be a graph with m edges. Suppose U ⊂ V and let G′

be the induced subgraph of G on U. If G′ has m′ edges, then

f (G) ≥ f (G′) +
m − m′

2
.

Finally, we use the following result proved in [22] (see also [4]), which gives the
existence of a randomised induced subgraph in a graph with relatively large minimum
degree and sparse neighbourhood.

LEMMA 2.6 [22]. Let G = (V , E) be a graph with n vertices, m edges and minimum
degree at least mθ for some fixed real θ ∈ (0, 1). Suppose that m is sufficiently large and
the induced subgraph on the neighbourhood of any vertex v ∈ V of degree dv contains
fewer than sd3/2

v edges for some positive constant s. Then, for every constant η ∈ (0, 1),
there exists an induced subgraph G′ = (V ′, E′) of G with the following properties:

(a) G′ contains at least η2m/2 edges;
(b) every vertex v of degree dv in G that lies in V ′ has degree at least ηdv/2 in G′;
(c) every neighbourhood of the vertex v in V ′ contains at most 2η2sd3/2

v edges in G′.

3. Proofs of the main results

3.1. Excluding Lk(T, C). In this subsection, we give a proof of Theorem 1.3. We
need the upper bound, proved by Faudree and Simonovits [13], on the maximum
number of edges in an Lk(T , C)-free graph. Here, ex(n, H) denotes the Turán number.

LEMMA 3.1 [13]. If T is a tree (or a forest) with a given 2-colouring C by red and blue,
then for Lk = Lk(T , C),

ex(n, Lk) = O(n1+1/k).

PROOF OF THEOREM 1.3. Let G = (V , E) be an Lk(T , C)-free graph with n vertices
and m edges. Define D = μm1/(k+1), where μ = μ(k) > 0 will be chosen later.

CLAIM 3.2. G is D-degenerate.

Assume, to the contrary, G contains a subgraph G′ with minimum degree more
than D. Then the number of vertices of G′ satisfies

|G′| := N <
2m
D
≤ 2Dk

μk+1 .

Thus, the number of edges of G′ is

e(G′) ≥ 1
2

DN ≥
(
μN
2

)(k+1)/k
. (3.1)

https://doi.org/10.1017/S0004972722001174 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001174


182 S. Wu and A. Li [6]

FIGURE 1. The graph U+2(3, 2, 1).

Since G′ is an Lk(T , C)-free graph, by Lemma 3.1, there exists a constant c′ > 0
such that e(G′) ≤ c′N(k+1)/k. This contradicts (3.1) by choosing μ > 2(c′)k/(k+1), and
thus completes the proof of Claim 3.2.

By Claim 3.2 and Lemma 2.1, there exists a labelling v1, v2, . . . , vn of the n vertices
of G such that d+i ≤ D for each i, where d+i denotes the number of neighbours vj of vi
with j < i in G. Let di denote the degree of vi in G for each 1 ≤ i ≤ n. Then,

n∑
i=1

√
di ≥

n∑
i=1

√
d+i ≥

∑n
i=1 d+i√

D
=

m
√

D
≥ m(2k+1)/(2k+2)

√
μ

.

Since G is Lk(T , C)-free, the neighbourhood of any vertex of G cannot contain a
tree isomorphic to L = Lk − {w}. As is well known, there is a constant � = �(k, T) such
that the induced subgraph of G on the neighbourhood of any vertex with degree d can
span at most �d edges, which is smaller than εd3/2 for all d > (�/ε)2. Therefore, by
Lemma 2.2 with C = (�/ε)2, there is a constant δ = δ(C) such that

f (m, Lk(T , C)) ≥ m
2
+ δ

n∑
i=1

√
di ≥

m
2
+ δ

m(2k+1)/(2k+2)

√
μ

.

This completes the proof of Theorem 1.3 by choosing c = δ/
√
μ. �

3.2. Excluding universal bipartite graphs. In this subsection, we prove
Theorems 1.4 and 1.5 using the idea in Section 3.1 and some additional ideas. First, we
derive Theorem 1.5 by proving a more general result (see Theorem 3.5). The following
graph, introduced by Füredi [14], was shown to be closely related to the lowest three
levels of the Boolean lattice.

DEFINITION 3.3 [14]. Let k, r and t be given positive integers. The graph U(k, r, t) is
obtained from the k vertices x1, . . . , xk by joining t distinct vertices yi

i1,...,ir
to each of

the r-element subsets of {x1, . . . , xk}. Then, U+r(k, r, t) is obtained from U(k, r, t) by
joining a new set of r vertices {w1, w2, . . . , wr} to all xh, h = 1, . . . , k. (See Figure 1.)
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We use the following result to bound the maximum number of edges in a
U+r(k, r, t)-free graph.

LEMMA 3.4 [3]. For any U+r(k, r, t) defined in Definition 3.3,

ex(n, U+r(k, r, t)) = O(n2−1/r).

Note that U(k, r, t) contains every bipartite graph with maximum degree r on one
side. It turns out that any H considered in Theorem 1.5 can be embedded into an
appropriate U+r(k, r, t). Hence, Theorem 1.5 is an immediate corollary of the following
result.

THEOREM 3.5. For any given positive integers k, t and for all m, there exists a positive
constant c(k, t) such that

f (m, U+2(k, 2, t)) ≥ m
2
+ c(k, t)m5/6.

PROOF. Let G be a U+2(k, 2, t)-free graph with m edges and n vertices. We may assume
that m is sufficiently large. If n ≥ m5/6/2, the desired result follows immediately from
Lemma 2.4. Thus, we assume that n < m5/6/2 and aim to employ Lemma 2.2 to get the
desired result. We first show that there exists an induced subgraph G′ of G satisfying
the assumptions of that lemma.

CLAIM 3.6. There exists an induced subgraph G′ of G with at least η2m/4 edges such
that the induced subgraph on all the neighbours of any vertex v of degree d′ in G′

contains at most ε(d′)3/2 edges in G′, where η ∈ (0, 1) is a fixed constant and ε is the
constant from Lemma 2.2.

As long as there is a vertex of degree smaller than m1/6 in G, omit it. This process
terminates after deleting fewer than m1/6n < m/2 edges, and thus we obtain an induced
subgraph G∗ of G with at least m/2 edges and minimum degree at least m1/6. Clearly,
G∗ is also U+2(k, 2, t)-free. It follows that the induced subgraph on the neighbourhood
of any vertex v of degree d∗ in G∗ contains no copy of U+2(k, 2, t). By Lemma 3.4, there
exists a constant c1 > 1 such that this induced subgraph spans at most c1d∗3/2 edges.

Now, we apply Lemma 2.6 to G∗ with η ≤ ε2/(32c2
1), and hence we obtain an

induced subgraph G′ of G∗ (and hence of G) satisfying the following properties.

(a) The number of edges of G′ is

e(G′) ≥ η
2

2
· m

2
=
η2m

4
.

(b) Every vertex v of degree d∗ in G∗ that lies in V ′ has degree at least ηd∗/2 in G′.
(c) The induced subgraph on all the neighbours of any vertex v of degree d′ (/d∗)

in G′ (/G∗) contains at most

2η2c1d∗3/2 ≤ ε(d′)3/2

edges.

This completes the proof of Claim 3.6.
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CLAIM 3.7. G′ is D-degenerate, where D = μm1/3 and μ is a fixed constant.

Assume, to the contrary, G′ contains a subgraph G′′ with minimum degree more
than D. Note that the number of vertices of G′′ is N < 2m/D ≤ 2D2/μ3. Thus, the
number of edges of G′′ is

e(G′′) ≥ ND
2
≥
(
μN
2

)3/2
.

Since G′′ is U+2(k, 2, t)-free, by Lemma 3.4, there exists a constant c′′ such that
e(G′) ≤ c′′N3/2, which contradicts the above inequality by choosing μ > 2(c′′)2/3. This
completes the proof of Claim 3.7.

By Claim 3.6, the assumptions of Lemma 2.2 hold for G′. By Lemma 2.1 and
Claim 3.7, there is a labelling v1, v2, . . . , vn′ of the n′ vertices of G′ such that d+i ≤ D
for every i, where d+i denotes the number of neighbours vj of vi with j < i in G′. Let di

denote the total degree of vi in G′ for each 1 ≤ i ≤ n′. Note that
∑n′

i=1 d+i = e(G′). By
Lemma 2.2, there is a constant δ such that

f (G′) ≥ e(G′)
2
+ δ

n′∑
i=1

√
di ≥

e(G′)
2
+ δ

n′∑
i=1

√
d+i

≥ e(G′)
2
+
δ
∑n′

i=1 d+i√
D

≥ e(G′)
2
+
δη2

4
√
μ

m5/6.

This, together with Lemma 2.5, gives

f (G) ≥ f (G′) +
m − e(G′)

2
≥ m

2
+
δη2

4
√
μ

m5/6.

This completes the proof of Theorem 3.5. �

The proof of Theorem 1.4 is similar to the previous ones and we give only a sketch
here. The following result is given by Erdős and Simonovits [12].

LEMMA 3.8 [12]. For any tree L, ex(n, Kt,t ∗ L) = O(n2−1/(t+1)).

SKETCH PROOF OF THEOREM 1.4. Let H = K1,1 ∗ L and let G = (V , E) be an H-free
graph with m edges and n vertices. Define D = μm1/3, where μ is a fixed constant.

CLAIM 3.9. Let η ∈ (0, 1) be a fixed constant and ε be a constant defined as in
Lemma 2.2. Then there is an induced subgraph G′ of G with the following properties:

(a) G′ is a D-degenerate graph with at least η2m/4 edges;
(b) the number of edges in every neighbourhood of a vertex v of degree dv in G′ is at

most εd3/2
v .

By Lemmas 2.1, 2.2 and Claim 3.9, f (G′) exceeds half the number of edges of G′

by at least Ω(m5/6) and the desired result follows from Lemma 2.5. �
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3.3. Excluding complete bipartite graphs. In this subsection, we study the
function f (m, K4,s), where s ≥ 4 is a fixed integer. We need several known results.
The first one is a well-known upper bound, proved by Kővári et al. [18], on the
maximum number of edges in a Kt,s-free graph.

LEMMA 3.10 [18]. Let Kt,s be the complete bipartite graph with t + s vertices and ts
edges. For any integers s ≥ t ≥ 2, we have

ex(n, Kt,s) ≤ 1
2 (s − 1)1/tn2−1/t + 1

2 (t − 1)n.

We also need the following result of Carlson et al. [6].

LEMMA 3.11 [6]. For all s > 0, there exists c = c(s) such that any d-degenerate
K4,s-free graph G always satisfies f (G) ≥ m/2 + cd−2/3m.

PROOF OF THEOREM 1.7. Let G = (V , E) be a K4,s-free graph with m edges and n
vertices, where s ≥ 4.

Define D = bm3/7, where b = b(s) > 1 will be chosen later. If G is D-degenerate,
the desired result follows immediately from Lemma 3.11.

Suppose that G is not D-degenerate, that is, G contains a subgraph G′ with
minimum degree more than D. Note that the number of vertices of G′ is N < 2m/D ≤
2D4/3/b7/3. Thus, the number of edges of G′ is

e(G′) ≥ ND
2
≥
(bN

2

)7/4
.

Since G′ is K4,s-free, by Lemma 3.10, there exists a constant c′ such that e(G′) ≤
c′N7/4, which contradicts the above inequality by choosing b > 2(c′)4/7. This
completes the proof of Theorem 1.7. �
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