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Introduction. If G is the group of holomorphic automorphisms of a bounded
symmetric domain, then G has a distinguished class of irreducible unitary representations
called the holomorphic discrete series of G. These representations have been studied by
Harish-Chandra in [7]. On the Lie algebra level, the Harish-Chandra modules corres-
ponding to the holomorphic discrete series representations are highest weight modules.
Even for G as above, it turns out that not all the unitary highest weight modules belong to
the holomorphic discrete series but there exists a condition on the highest weight which
characterizes the holomorphic discrete series among the unitary highest weight represen-
tations. They can be defined as those unitary highest weight representations with square
integrable matrix coefficients.

If 0 is the simply connected covering group of G, then Harish-Chandra's condition
on the highest weight characterizes those representations which belong to the relative
holomorphic discrete series, i.e., which have matrix coefficients that are square integrable
modulo the infinite center of G.

In [16] and [21] we have studied unitary highest weight representations for general
Lie groups. These representations have shown up as exactly those which can be extended
holomorphically to a semigroup 5 containing G and a dense open submanifold on which
the semigroup multiplication is holomorphic (cf. [21]). We refer to [21] for a characteriza-
tion of those groups which have such representations with discrete kernel. An important
example of a highest weight representation for a non semisimple Lie group is the
metaplectic representation of the 2-fold cover //nXMp(«,R) of the Jacobi group
St(n, U) := Hn xiSp(n, U), where Hn denotes the (2n + l)-dimensional Heisenberg group.

In this paper we address the question of characterizing those unitary highest weight
representations which, in the case of hermitian simple groups mentioned above,
correspond to the holomorphic discrete series. We call them square integrable. If the
adjoint group of G is closed (as is always the case for semisimple groups), the condition of
square integrability is the same as the square integrability of the matrix coefficients
modulo the center. In general we define it by integrals over GIT, where T = exp t and t is
a compactly embedded Cartan subalgebra of g.

Sections 1 and 2 contain generalities on representations with matrix coefficients which
are square integrable over certain homogeneous spaces. In Section 3 we characterize the
square integrable highest weight representations by a condition generalizing Harish-
Chandra's condition for the relative holomorphic discrete series. We also calculate the
corresponding formal degree in terms of the highest weight. This formula had already
been announced in [14]. In Section 4 we show that the class of square integrable highest
weight representations coincides precisely with those that can be obtained by Duflo's orbit
method for general groups.

In Section 5 we generalize an observation made by Wildberger for compact groups
(cf. [26]). If (/rA, %C) is a unitary highest weight representation with highest weight A, then
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the space B2(3T) of Hilbert-Schmidt operators on Sif can be realized in a very natural way
on the coadjoint orbit of the functional /A in the dual fl* of the Lie algebra g of G. We
obtain this result by using a holomorphic extension of the highest weight representation
under consideration to a complex semigroup 5. This process exhibits the space B2(SfC) also
as a space of holomorphic functions on the semigroup 5 so that we obtain a relation
between this space of holomorphic functions and a function space on a coadjoint orbit.
This interplay between functions on coadjoint orbits and holomorphic functions on 5 will
be taken up in a forthcoming paper where we study Paley-Wiener type theorems in this
setting. We note that character formulas resp. realizations of square integrable highest
weight representations by square integrable holomorphic sections of certain vector
bundles have been discussed in [20] resp. [13, Sect. VIII].

1. Homogeneous systems of coherent states. Let (n, 3f) be an irreducible con-
tinuous unitary representation of the Lie group G. Let v E #? with ||u|| = l and
/ / ? ( g e C : g . v e C . u } a closed subgroup of the stabilizer of the ray Cv. Let x '-H—* S1

be the unitary character of H defined by n(h). v = £(/i)v for all h e H.
We write M = H\G for the right G-space of right cosets Hg of H. The group H acts

on the space G x C by h. (g,z):=(hg,x(h)z). We denote by E:=GxHC the set of
//-orbits and the orbit of (g,z) by [g,z]:=H. (g,z). Then the map p:E—*H\G,
[g, z]>-+Hg is well defined and defines the structure of a complex line bundle over H\G.
The group G acts on E from the right by [g1, z]. g := [g'g, z] for g, g' e G, z E C.

A section of this bundle is a map <T:H\G-+E with p°cr = id/AG. We write T(E) for
the vector space of continuous sections of E and put

:={/ E C(G): (V/» E H)f{hg) = X(h).

Then every / E F G ( £ ) defines a continuous section of E by crf(Hg) := [g,f(g)] and since
the mapping G-+H\G has local sections, it can easily be seen that each continuous
section can be written that way.

Now we consider the map

Then we obtain a map W: %£-* TC(E) by W(u)(g) := (u, i/f(g)) for g e G because

Moreover, the mapping W is G-equivariant with respect to the action of G on TC(E)
gi\enby(g.f)(x):=f(xg).

So far this is a quite general construction. Now we make the additional assumption
that M = H\G has a G-invariant Radon measure fiM and that there exists w e "St such that

:». (1.1)

Note that the integrand is a function on G which is constant on the right cosets of H so
that it can be interpreted as a function on H\G.
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Let F2(£) denote the Hilbert space of those measurable sections a of £ satisfying

I'
where \[g,z]\ := \z\ is well defined. Note also that ([g, z], \g,z']):= (z,z') is a well defined
scalar product on each fiber of £ and that the scalar product in the Hilbert space F2(£) is
given by

r,o-')= (o-(m),(r'(m))dfiM(m).

Moreover, since the measure /iM is invariant under G and the same holds for the scalar
product on the vector bundle E, the action of G on sections given by (g. a)(Hx):=
a(Hxg). g"1 defines a continuous unitary representation of G on the Hilbert space T2(E)
(cf. [25, pp. 368ff]). We note that we can also identify the Hilbert space F2(£) with a space
of (equivalence classes) of functions on G which we denote by FG(£) .

Hence (1.1) means that ^(w) e Fc(£) is a square integrable section. Before we draw
the main conclusions from this assumption (Theorem 1.2), we need a preparatory lemma
which we formulate in a rather general context (cf. [24, Proposition 1.2.2] for a statement
in the same spirit). We recall that an involutive semigroup S is a semigroup endowed with
an involutive antiautomorphism s>-+s* and that a representation of an involutive
semigroup 5 on a Hilbert space $f is a semigroup homomorphism n:S-+B{%!) with
n{s*) = n(s)* for all s GS.

LEMMA 1.1. Let S be an involutive semigroup, {n, ffl) an irreducible representation of
S on 3f, and (p,3if) another representation of S. Suppose that T:3){T)-*3{ is a non-zero
closable operator whose graph T(T)^Xx 3(is invariant under S. Then there exists A > 0
such that AT:2)(T)—*3{ is an S-equivariant isometry which extends to an S-equivariant
isometric embedding %C—* 3C.

_Proof. Let T denote the closure of T, i.e., the operator whose graph is the closure
T(T) of the graph of T. Then the invariance of T(T) implies the invariance of T(T) so that
we may w.l.o.g. assume that T is a closed operator.

Then F(7)£ 2£x 3Hs an 5-invariant closed subspace and therefore a Hilbert space.
Let p:r(T)—*2d denote the canonical projection. Then pp*:9C-+%€ is a bounded
operator commuting with 5 and Schur's Lemma implies that there exists fi ^ 0 with
pp* = IJ.1. We conclude in particular that p(T(T)) = 3)(T) = §if so that the Closed Graph
Theorem implies that T is continuous. Now the same argument as above shows that
TT* = vl. If v = 0, then T* = 0 and hence 7 = 0 contrary to our assumptions. If v > 0,

then this means that —j= T: #f-» jfc is an isometric embedding. •

For the following theorem we recall the unit vector v e X.

THEOREM 1.2. If(n, Sif) is an irreducible unitary representation of G and E as defined
above, then J /W(W) E T2

G(E) holds for a non-zero w e %, then V(^f) £ Fc(£) and there
exists d(n,v)>0 such that Vd(/r,u)V is an isometric G-equivariant embedding W-*
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Proof. We consider the subspace 2 ) : = V l (F2(£)) and the unbounded operator
T:3)-*T2(E), « - « % ) . We claim that T is closed (cf. [24, p. 23]). In fact, if
(«„, T. un)-*(u,f), then un-»« holds in the norm-topology of PC. Hence the fact that
<KG) = n(G). v £ #f is bounded implies that the functions W(un) on G converge
uniformly to the function W(M).

On the other hand the sequence ^(u,,), considered as elements of the Hilbert space
T2

C{E) has a subsequence which converges /^-almost everywhere to the measurable
section/ e F2(£). Hence/coincides, as a section of the bundle E, almost everywhere with
the continuous section denned by ^(u). Thus ^ ( M ) =/holds in T%(E). We conclude that
u B 2> and that (u,/) = ( U . ^ M ) ) is contained in the graph of T. This proves that the
graph r(7):={(". T. u):u e 2)} of 7 is closed.

Since the mapping W is G-equivariant, we see that 2) is also G-invariant so that the
graph T(T) c #f x F2(£) is invariant under G, where G acts on this product space by the
direct sum representation. Now Lemma 1.1 implies that 2) = #? and that there exists
d(n, v) > 0 such that Vd(;r, v) T: #?-» T2(£) is a G-equivariant isometry. •

If #? is a Hilbert space we write B(3€) for the set of all bounded operators on Sif,
Bi{%C) for the set of all trace class operators, \\A ||, for the trace norm, B2{9C) for the set of
all Hilbert-Schmidt operators and ||J4||2 for the Hilbert-Schmidt norm.

We leave the proof of the following lemma to the reader.

LEMMA 1.3. For x,y e 3€we write Pxy for the operator given by Px,y(v) = (v, y)x and
put Px := PXJC. Then the following assertions hold:

(i) tr PXty = fr,y).
(ii) P^ = Pyjr

(iii) Px.yPz,w = (z,y)Px,w.
(iv) APXtyB* = P ^ for A, Be B(%)-
(v) PAx = APxA*. D

Theorem 1.2 has the important consequence that we can express the scalar product in
the Hilbert space X by integrating over M. To simplify the notation we simply write g. v
instead of n(g). v. For w, u e PC we can use Lemma 1.3 to see that

d{
^— <MM<> = <¥(*), ¥(«)>= f (w,g-1.v)(g-1.v,u)d»M(Hg)
n, v) J^G

= I
•>H\C

which can be interpreted as

I d{n,v)
(1.2)

in the weak operator topology on B(dtj or in the weak topology on B2(3t).
A rather general setup for formulas of that type is provided by the theory of frames.
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A nice survey on the ideas and the relations to quantization can be found in [1] (cf. also
[22, p. 43]).

Hilberf-Schmidt Operators. Let (it, 3f), G and H be as above. We have a unitary
representation of G x G on the Hilbert space B2{%C) of Hilbert-Schmidt operators defined

We consider the rank-one projection Pv e B2(3if). Then i^igug^- Pv
 = Pg%.v,gl.v

(Lemma 1.3) shows that

We put xc(hu h2) := X(h\)x(h2)~* and, as in the first subsection, we define a vector bundle
EC-*M X Af, where M = //\G. We write rG x C(£c) for the space of those functions on
GxG which represent the sections of the bundle Ec, i.e., which satisfy

for huh2 e H and gi,g2 e G.
Since the representation ^ = ^ ® ^ o f G X G on J32(34f) = Sif® % is irreducible, we

are exactly in the setting of the first section. In particular we obtain an injective map
W:B2(?0->rCxC(Ec) defined by

g2) = (A,nc(g^g2V • Pv) = (A,P,r..„.„-.„>

= t T ( P A g V . V . g T * . v ) = ( A g 2
l • V,gi* . V).

We claim that W(PV) E I1 ; X G (£ C ) - In fact, in view of (1.2), we have

/ .

I
1

(Pv,Pg-Kv)dnM(Hg')
H\C

l|2 = i! D l|2

r)̂  d(;r, u)z

This proves that WC(PV) is a square integrable section of the bundle Ec. Now Theorem 1.2
applies to the representation rf of G x G and we obtain the following result.

PROPOSITION 1.4. The mapping Wc:B2(3€)^rCxC(Ec) defines an isometric GxG-
equivariant embedding d(n, v)W: B2{W) -> rGxC(£'c). •

Symbols. Next we define the symbol aT of an operator T e B(%C) by

aT(Hg) := Vc(T)(g, g) = (Tg'1. v, g~l. v)

and note that the right hand side depends only on the right coset Hg of g in G.
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LEMMA 1.5. / / T e B^T), then

tr T = d(n, v) aT(m) dfiM(m).

n n

Proof. First let T = 2 P,.iy/ be a finite rank operator. Then tr 7 = 2 (*,-,.y;). On the
other hand ; = 1 ' y=1

Therefore (1.2) yields

f
, u) ) dfiM(m) = 2 (*/, ?/> = tr T.

M ; = 1

This proves the formula for finite rank operators.
Next we note that a is complex linear in T and that aT. = o>. Therefore it suffices to

prove the formula for symmetric operators. Since every symmetric operator in B^St) is
the sum of a positive and a negative trace class operator, it even suffices to prove it for
positive trace class operators.

Each positive trace class operator T has a representation as T = 2 Pv, where
n = l "

(vn)neN is a n orthogonal sequence with t r 7 = 2 ||vn||2<<». Set Tk = 2 PVn. Then
n-\ n = 1

(ovJfceN is a monotone sequence of continuous functions which converges to aT. In
addition, we have for k < I that

Thus (crr t)*eN is a Cauchy sequence in L\M) and consequently

f 1

JM W d{n,v)

2. Relative discrete series representations.

DEFINITION 2.1. (a) An irreducible unitary representation (x, %C) of a locally compact
separable group G with center Z is said to be square integrable modulo the center or to
belong to the relative discrete series if there exist v, w e 3if such that the function
GfZ-*C, gZ^\ig.v, w)\ is square integrable (cf. [27, p. 4], [28, pp. 6,7]).

Let x e Z be the central character associated with n, i.e., /r(z) = £ (z ) l for all z e Z.
Then £ z := G x z C is a homogeneous line bundle over G/Z defined by the representation
z >-*x(z) °f ^ on C. Note that since Z is a normal subgroup of G, we can also write G/Z
for Z\G. The sections correspond to those functions on G which satisfy f{zg) =
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and the condition from above means that the function nvw:G—*C, g>->(ff(g). v,w)
defines a square integrable section of Ex. In view of Theorem 1.2, we see that every
relative discrete series representation is equivalent to a subrepresentation of the regular
representation of G on the space T2(EX) of square integrable sections of Ex. This justifies
the terminology "relative discrete series", where "relative" refers to the fact that one has
to pass from G to G/Z.

PROPOSITION 2.2. / / (TT, 3€) is square integrable modulo the center, % e Z the
corresponding character, and G is unimodular, then every matrix coefficient nVtW e TC(EX)
is contained in T2(EX). Moreover, there exists an isometric intertwining operator

such that ^(Sif) consists of continuous sections. Here W can be obtained by W(u){g):=
(u, n(g~*) • v) = (n(g) • u,v) for a fixed element 01* v e S€.

Proof. Pick non-zero elements v, w e Sif such that nWiV e T2(EX) and define W as
above. Then nw<v - *¥(w) E T2(EX) SO that Theorem 1.2 implies that V(#f) g T\EX).

We claim that G/Z is unimodular. In fact, let fic be a biinvariant measure on G and
F e CC(G/Z) a function with compact support which we represent as F(gZ) :=
Szf(gz)dfiz(z) for a function / e CC(G) (cf. [25, p. 475]). Then /ic /z(F) := /iG(/) defines
a Haar measure on G/Z. Since the assignment CC(G)—>CC(G/Z) commutes with left and
right shifts, it follows immediately from the biinvariance of fic that JLG/Z is biinvariant,
i.e., that G/Z is unimodular.

For a function / E C(G) we put /*(g):=/(g"')- Then the map /•-»/* leaves the
subspace Fc(£^) invariant and since G/Z is unimodular, it even induces an isometry of
T2(EX). But from nZ,v = K.w we see that ffUH, E T2{EX) for all iv E 3K Applying the
argument from above with w instead of v, we see that all the function nu<w lie in T2(EX).
The remainder follows from Theorem 1.2. •

PROPOSITION 2.3. (The Harish-Chandra-Godement orthogonality relations) Let G be
a unimodular locally compact group and (n, 96) and (<x, 3if) be square integrable modulo
the center with the same central character %• Then the following assertions hold:

(i) / / a and n are not equivalent, then

Jciz
(n(g). x,y)(a(g). z, w) dfic/z(gZ) = 0

r

for all x,y BdK,z,w e.jK. Note that the integrand is in fact a function on G/Z.
(ii) There exists a positive real number d(n) > 0 such that if x,y,z,w e 3d, then

-^7-z(w,y)(x,z)= (n(g) • x,y)(7t(g). z,w

= f , n(g). z)(n(g). x,y) dfic/z(gZ).

Proof. This is a direct generalization of Proposition 1.3.3 in [24] (cf. Remark 1.8.2 in
[24] and also [25, Theorem 4.5.9.3]). Here it follows directly from Proposition 2.2 and
Schur's Lemma. D
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The constant d(n) is called the formal degree of the representation n. We note that if
n is square integrable modulo the center and we use H = Z in Theorem 1.2, then we see
that d(n, v) = d(n) holds for all unit vectors v e 'H.

3. Square integrable highest weight representations. In this section we characterize
those unitary highest weight representations of general Lie groups which are square
integrable in a sense defined below. If the adjoint group of G is closed, then our condition
of square integrability means square integrability modulo the center (cf. Remark 3.5).
Moreover we derive a formula for the degree for such representations which generalize
on the one hand side Weyl's dimension formula and on the other hand Harish-Chandra's
degree formula for the holomorphic relative discrete series.

DEFINITION 3.1. (a) Let g be a finite dimensional real Lie algebra. A subalgebra a c g
is said to be compactly embedded if the group generated by eada in Aut(g) has compact
closure. We assume that g contains a compactly embedded Cartan subalgebra t and recall
that there exists a unique maximal compactly embedded subalgebra f containing t (cf. [8,
A.2.40]).

Let G be a connected Lie group with Lie algebra L(G) = g. We write T and K for the
analytic subgroups corresponding to t and f.

(b) Associated to the Cartan subalgebra tc in the complexification gc is a root
decomposition as follows ([9, Chapter 7]). For a linear functional a E t* we set

g c : = { * E gc:(VY e tc)[Y,X] = a(Y)X}

and write 4 : = { a e t£\{0}:g£*{0}} for the set of roots. Then

8c = t c © © 0c,

a(t) £ iU for all a e A and g£ = gE". where X>-*X denotes complex conjugation on gc

with respect to g.
(c) A root a is said to be compact if g£ £ *c a nd non-compact otherwise. We write A*

for the set of compact and Ap for the set of non-compact roots. If g = r x <§ is a f-invariant
Levi decomposition, i.e., r is the solvable radical of g and § is a Levi complement, then
we set

Ar:={a E A:g£grc} and A,:={a E

The Lie algebra g is said to have cone potential if i[Xa, Xa] is non-zero for Xa e gc\{0}.
We recall from [12, Corollary 11.15] that A = ArUAj is a disjoint union if g has cone
potential. Note also that if u is the nilradical, then u = [t, u] + 3(g) ([9, Proposition 7.3])
and if t fl r = g(g) © iu then I := ti © § is a complementary subalgebra satisfying g = u Xl I.
Then t = a(g) © I!, where tt = tj © (t n §) is a compactly embedded Cartan subalgebra of I.

If a G As, then we write a for the uniquely determined element in the one-
dimensional space [gc, gc°] £ tc satisfying a (a) = 2.

(d) A positive system A+ of roots is a subset of A for which there exists a regular
element Xo G it with A+ = {a e A:a(X0) > 0}. We put A£ := A+ n A*, A* := A+ n Ap, and
^PJ,:= A+ n Ap n Aj. We say that a positive system A+ is t-adapted if the set Ap := Ap fl
A+ of positive non-compact roots is invariant under the Weyl group Wt:= NK(t)lZK(t).
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We recall from [16, Proposition II.7] that there exists a f-adapted positive system if and
only if 3B(3(f)) = f, i.e., if g is quasihermitian.

A functional A e it* is said to be dominant integral with respect to A* if A (a) s No

holds for all a E A*.
(e) We associate to a positive system A+ certain convex cones. For a set £ in a finite

dimensional vector space V we write cone(£) for the smallest closed convex cone
generated by E. We write E*:={a E K*:a(£)sR + } for the dual cone of E. Then we
define

Cmin:= cone{i[*«, Xa]:Xa e gg, a E AP
+}

Cmin.z:= conc{i[XZ,Xa]:Xa e gg,a e Ar
+}c3,

and

Cmin,, := com{i[Ya,Xa):Xa s gg, a s A^}c t, = t DI.

DEFINITION 3.2. Let A+ £ A denote a positive system.
(a) For a g-module V and A e t£ we set

KA:={VEV:(VA- E tc)*. w = X(X)v}.

This space is called the weight space of weight A and A is called a weight of V if VK ¥> {0}.
We write % for the set of weights of V.

(b) Let V be a gc-module and v e V ' a weight vector of weight A. We say that v is a
primitive element of V (with respect to A+) if v ¥> 0 and gg • v = {0} holds for all a s A+.

(c) A gc-module V is called a highest weight module with highest weight A (with
respect to A+) if it is generated by a primitive element of weight A. We recall from [16,
Proposition 11.10] that for each linear function A E t*, there exists a unique irreducible
highest weight module L(A) with highest weight A.

DEFINITION 3.3. Let (K, 3P) be a unitary representation of the group G, i.e.,
n:G—* £/(#f) is a continuous homomorphism into the unitary group U(9€) of the Hilbert
space X.

(a) We write 5if°° (2if") for the corresponding space of smooth (analytic) vectors, i.e.,
for the set of all those elements v e % for which the mapping G^>3C, g>-+ n(g). v is
smooth (real analytic). We write dn for the derived representation of g on ffl°° given by

/=0
/r(exp tX). v

for X e Q and v E #f". We extend this representation to a representation of the
complexified Lie algebra gc on the complex vector space 3if°°.

(b) A vector v e 3€ is said to be /^-finite if it is contained in a /(-invariant finite
dimensional subspace of #?. We write "XK for the set of K-finite vectors in #?. Note that
the space %K-™ of /(-finite smooth vectors is a gc-submodule of 2T (cf. [16, p. 121]).

(c) The irreducible highest weight module L(A) is said to be unitarizable if there
exists a unitary representation (n, $f) of the simply connected Lie group G with L(G) = g
such that L(A) is isomorphic to the gc-module yCK'm of /(-finite smooth vectors in 3if.
According to [16, Theorem III.6], if XKi!C is a highest weight module, then it is
automatically irreducible. For an algebraic characterization of those highest weight
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modules which occur as spaces of K-finite vectors for unitary representations we refer to
[13, Sect. X].

We recall from [21, Prop. 1.6] that if (;rA, ?£) is a unitary highest weight representa-
tion with respect to the positive system A+ and with discrete kernel, then A+ is f-adapted,
A is dominant integral with respect to A£, Ap c -iC^m, and A e iCmin ([21, Lemma 1.4]).

DEFINITION 3.4. Let (nK, 9C) be a unitary highest weight representation of G and
DAe3il*a primitive element of weight A. We call this representation square integrable if
the function gT>-+\(g. t/A,vA)| is contained in L2(G/T).

REMARK 3.5. We consider some special cases of the preceding situation. Since g
contains the compactly embedded Cartan subalgebra t, the group G is unimodular
([9, Proposition 7.3(v)]).

If T is compact, then the square integrability of the highest weight representation
(JTA, #f) means that it is square integrable as a representation of G in the usual sense, i.e.,
a discrete series representation.

Let Z := Z(G) denote the center of G. Then Z c T and if T/Z is compact, i.e., if
Ad(G) is closed (cf. [16, Proposition 1.2]), then the square integrability of (ffA, 3if) means
that it is square integrable modulo the center (Definition 2.1).

We note that there are situations where Ad(G) is not closed but the class of square
integrable highest weight representations still plays the role of a rather well behaved class
of representations which share a lot of very nice regularity properties such as the
existence of character formulas (cf. Theorem 5.2) and that they can be obtained by
Duflo's orbit method (cf. Theorem 4.12).

REMARK 3.6. If p.G —*G is a group covering and (;rA, SV) is a highest weight
representation of G, then nx is square integrable for G if and only if nk

ap is square
integrable for G.

In fact, since kerp c Z(G) £ T := expe t, it follows that the canonical map G/T —*
GIT is a diffeomorphism. Hence the condition for the representation to be square
integrable is the same for both groups. •

We want to show that if a group G has a square integrable highest weight
representation, then the kernel of this representation must be contained in K. We start
with a general lemma which will also be useful below.

We recall from Definition 3.1(c) that we have a semidirect decomposition g = u Xl,
where I is a reductive Lie algebra and u is the nilradical. Moreover, t = 3(g)©t1( where
t[ = t n I and g(g) = t n u. We write U and L for the corresponding analytic subgroups
of G.

LEMMA 3.7. Let G = U>\L, where U is the nilradical and L is reductive. Set
Z := Z(G)0 and KL := exp f:. Let H^K be any closed subgroup containing Z and set
HL:= HnKL = HnL. Then the mapping n:G—»G/H, g>-+gH induces a diffeomorphism

p:U/ZxL/HL-+G/H

and if /JLUIZ and HUHL ore invariant measures on U/Z and L/HL respectively, then
HL) is an invariant measure on G/H.
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Proof. We have n{ul) = ulH. For Z E Z and h E HL we therefore have (uz)(lh)H =
(ul)(zh)H = ulH so that /r factors to a map

p:U/ZxL/HL^G/H, (uUJHL)^ulH.

We claim that p is a bijection. Surjectivity holds trivially. To see that it is one-to-one,
suppose that ulH = u'l H. Then, modulo U, we have IHL = l'HL so that we find h e HL

with /' = //i. Now r ' u M « / E / / n r 1 ( / / = / / n ( / = Z and therefore u'^ueZ. This
proves injectivity.

The smoothness follows from the fact that the product map U X L-*G is a
diffeomorphism which is equivariant with respect to the right action of H = Z x HL, hence
an equivalence of principal bundles. Thus it factors to a diffeomorphism of the orbit
spaces U/Z x L///L-> G/H.

Let j u G CC(U) and /L E CC(L) denote continuous functions with compact support and
set

Fu{uZ):=\fu{uz)d^z(z) and FL{IHL)~ \ fL(lh)dfMHL(h).
Jz JHL

Then the function F defined by F(ulH) := Fu(uZ)FL(lHL) is a function of compact support
and it suffices to show that the invariant measure on G/H coincides with p*(fiu/z
on F.

We calculate

p*(fiu/z®tiuHL)(F) = PVIZ(FU)ILUHL(,FL) =

where/(«/) =/[/(« )/L(0- On the other hand we have

f f(ulh)d^H(h)=! f
•>H JZ JH

= Fu(uZ)FL(lHL) = F

Therefore (IGIH(F) = V-df)= P*(t*-u/z®PLIHL)(F) and the assertion follows. •

PROPOSITION 3.8. If the highest weight representation (;rA, 3if) is square integrable, then
ker TTA c #.

Proo/. In view of Remark 3.6, we may w.l.o.g. assume that G is simply connected.
Let A := ker nk and a be its Lie algebra.

We put B := A0T and note that B is closed because its Lie algebra 6 := a +1 contains
the Cartan subalgebra t, hence is self-normalizing. Now the function gT >-* \{g. vA, vA)| is
constant on the coset gB. Since it is square integrable over G/T, we see that if
q-.Gy+G/T, g>-*gTdenotes the quotient map, then for every compact subset C c G the
set q{CB)^ G/T has finite measure. If we choose C in such a way that it comes from a
smooth section of the quotient map G-+G/B, g>-+gB, then we obtain a diffeomorphic
direct product decomposition CB = CxB. In this decomposition the Haar measure /iG

restricted to this set can be written as /i.c®/nB, where fic is a measure on C with a
smooth density with respect to Lebesgue measure in any given chart and fiB is a right
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Haar measure on B. But b contains the compactly embedded Cartan subalgebra t, so that
B is unimodular ([9, Proposition 7.3.5]). Hence /JLB is a left-invariant Haar measure on B.

From that we conclude that the invariant measure on GIT, restricted to the set
q(CB) = Cx BIT can be written as /AC ®/AB/7> where fiB/T is an invariant measure on
BIT. In fact, if/ e CC(G/T) is a function with compact support contained in q(CB), then
we find a function F e CC(G) such that f(gT) = JTF(gt) diiT(t) ([25, p. 475]). Then

•aC JBIT

= f F(g) dficig) = I I F(cb) dfxsib) dfic(c)
JCB JC JB

f(cbT) d^-AbT) dnc(c) =

Hence /iG/7{p(Cfl)) = /ic(C)iiB/1{B/T) <» and in particular fj.BI7(B/T)<<x>. Let 5
denote the simply connected covering group of B. Then B/T = B/T (cf. Remark 3.6) so
that we also see that Bit has finite measure.

Next we apply Lemma 3.7 to the group S = 5 l / x 5 i , and the subgroup H = T. So
^B/f=^Bu/Sz®^BL/fL implies that BulBz and BjtL = BJTL have finite measure.
Since Bz is a normal subgroup of By, it follows that BvlBz is compact. From
Bz c ker AdB we conclude that AdB(Bu) is compact, so that the Lie algebra bu of By is at
the same time a nilpotent ideal of b and compactly embedded. Hence it must be central
and in particular contained in t. On the other hand the fact BJTL has finite measure
implies that BJKL has finite measure and therefore that BL contains only compact simple
factors. In this case we also see that b;cI . Thus we have shown that ocf.

It remains to show that A^K. We consider the subgroup A/Ao in the simply
connected group G/Ao. It is discrete and normal, hence central and therefore contained
in exp((t + a)/a) = TA0/A0. This shows that A g TA0 g K •

LEMMA 3.9. If the kernel A of '/rA is contained in K, then the representation Kk is square
integrable if and only if the representation nk of G/A defined by Jtx(gA) := nx(g) is square
integrable.

Proof. We consider the mapping p:G/T*-*G/AT = (G/A)/(AT/A). Let / €
CC(G/AT) and F e CC(G) with

f(gAT)=\ F{gk)dtiA1{k)
•IAT

([25, p. 475]). For each compact subset C^G and the mapping q:G->G/T the set
q(CAT)<=q(CK) is compact because KIT is compact so that there exists a compact
subset F^K with K = FT. Therefore, as a function on GIT, the function defined by
JigT) :=f(gAT) has compact support and we see that

Hence, in this normalization, the mappingp:GIT^> G/ATsatisfies p*fiGiT = PGIAT- NOW

the assertion is immediate. •

The reductive case. Let Q be a quasihermitian reductive Lie algebra (cf. Definition
3.1 (d)) and G an associated simply connected group. We pick a compactly embedded
Cartan subalgebra t and fix a {-adapted positive system A+.
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Now suppose that (/rA, 2f) is a unitary highest weight representation of G with highest
weight A with respect to A+ and recall from Definition 3.3(c) that this implies in particular
that A is dominant integral with respect to A*. We recall that Ad(G) is always closed for
reductive groups ([16, Proposition 1.2]). Therefore the representation nK is square
integrable if and only if it belongs to the relative discrete series (Remark 3.5) which,
according to the possibility of realizing such representations as holomorphic functions (cf.
[7, VI]) is called the relative holomorphic discrete series.

Harish-Chandra considers the function t/fA(g) := <7rA(g). uA, uA) on G. Actually he uses
another definition which turns out to be equivalent (cf. [13, proof of Proposition
VII.l(l)]). In [7, pp. 598-612] Harish-Chandra evaluates the relevant integral which leads
to the following explicit characterization of those highest weights belonging to the relative
holomorphic discrete series.

THEOREM 3.10. Let p denote the half sum of the positive roots. Then the function i/»A is
square integrable modulo the center, i.e., the highest weight representation nx is square
integrable, if and only if for all /3 e A* we have

0. (HC)

Proof. This follows from Lemmas 27 and 29 in [7, VI, pp. 604-609]. D

The following lemma makes the condition (HC) very easy to check.

LEMMA 3.11. If Q is a simple hermitian Lie algebra and A e it* is dominant integral
with respect to A*, then the following are equivalent:

(1) A satisfies the Harish-Chandra condition (HC).
(2) (A + p)(y) < 0 holds for the highest root y e A+.

Proof. (1) => (2). Since the highest root A e A+ is non-compact (the non-compact
simple root occurs in a representation by simple roots), it is clear that (1) implies (2).

(2)^(1). The condition that A is dominant integral with respect to A* means that
A(a) e No for all a e A*. On the other hand pp := 2 a is invariant under °Wk, hence

aeA*
pp(a) = 0 for all a e A*. Since pk(a) = 1 for all compact simple roots, it follows that
pk(a) >0 for all compact roots. Hence

(A + p)(a) = A(a) + pk(a) > A(a) > 0. (3.1)

Now we introduce the standard scalar product (• | •) on it so that we can identify it
2a

with its dual. With respect to this identification we have a = -—;—- for all a e A. Let
w eWv Then the maximality of y yields ( a I a )

w.y = y- 2 «««
aeAf

and therefore (3.1) implies that (A + p | w. y) < (A + p | y) < 0 for all w e %. We
conclude that (2) is equivalent to (A + p | w. y ) < 0 for all w eWt. Since Ap generates
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the same cone as Wt. y (cf. [11, Proposition 2.15]), it follows that (2) is equivalent to
(A + p)(j8) < 0 for all /3 E A+. This is exactly Harish-Chandra's condition (HC). •

The general case. Since we want to generalize Harish-Chandra's criterion to highest
weight representations of general groups, we first have to reformulate the Harish-
Chandra condition (HC) in such a way that it makes sense for a wider class of groups.

LEMMA 3.12. For a functional A E it* with A |,a E i int Cmjnz the following conditions
are equivalent:

(1) (A + p)(a) < 0 for all a e A*,
(2) A + p e i i n t C j , n .

Proof. We first note that the functional p vanishes on the center, hence on the cone
Cmin,z. In view of A |,a e i int C*in<z, this means that the functional_A + p is contained in
i int Cmin if and only if for all fi e A ^ and Xp e g£ with /3 = [XP,XP] we have

0 > (-i)(A + p)(i[*fl, A>]) = (-i)(A + P)(i0) = (A

Let Q = u x I be a t-invariant semidirect decomposition, where u is the nilradical of g
and I is a reductive Lie algebra (Definition 3.1(c)). Accordingly we write G = UxL for
the associated simply connected group. Let A, and As be as in Definition 3.1, A+ be a

f-adapted positive system, wj^:=dimg£ the multiplicity of the root /3, pr = z 2 m0fi,

ps = - 2) /?, p * = ~ 2 P, and p = ps + pr. We call the elements of Ar the solvable

roots. Recall that Ar g Ap and that m0 = 1 for all )3 E A,.

LEMMA 3.13. / / (;rA, 5if) is a highest weight representation with ker dnk £ I, then
A E i int Cmin. # follows in particular that the cone Cmin £ t is pointed.

Proof. Splitting off the commutator algebra of ker dnK, we may w.l.o.g. assume that
it is abelian, hence contained in t and therefore central. Since, according to [21, Lemma
1.4], A e iC*in, the assertion follows from [21, Proposition I.6(ii)] combined with [19,
Proposition IV.9]. D

We fix a functional a0 e i$(Q)*, such that ao([Xp, Xp]) > 0 holds whenever 0 <£
Xf, E Qg, /3 E Ar

+, i.e., a0 E i int C*m z. Put m+ := © gg. Then we define the structure of

a complex Hilbert space on m+ by (X, Y) := ao([Y, X]) for X,Y e m+. Note that, in view
of Proposition 3.8 and Lemma 3.13, such a functional a0 exists if G has square integrable
highest weight representations with ker dnk £ I.

The mapping m+-> m, X>-+ X + X is a linear isomorphism and we obtain a complex

structure / on m by the prescription I(X + X) := i(X - X). Then (X, Y) := -y ao([A', IY])

defines a real scalar product on m such that Re(Ar, Y) = (X + X,Y+ Y), i.e., the map
m+ -»m is an isometry of real Hilbert spaces.

Next we recall a basic construction from [21, Section III]. We consider Q as a direct
sum of m = [t, u], 3 := 3(g), and I, and accordingly we write the elements of g as triples
(Y ,Z ,X)emx3( 8 )XI . . Let a e iintCmin,z. Then Qa(A\Y):= a([X, Y]) defines the
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structure of a symplectic vector space on m and since the brackets in g can be computed
as

[(Y, Z, X), (Y\ Z \ X')] = ([X, Y'] - [X1, Y], [Y, Y'], [X, X%

it is clear that the assignment /3(Y, Z,X) = (Y, -ia{Z), ad A') defines a homomorphism
g—*f)m *§p(m,£2a), where fim = m x R denotes the Heisenberg algebra associated to m
with the bracket [(Y,t),(Y',t')] = (0, ~ia([Y, Y'])), and §p(m,Qo) is the Lie algebra of
the corresponding symplectic group.

Let v denote the extended metaplectic representation of HMp(m, Qa) on the Fock
space SFm ([21, Proposition II.5]), G a simply connected Lie group with L(G) = g, and
/} : G —* HMp(m, Qo) the Lie group homomorphism with dJ3 (1) = /3. We consider the
representation va:= v°J3 of the group G.

PROPOSITION 3.14. Let a EiintCminz, va the corresponding representation of the
group G = U>\L on the Fock space ^m, and Aap:Q^—>g£, )3e Ar

+ the linear map with

for X, Y e g£. Then the representation pa :=va\u belongs to the relative discrete series of
U and its degree is given by d(pa) = II detc-^Q,^ with respect to a suitable normalization
of Haar measure on U/Z(U). 0eA'+

Proof. Write Zu\-Z(U), u = 3(g)©m, and define a Haar measure IJ.U/ZU on UIZV

by the diffeomorphism m-^U/Zu, Yt-»exp(Y)Zt, and the Lebesgue measure fim on m
normalized by Jm e~m? dfim(X) = 1.

Write EQ& 2Fn for the constant function 1 and let Y E m. Then it follows from the
definition of va and Section II in [21] that

(va(exp Y). Eo, Eo) = e - i i i ^ = ei«([v./v])i

where ||Y||^= --a([Y,IY]). Since the representation pa is irreducible, we see that this

function belongs to the relative discrete series and, using the isomorphism m+—»m,
Y>->Y+y, we obtain

pa) d(pa) Jm Jm+

= 11 aeic/ia,>

because our normalization of the measure on g£ resp. m+ is such that

I-
whenever A is positive definite. D

THEOREM 3.15. Suppose that (;rA, 'X) is a unitary highest weight representation with

https://doi.org/10.1017/S0017089500032237 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032237


310 KARL-HERMANN NEEB

the highest weight A with respect to the l-adapted positive system A+ and that ker dnK c f.
Then nk is square integrable if and only if

peiintCin. (3-2)

where p = -
2/Moreover, if vA is a normalized primitive element, then d{n, vk) = d{p^.)d(nK),

where nkl is the unitary highest weight representation of L with highest weight A; :=
(\ + Pr)\tl and t^tnl

Proof. Let A:=texnK and a = L(A). We identify the dual of t / ( an t ) with the
subspace (an t)x £ t*. Then the assumption that a g f shows that whenever g££a c , then
this root space is contained in a compact semisimple ideal which is a direct summand.
Hence a vanishes on the cone Cmin. Therefore the condition (3.2) is satisfied for G if and
only if it is satisfied for the quotient group G/A. Thus we may w.l.o.g. assume that nK has
discrete kernel. Moreover, in view of Remark 3.6, we may also assume that G is simply
connected.

We write G = UxL, where U is the nilradical and L is reductive and invariant under
K (cf. Definition 3.1 (c)). Using Theorem III.2 in [21], we obtain a tensor product
decomposition nK = nkl® v, where nKl is a highest weight representation of L (considered
as a representation of G via L = G/U) with highest weight A; = (A + pr)|t,. The
representation v is an extended metaplectic representation, more precisely, it is a highest
weight representation with highest weight A - \h where A; is extended to t by 0 on 3, and
2i?v = Pol(p^")®C as 7-module, where C is the one-dimensional T-module correspond-
ing to the highest weight A - A,.

Let uA = vkl<S>vv E ffl{F) denote a unit highest weight vector decomposed according
to the decomposition /rA = /rA,®v and put <p/,{g) = (nk{g).vx,vx). Using Proposition 2.3
and Lemma 3.7, we calculate the integral

f •> ( r 7
\*l>x(gT)\z dficnigT) = \ip/i(ulTydp,u,z{uZ)dfiUTL(lTL)

•>G/T JUIZ -IUTL

=j \ K*A(«O-»>A,«A>I2<W/Z(";

\(nXl(l). vkfl vk)(v(ul). vv, vv)\
2 d\ivlz(uZ) dfiL,TL(lTL)

'. JUT,

\(v(u)v(l).vv,vv)\
2d^ulz(uZ)dfiLITL(lTL)

r

= f \{«xjLl) • I V VA,)|2 JA-. II v ( / ) . vv | | 2 \\vv\\
2d,jLLITL(lTL)

JUTL d(y\u)

1 f

d(v\u))UTL

where d(v|[/) is the formal degree of the representation v|u = pA|.j which is square
integrable modulo the center (Proposition 3.14).
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We conclude that nK is square integrable if and only if the same holds for the highest
weight representation /rA/ of L, i.e., if

L
Since

holds for all 0¥>Xp eqlc, ^ E i , + (Lemma 3.13), we see that the condition A + p e
/ int Cmin is equivalent to A + p = A, + p, E / int C^inj which, in view of Lemmas 3.11 and
3.12, is Harish-Chandra's condition for the square integrability of the representation nKl

otL.
To complete the proof, we note that our calculation gives the following formula for

the degree

[ \^(n2d(T) \ . •

REMARK 3.16. If we assume in Theorem 3.15 instead of kerd;rAcf that g has cone
potential, then one can show that the condition A + p e i int C^in even implies that
ker dnK <=, f. In fact, let a = ker dnx.

Suppose that Xp e ac n g^ with §_s A+ is non-zero. Then i[X0, Xp] e Cmin\{0}
because g has cone potential. Hence A([^, Xp]) = 0 because Xp e QC and therefore

0 < -i(A + p)(i[Tp, XfL)

If /3 e Aj, then ^ is a non-zero multiple of [XP,XP] and therefore we obtain a
contradiction to p($) ^ ps(P) > 0 which in turn follows from pr(/3) = 0 for /3 compact and
pr(/5) = /pr(-//§)£Jpf(Cmin)£lR+ (cf. Definition 3.3(c)). Thus 0 e Ar

+ and [Xp,Xp]c
3(8c)- Hence p C ^ , ^ ] ) = 0 yields a contradition. •

THEOREM 3.17. With respect to a suitable normalization of the invariant measure on
GIT, the number d(nK,v^) of the square integrable highest weight representation ;rA of
highest weight A is given by

where

is the dimension of the irreducible K-representation 7t% of highest weight A.

Proof. According to Theorem 3.15, we have d{nk) = d{p>)d{nK). For the first factor
we use Proposition 3.14 and for the second we have Harish-Chandra's degree formula

- n * f
PP
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for the formal degree of the relative discrete series representations of reductive Lie
groups (cf. [7, VI, p. 612]).

To see that this formula has a factorization as asserted, we write ps = pk + ppjr Then
the functional pPyS is invariant under the Weyl group Wt, hence vanishes on $ for /3 e A*.
Thus

«j- n ^ ^ n flLtajja. n
06A;,, PS\P) 0eAjT PkKP)

= n &±g*fi- n **T
P(P) PU

;, ^ PsKP)
where

0 , f

D
Note that if g is compact then this is Weyl's dimension formula and that, if g is

reductive, this is Harish Chandra's degree formula for the relative holomorphic discrete
series.

4. Highest weight representations via Duflo's orbit method. In this section we
explain how the class of square integrable highest weight representations fits into the
picture suggested by the orbit method. It will turn out that the square integrable highest
weight representations are exactly those which can be constructed with Duflo's orbit
method.

We keep the notation introduced in Definition 3.1. In particular g always denotes a
Lie algebra containing a compactly embedded Cartan subalgebra t.

DEFINITION 4.1. For / e g* we write Ad*(g)./:=/°Ad(j>)~1 for the coadjoint action
and 6f:=Ad*(G).f for the coadjoint orbits. Furthermore we define
G / : ={geG:Ad*(g) . / =

We identify the dual t* of t with the subspace [t, g]̂ " of g*. A functional / e t* is said to
be integral if there exists a character #: 71-* C* with dx(l) = if. It is called regular if ĝ  = t.
In view of [19, Lemma II.4], this condition means that the coadjoint orbit €f g g* has
maximal dimension in g*.

In the following we always identify g* with the subset of all complex linear
functionals in g* which take real values on g.

DEFINITION 4.2. (a) Let / e g * . A complex subalgebra b £ gc is called a (complex)
polarization in / if

/c([&. &]) = M and dime gc - dime b = -dim fy.

(b) We say that a polarization b in / satisfies Pukanszky's condition if the group
Ad(B) := <ead b) c Aug(gc) satisfies

(c) An element / e g * is said to be well polarizable if there exists a good
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polarization b in / , i.e., b is solvable and satisfies Pukanszky's condition. For such a
polarization we define a linear form pb on the stabilizer algebra ĝ  by

pb(X):=-tradX\b/(af)c.

We say that / i s admissible if the form (/. / |B/) + pb is the differential of a character of the
group (Gf)0.

Let Gf denote the metaplectic covering (a central extension by Z2) of Gf defined by
the symplectic action of G{ on the symplectic vector space V := &/Qf and the pull-back
diagram

I" I
Cf

We write e e Gf for the element (1, e0) e GfX Mp(V), where EO^1 is the second
element in the kernel of the metaplectic covering of Sp(K). Then {1, e} is thejcernel of n.
One can show that pb is always the differential of a character pi' of Gf satisfying
p£(e) = - 1 ([3, 2.1]). Consequently / i s admissible if and only if there exists a unitary
character x of (G/)o with x(e)= ~1- We write X(G,f) for the set of all representations of
Gf for which the restriction to (Gy% is %• Note that this is a one-element set if G{ is
connected and that / i s always admissible if (Gf)0 is simply connected.

LEMMA 4.3. / / A+ is a positive system and f e t* is regular, then the subalgebra
b := t c © 0 g£ is a complex polarization in /satisfying Pukanszky's condition.

Proof. Let h e / + bx and X, Y e b. Then

(e**'*. h - h)(Y) = S (ad* X)n. h(Y) E A([b, b]) =/([b, b]) = {0}

shows that the set / + bx c gj is invariant under the group Ad(B)* and in particular that
A d ( B ) * . / g / + bx.

It is clear that t c is a Cartan subalgebra of b and that ad*(tc) . / = {0}. Hence
Theorem 1.11 in [15] implies that the orbit Ad(B)*. / g / + bx is closed. We claim that it
is also open in / + bx. To see this, note the tangent space of this orbit is / + ad*(b)./
Since (Qf)c = tc, it follows that

dim ad*(b). / = dim b - dim tc = dim gc - dim b = dim bx.

Therefore / + ad*(b). f = / + bx and consequently Ad(B)*. / is an open orbit. Since it is
also closed, it follows that Ad(fl)*. / = / + bx. •

We have shown so far that / is well polarizable because b is a solvable Lie algebra.
Now we have to deal with the admissibility condition. To do this we assume from now on
that G is a simply connected group with L(G) = g and that A+ is a I-adapted positive
system, i.e., the set of positive non-compact roots is invariant under the Weyl group Wt

(cf. Definition 3.1(d)).
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LEMMA 4.4. Suppose that G is simply connected and T = exp t. Then for a functional
f e t* the following are equivalent:

(1) f is integral, i.e, Xt-*elf<-X) factors to a character of the group T.
(2) if (a) e Z for all a G A£.

Proof. [21, Proposition 1.14]. •

LEMMA 4.5. We have

1 . . . . 1 ^

Pb(d) = 1 for all simple roots a e A*.

Proof. If sa is the involution on t* coming from the root a, then

(4.1)

for all fi e t* and if, in addition, a is a simple root, then sa(A
+) = (A+\{a}) U {-a} implies

that sa(pb) = pb- a. Therefore pb{&) = 1 follows from (4.1). D

PROPOSITION 4.6. The functional f is admissible for the simply connected group G if
and only if f is integral.

Proof. Since the coroots a for the simple roots a e A* form a basis of the dual root
system [(2, Ch. VI, §1, no. 1.5, Rem. 5]), Lemma 4.5 shows that pb is integral so that it
always integrates to a character of the group T. Therefore if + pb integrates to a character
of T if and only if / is integral (Lemma 4.4). Now the assertion follows from the
connectedness of the group Gf ([15, Theorem 1.18]) which therefore must be equal to T.

D
Since Gf = T is connected, there exists exactly one r G X(G,f). Now Duflo's orbit

method ([3], [6, Theorem 4.1]) provides for each / a unitary representation 7} := Tfz with
infinitesimal character Xif'$(aM(Qc))-* C.

REMARK 4.7. If G is connected reductive and / e t*, where t is a compactly
embedded Cartan subalgebra, then the construction of the representations Tf in [5, p.
118] shows that Tf belongs to the relative discrete series. This means that, for G
reductive, the only highest weight representations which we can expect to be obtained by
this method are those which belong to the relative discrete series, i.e., which are square
integrable.

REMARK 4.8. (a) Let G be compact semisimple and / e g * well polarizable and
admissible, i.e., fy is a Cartan subalgebra. Let t = Qf denote the corresponding Cartan
subalgebra. Let A+ :={a:if(a)>0} and p the half sum of the roots in A+. Then the
representation Tf associated to / i s a representation of highest weight / / - p.

(b) Let G be hermitian simple and simply connected, t g g a compactly embedded
Cartan subalgebra and / e t* regular and integral. Set A := if G it*. We use [3, pp.
115-118] to explain what Tf is. First we choose a positive system of roots A+(A):=
{a:A(d)>0} and write A*(A) and A*(A) for the corresponding systems of positive
non-compact and compact roots. We define

PKA 1 «-\ X a = p(A;(A))-p(A*+(A)).
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Since the stabilizer Gf is connected, hence equal to T = exp t, there exists a character
A e t such that dA = A + p \ Now the representation Tf associated to / is the relative
discrete series representation, where A + pA is the highest weight with respect to A* of the
lowest AT-type (cf. [23]). Hence, for all compact simple roots, we have

(A + p")(a) = (A - p(A*+(A)))(d) = A(<5) - 1 > 0

whenever Ap (A) is ^-invariant because the integrality of A(a) > 0 implies that A(a) s 1.

PROPOSITION 4.9. Suppose that G is a simply connected quasihermitian reductive Lie
group and that f e t* is integral such that A := if satisfies

| < 0 , foraeAp
l>0, for a e Ak,

where A+ is a t-adapted positive system with A* c -iCmin. Then Tf is the highest weight
representation with highest weight A - p with respect to A+.

Proof. In view of Remark 4.8(b), we know that the highest weight of the lowest
AMype in %€ (the corresponding Hilbert space) is the dominant integral functional A + p \
On the other hand A(/3) < 0 for all P s Ap implies that A+(A) = A* U (-Ap). Therefore
pA = -pk - pp = - p and A + pA = A - p.

Tf
(A-p+p)(/3) = A(/3)<0

for all P E Ap", (A - p)(a) > 0 for a E A* (Remark 4.8(b)), and (A - p)(P) < A(/5) < 0 for
P E Ap. Hence A - p satisfies the Harish-Chandra condition for the relative holomorphic
discrete series. This means that Tf must be a relative holomorphic discrete series
representations, in particular it is a highest weight representation. •

REMARK 4.10. Let G = i / xL denote a semidirect decomposition of G, where U is
the nilradical and L is a reductive subgroup which is 7-invariant (cf. Definition 3.1). We
use [5, pp. 121ff] to analyze how the representation Tf for / e t * is adapted to this
decomposition.

Let fu:=f\u and extend this function by 0 on I to a functional on g. Then

p
To see that the representation Tf is in fact a highest weight representation, note that

because m := [t, u] is invariant under I (cf. Definition 3.1). Therefore L g Gfu. It follows in
particular that UGfu = G. According to [5, p. 123], the representation Tf is a tensor product

We explain the different ingredients of this decomposition. Let q := ker/ f~l u^. Then
q is an ideal in g^ because ufu and ker/ are invariant under Qfu. We set

8i := B/A = (I + %)M = (I + 3)/(ker/ D 3).

Therefore Qi is a reductive Lie algebra and /] is obtained by factorization of f\j. to 81.
The representation Tfu is the Kirillov representation associated to fu. Since in our

case U is a central extension of a Heisenberg algebra, Tfu is exactly the SchrOdinger
representation associated to fu (cf. [21, Section II]). The representation SfuT% is a
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representation of the semidirect product U>\L given by (u,l)>-+T¥M(u)Sfu(l), where Sfu is
obtained by the metaplectic representation of Sp(/i,R)~ via the homomorphism L-*
Sp(/i, U)~ obtained by the action of L on u/u/u = Tfu(0fu).

This proves in particular that the decomposition of Tf is compatible with the Satake
decomposition of a representation of UxL as in [21, Theorem III.2], •

THEOREM 4.11 Let G be a simply connected Lie group, A+ a l-adapted positive system
of roots, and f e int C*in £ t* regular such that A := if is dominant integral with respect to
A^. Then Tf is the highest weight representation with highest weight k-p with respect
to A+.

Proof. For the case where G is reductive, the existence of a It-adapted positive system
implies that g is quasihermitian, i.e., its commutator algebra is a direct sum of compact
and hermitian simple ideals (cf. Definition 3.1(d)). In_this case the assertion is exactly
Proposition 4.9 because for A',, G g£ the element [Xa,Xa] is a positive multiple of a, so
that / e int C*in means that if (a) < 0 for all a e A*.

In general G = UxL, where L is a simply connected reductive quasihermitian Lie
group and U, the nilradical of G, is a central extension of a Heisenberg algebra. Let
T:= Tf. We may assume that U is not central. Otherwise G is reductive and Proposition
4.9 applies.

Then the largest ideal contained in ker/acts trivially on Of and therefore, since / i s
regular, is contained in t. Hence it is central. It follows in particular that /([u, u]) ¥= {0}
because otherwise ker/ contains the ideal [g, u]. From [u, u] g 3 := a(g) we infer that /
does not vanish on 3.

Now let a := ker dT n u. Then 0 is an ideal of g. We claim that a 9 3. To see this, we
note that a = (aD3)©[t,a] and that a n 3 £ k e r / as well as [t, 0] £ [t, g] £ ker/
Therefore a is an ideal contained in ker /and therefore central as we have seen above.

Let m = [t,u] and consider the skew-symmetric bilinear form q{X, Y):=f([X, Y])
on m X m. We claim that q is non-degenerate. Suppose that q(X,m) = {0}. Then
[X,m]cker/ and therefore [Z .u jgke r / On the other hand [ A ' J l g m g k e r / a n d
consequently X e ĝ  = {Y e g:/°ad 7 = 0} = t, contradicting the regularity of/. This
proves that the image u/a is isomorphic to a Heisenberg algebra !)„ and the homomorph-
ism u t-> u/a can be written as

^ : n = m©3^f i n ) (X,Y)~(X,f(Y))

because the kernel of this homomorphism is a.
Therefore the group T(U) is a Heisenberg group, and as we have shown in [21,

Theorem III.2], Satake's decomposition theorem applies because the homomorphism
li -»f)n extends to the homomorphism

Note that to apply Satake's decomposition ([21, Theorem III.2]) one does not need that
the representation under considertion is irreducible.

So we obtain a tensor product decomposition T = Ti ® T2, where Tx is the metaplectic
representation obtained by the homomorphism G-»//nMSp(/i,R)~ (cf. [21, Proposition
III.l]) and 72 is a representation with Ugker T2. It remains to show that T2 = Tflt where
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f;:=/|/. Since ĝ  = t, the regularity of fi follows from ĝ  = u^Kl^ (cf. [15, Lemma 1.17]).
Now Remark 4.10 applies and completes the proof. •

THEOREM 4.12. A unitary highest weight representtaions nK with kernel in K can be
obtained by Duflo's orbit method as a representation Tf, f st* regular, if and only if it is
square integrable.

Proof. Suppose that the representation with highest weight A e int Cmin can be
realized by Duflo's method, i.e., nk = Tf for some regular/ e t*. Then A|8 = if\t since the
infinitesimal character of Tf is %i{ ([4, Theorem IV.19]). Now Satake's theorem provides a
decomposition /rA = nKx ® nkl = Tf = Tfx ® 7" (cf. Remark 4.10). Thus T^ = nM is an
irreducible highest weight representation of L and since ker nk £ K, the representation nki

is square integrable. Hence it belongs to the relative discrete series (Remark 4.7). Now
Aj = ifi - pi satisfies the Harish-Chandra condition (Theorem 3.10) and therefore the
highest weight representation ;rA is square integrable (Theorem 3.15).

If, conversely, nk is square integrable, then we put / : = —»(A + p) and note that
/ e int C*in by Theorem 3.15. We show that / satisfies the requirements of Theorem
4.11. From / e int C^m we conclude with [19, Proposition 111.14] that ĝ  £ f. For a E A*
we have

if (a) = (A + p)(a) = (A + pk)(a) > A(a) > 0

so that we finally see that Qf = t, i.e., / i s regular. The integrality of/which is equivalent
to the integrality of A (cf. Lemma 4.5) is also satisfied. Therefore Theorem 4.11 implies
that 7f = TTA. D

5. Holomorphic extensions. In this section G denotes a simply connected Lie group
having square integrable highest weight representations nK.

Let TJ : G -* Gc denote the universal complexification of G. For the following facts we
refer to [17]. For a closed convex generating invariant cone W £ g we write F(g, W) for
the semigroup covering of the subsemigroup (exp(g + iW)) ^ Gc. Such semigroups are
called OVshanskiT semigroups. One has a natural inclusion G -»F(g, W), an exponential
function Exp:g + jW-»F(g, W), and if, in addition, i(W n t;) £ (A^)*, then F(g, W) =
G Exp(/W), where the map

GX\V-*T(q,W), (g,X)»gExp(iX)

is a homeomorphism (cf. [17]).
Let A G i int C*in and n:= nk a corresponding unitary highest weight representation.

We have shown in [21, Corollary IV.12] that for any generating invariant cone W £ g
where the ideal W D (-W) is compact and W n t £ Cmax, the representation n extends to
a holomorphic representation n of the semigroup 5 := F(g, W), i.e., n:S^>B{K) is weakly
continuous, 7rA:S°:= G Exp(/ int W)-» B(9€) is holomorphic, and n(s*) = 7t(s)*, where

Moreover, in this case ^(5°) c BX{W) and the character s**Qn:= tr n(s) is a holomorphic
function on 5°.
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Thus we have a mapping

F:B2(#f)->Hol(S0), A >-*fA, with fA{s) = \r(n(s)A).

If if denotes the representation of S x 5 on B2(VC) given by

u s2)(A) := ni

then ftffaji). A(s) =/A(^SSI), i.e., F intertwines the natural representation of 5 X 5 on the
space Hol(5°) of holomorphic functions on 5° with the representation if on B2(9C).

DEFINITION 5.1. The orbit M:=G. PV£B2(W) is called effective if the mapping-
J32(2if)—> C(M), Ty-*(TT is injective. Note that this is equivalent to saying that span M
c 52(#f) is dense, i.e., that the vector Pv is cyclic for the representation of the group G on
B2(%C) defined by g. A := n(g)A7i(g)~\ Since this representation is not irreducible, there
is no a priori evidence for M to be effective.

Next we suppose in addition that the highest weight representation ;r:G-» t/(#f) is
square integrable. Let further M = G/T be as in Sections 1 and 3, where t> = uA is a
normalized highest weight vector. Then we have for A e B(ffl) and s e 5° the formula

fA(s) = tr(K(s)A) = d{n) \ <r<s)A(m) d^M{m). (5.1)

As a consequence of (5.1), we have for B = n{s)A £ 7t(S°)B(3€) the formula

) = d{n)\ crB(m) dfiM(m).
JM

A particular case of (5.1) is the character formula

) (5.2)

\

= d(n) \
JM

which follows immediately from (5.1) with A = 1.

THEOREM 5.2. The character formula

is valid for all s e 5° and a positive constant d(ri) if and only if the highest weight
representation n is square integrable modulo the center.

Proof. If n is square integrable modulo the center, then we have seen above that
formula (5.2) holds. Suppose conversely that n is a highest weight representation such
that (5.2) is valid.

The fact that n is irreducible yields that n{S°)^Bx{T) so that the left hand side is
well defined. Pick s e 5°. Then n(ss*) = 7t(s)n(s*) is a symmetric positive operator of
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trace class. Thus we find a sequence (vn)neN of mutually orthogonal vectors in 3€ such
oo

that n(ss*) = 2 /"„„. Then

On(ss*) = d(n) o-ff(M.)(m) dfiM(m)
JM

^d(7t) o>v (m) dyiM{m)
JM

= d(;r) (g.v,vn)(vn,g. v)
JCIT

\
JCIT

Since the existence of the integral on the right hand side is equivalent to the square
integrability of n, the proof is complete. D

For the following lemma we recall the definition of the projective space

of $f. We write [v] := Cv for the elements of P(9if). We note that for any injective
operator A e B(ff) the mapping P(9€)->P(9€), [v]*+A.[v]:=[A.v] is well defined.
Therefore the semigroup Bt(3€) of injective bounded operators on %! acts on P(5if) by
A.[v]:=[A.v].

LEMMA 5.3. The following assertions hold for any unitary highest weight representation
nK with A E j int C*in.

(i) *(S) £* , (*) .
(ii) The mapping S° x P(Sif)-» (P(5Sf), (5, [v])-+s. [v] := [s. v] defines a holomorphic

action of Sa on P{3€).
(iii) If v is a primitive element, then S. [v] = G. [v].

Proof, (i) Since we can write s = g Exp(iA') with X eW,vse may w.l.o.g. assume that
s = Exp(/Ar). Then n(s) = eWjr(jr) and such an operator is injective by the spectral theory
of selfadjoint operators.

(ii) Let w e #fbe a unit vector and Vw:={[u] E P(3t):(v, w)^0}. Then the mapping

(pw:wx-*Vw, x*+[w+x]

is a holomorphic chart for the open subset Vw of P(3if). Its inverse is given by the map

Now pick 50 e 5° and u0 e % with (^(io) • ^o.w) ^ 0- Then there exists a neighbor-
hood 1/ of s0 in 5° and a neighborhood V of v0 in #? such that (^(5). u, tv) ̂  0 holds for all
s e U,v eV (recall that n is norm-continuous on 5°). Thus

is holomorphic on U x V. This proves the assertion.
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(iii) Since the representation n is irreducible, the image n(Z) of the center Z of G is
contained in Cl so that it acts trivially on the projective space P(#f). Hence the action of
5 = F(g, W) on P(#?) factors to a representation of the subsemigroup 5] :=
Tj(G)exp(/W) £ Gc. Let B := (exp b) £ Gc, where b = 2 Qo Then it follows from [10,

OEi'

Theorem II.8], that 5 £ 7j(G)exp(/Wmax) £ T){G)B, where the subset TJ(G)B £ Gc is open.
Let £:B->C* denote the holomorphic character with dx{\) = A. Then the mapping

V(G)B- P(*f), 7,(g)fe «. tf(6)w(g). v] = fc. v]

is a holomorphic extension of the orbit map r)(G)-*P(2£),g»-+g. [v]. Since holomorphic
extensions are unique (cf. [9, Lemma 9.17]), it follows from 5 £ T J ( G ) B that S.[u]£
G.[v]. D

Now we come to the main result of this section.

THEOREM 5.4. If v is a primitive element, then the orbit M= G. Pu Q B2(3€) is
effective.

Proof. Let A e B(3€) and suppose that aA = 0.
For s e S we calculate

fA(ss*) = tr(7t(s)n(s*)A) = tt(n(s*)A7t(s))

= d(n) I (Tc(s*)A7i(sg). v, 7t(g). v
•>GIT

= d(n) (An(sg). v, n(sg). v
JCIT

In view of Lemma 5.3(iii), we find for each g e G another gs e G with s. [g. v] =
[gs. v]. Hence sg. v = zgs. v for a e C*. We conclude that

(An{sg). v, n(sg). v) = \z\2(An(gs). v, n(g,). v) = |z|2 vA{g7lT) = 0.

Hence fA(ss*) = 0 for all s e S°. Since S = G Exp(iW), this means in particular that
fA(Exp(iX)) = 0 for all X eW. Hence fA = 0 follows from the fact that fA is a holomorphic
function (cf. [9, Lemma 9.17]). •
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