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Abstract In this article, using an Halpern extragradient method, we study a new iterative scheme for
finding a common element of the set of solutions of multiple set split equality equilibrium problems
consisting of pseudomonotone bifunctions and the set of fixed points for two finite families of Bregman
quasi-nonexpansive mappings in the framework of p-uniformly convex Banach spaces, which are also
uniformly smooth. For this purpose, we design an algorithm so that it does not depend on prior esti-
mates of the Lipschitz-type constants for the pseudomonotone bifunctions. Furthermore, we present an
application of our study for finding a common element of the set of solutions of multiple set split equality
variational inequality problems and fixed point sets for two finite families of Bregman quasi-nonexpansive
mappings. Finally, we conclude with two numerical experiments to support our proposed algorithm.
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1. Introduction

Let E 1 and E 2 be two real Banach spaces with duals E∗
1 and E∗

2 , respectively, and
let C and Q be nonempty closed and convex subsets of E 1 and E2, respectively. Let
A : E1 → E2 be a bounded linear operator. Censor and Elving [7] introduced the concept
of split feasibility problem (SFP), which is formulated as

find x∗ ∈ C such that Ax∗ ∈ Q. (1.1)

The SFP has been found useful in solving numerous real-life problems, including medi-
cal image reconstruction, phase retrieval, signal processing, radiation therapy treatment
planning, among others. See, for example [17, 18, 24] and the references therein.
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For solving the SFP (1.1) using Bregman projection, Schöpfer et al. [40] proposed the
following method in the framework of p-uniformly convex real Banach spaces: for x1 ∈ E1,
set

xn+1 = ΠCJ
E∗
1

q

[
Jp
E1

(xn) − γnA
∗Jp

E2
(Axn − PQ(Axn))

]
, n ≥ 1, (1.2)

where ΠC denotes the Bregman projection from E 1 onto C and Jp
E is the duality mapping.

Closely related to the SFP (1.1) is the following split variational inequality problem
(SVIP) introduced by Censor et al. [9] in the framework of real Hilbert spaces as follows:
find x∗ ∈ C, which satisfies the inequality

〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ C, (1.3)

such that y∗ = Ax∗ ∈ Q solves the inequality

〈G(y∗), y − y∗〉 ≥ 0 ∀y ∈ Q, (1.4)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H 1 and
H2, respectively, F : H1 → H1 and G : H2 → H2 are two given operators, A : H1 → H2

is a bounded linear operator.
Recall that when problems (1.3) and (1.4) are viewed separately, then Equation (1.3) is
the classical variational inequality problem (VIP) in H 1 with its solution set VIP(C,F )
and Equation (1.4) is another VIP in H 2 with its solution set VIP(Q,G). To solve the
SVIP (1.3) and (1.4), Censor et al. [9] put forward the following algorithm. Let x1 ∈ H1,
the sequence {xn} is generated by

xn+1 = PC(I − λU)(xn + γA∗(PQ(I − λV ) − I)Axn), n ≥ 1, (1.5)

where γ ∈ (0, 1/L) and L is the spectral radius of the operator A∗A. They proved
that the above Algorithm (1.5) converges weakly to a solution of the SVIP under the
assumption that U, V are α1, α2-inverse strongly monotone operators and λ ∈ (0, 2α)
(where α := min{α1, α2}).
Let C be a nonempty, closed and convex subset of a real Banach space E with dual E∗.
Let f : C ×C → R be a bifunction. The equilibrium problem (EP) studied by Blum and
Oettli [5] is to locate a point x∗ ∈ C such that

f(x∗, x) ≥ 0, ∀ x ∈ C. (1.6)

We denote by EP(f ) the set of solutions of Equation (1.6). The EP was formerly intro-
duced as the Ky Fan inequality [15]. This class of problem has been extensively studied by
numerous scholars because of its several applications. It is well known that many prob-
lems arising in economics, optimization and physics can be reduced to problem (1.6).
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Moreover, several iterative algorithms have been proposed to solve the EP (1.6) and
related optimization problems in both Hilbert and Banach spaces (see [1, 3, 5, 13, 16,
17, 28, 31, 36, 34, 39, 45] and other references contained therein). However, most of the
existing results on the EP are of the monotone type.
In 2011, Moudafi [30] extended the SVIP Equations (1.3) and (1.4) to split equilibrium
problem (shortly, SEP), which is defined as

find x∗ ∈ C such that f1(x∗, y) ≥ 0, ∀ y ∈ C

and y∗ = Ax∗ ∈ Q such that f2(y∗, z) ≥ 0, ∀ z ∈ Q, (1.7)

where C and Q are nonempty, closed and convex subsets of real Hilbert spaces H 1 and
H2, respectively, f1 : C × C → R and f2 : Q × Q → R are bifunctions with a bounded
linear operator A : H1 → H2.
In addition, for solving the SEP (1.7), the author in [20] put forward a proximal technique
without product space formulation as follows:

x0 ∈ C; {ρn} ⊂ (0,∞); µ > 0

f1(yn, y) +
1

ρn
〈y − yn, yn − xn〉 ≥ 0 ∀y ∈ C,

f2(un, v) +
1

ρn
〈v − un, un −Ayn〉 ≥ 0 ∀v ∈ Q,

xn+1 = PC(yn + µA∗(un −Ayn)), ∀n ≥ 0,

where A∗ is the adjoint of A. The author in [20] obtained a weak convergence result
when the bifunctions f 1 and f 2 are monotone on C and Q, respectively. Since then,
several iterative schemes have been proposed when the bifunctions are either monotone
or pseudomonotone, see for example [4, 14, 21–23, 25] and check also the references
therein.

In Section 6.1 of Censor et al. [9], the authors proposed an improvement of the SVIP
(1.3) and (1.4), which they called multiple set SVIP (MSSVIP), which is formulated as
follows:

find x∗ ∈ C : =
N⋂
i=1

Ci such that 〈Fi(x
∗), y − x∗〉 ≥ 0, ∀y ∈ Ci,

i = 1, 2, . . . , N

and such that y∗ = Ax∗ ∈ Q : =
M⋂
j=1

Qj solves 〈Gj(y
∗), z − y∗〉 ≥ 0, ∀z ∈ Qj ,

j = 1, 2, . . . ,M,

where A : H1 → H2 is a bounded linear operator, Fi : H1 → H1, i = 1, 2, . . . , N
and Gj : H2 → H2, j = 1, 2, . . . ,M are given operators and Ci, i = 1, 2, . . . , N and
Qj , j = 1, 2, . . . ,M are nonempty, closed and convex subsets of real Hilbert spaces H 1

and H2, respectively. They proposed an algorithm for solving the problem and proved
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that the sequence generated by the proposed iterative scheme converges weakly to the
solution set of MSSVIP when Fi, i = 1, 2, . . . , N and Gj , j = 1, 2, . . . ,M are inverse
strongly monotone operators.
Moudafi [31] proposed a new SFP, which he called split equality problem (SEqP). Let
H 1, H 2 and H 3 be real Hilbert spaces. A : H1 → H3 and B : H2 → H3 be two bounded
linear operators, and C ⊂ H1 and Q ⊂ H2 be two nonempty, closed and convex sets. The
SEqP is formulated as follows:

find x∗ ∈ C, y∗ ∈ Q such that Ax∗ = By∗. (1.8)

Let T : E → E be a mapping. We denote the fixed point set of T by F(T ); that
is F(T ) := {x ∈ E : Tx = x}. The Fixed Point Problem has application in various
fields, such as optimization theory, economics, game theory, as well as in establishing
the existence of solutions of several physical problems arising in differential and integral
equations [19, 32, 34, 42].
If C := F (S) and Q := F (T ) in Equation (1.8), where S : H1 → H1 and T : H2 → H2 are
two nonlinear mappings, then the SEqP becomes the split equality fixed point problem.
Motivated and inspired by the above mentioned results, we introduce and study in
the framework of p-uniformly convex Banach space an extension of the MSSVIP to
multiple set split equality equilibrium and common fixed points problem of Bregman
quasi-nonexpansive mappings. Using Bregman distance, we make use of the Halpern
extragradient technique for solving the pseudomonotone EP, which guarantees strong
convergence. We design our algorithm in such a way that it does not depend on the prior
estimates of the Lipschitz-like constants.
We organize the rest of this article as follows: Section 2 presents preliminaries and some
existing results, § 3 is the design of our iterative method, whereas § 4 focuses on the
convergence analysis of the proposed algorithm. In § 5, we apply our result to solve a
certain class of variational inequality problems. We present some numerical experiments
in § 6 and conclude with some final remarks in § 7.

2. Preliminaries

In this section, we call up some important definitions and existing results, which will be
needed in the proof of our main result. We denote strong and weak convergence of the
sequence {xn} to a point x by ‘→’ and ‘⇀’, respectively.
Let E be a real Banach space and 1 < q ≤ 2 < p < ∞ with 1

p + 1
q = 1. The modulus of

smoothness of E is the function ρE : R+ := [0,∞) → R+ defined by

ρE(τ) = sup

{
‖x̄+ τ ȳ‖ + ‖x̄− τ ȳ‖

2
− 1 : x̄ = 1 = ȳ

}
.

The space E is called uniformly smooth if and only if
ρE(τ)

τ → 0 as τ → 0. Let q > 1, E
is said to be q-uniformly smooth if there exists κq > 0 such that ρE(τ) ≤ κqτ

q for all
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τ > 0. The modulus of convexity of E is defined as

βE(ε) = inf

{
1 − ‖x̄+ ȳ‖

2
: ‖x̄‖ = ‖ȳ‖ = 1; ε = ‖x̄− ȳ‖

}
.

The Banach space E is called uniformly convex if and only if βE(ε) > 0 for every ε ∈ (0, 2].
Now, suppose p > 1, then E is called p-uniformly convex if there exists a constant Cp > 0
such that βE(ε) ≥ Cpε

p for all ε ∈ (0, 2].

Remark 2.1. It is well known that every p-uniformly convex space is also strictly
convex and reflexive. In addition, if a Banach space E is p-uniformly convex and uniformly
smooth, then its dual space E∗ is q-uniformly smooth and uniformly convex (see [11]).

Definition 2.2. see [12] Let p> 1 be a real number, the generalized duality mapping

Jp
E : E → 2E

∗
is defined by

Jp
E(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1},

where 〈., .〉 denotes the duality pairing between elements of E and E∗. In particular,
Jp
E = J2

E is called the normalized duality mapping. If E is p-uniformly convex and uni-
formly smooth, then E∗ is q-uniformly smooth and uniformly convex. In this case, the
generalized duality mapping Jp

E is one-to-one, single-valued and satisfies Jp
E = (Jq

E∗)−1,
where Jq

E∗ is the generalized duality mapping of E∗. Furthermore, if E is uniformly
smooth, then the duality mapping Jp

E is norm-to-norm uniformly continuous on bounded
subsets of E, and E is smooth if and only if Jp

E is single valued.

Let f : E → (−∞,+∞] be a proper, lower semicontinuous and convex function, then the
Fenchel conjugate of f denoted as f∗ : E∗ → (−∞,+∞] is defined as

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ E, x∗ ∈ E∗}.

See [41] for more information about Fenchel conjugate.
Let the domain of f be denoted by (dom f) = {x ∈ E : f(x) < +∞}; hence, for any
x ∈ int(dom f) and y ∈ E, we define the right-hand derivative of f at x in the direction
y by

f0(x, y) = lim
t→0+

f(x+ ty) − f(x)

t
.

The function f is said to be Gâteaux differentiable at x if limt→0+
f(x+ty)−f(x)

t exists
for any y. In this case, f0(x, y) coincides with 5f(x) (the value of the gradient 5f of f
at x ). The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable for
any x ∈ int(dom f). The function f is said to be Fréchet differentiable at x if its limit is
attained uniformly in ||y|| = 1. Moreover, f is said to be uniformly Fréchet differentiable
on a subset C of E if the above limit is attained uniformly for x ∈ C and ||y|| = 1.
A function f is said to be Legendre if it satisfies the following conditions:
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(1) The interior of the domain of f, int(dom f) is nonempty, f is Gâteaux differentiable
on int(dom f) and dom 5 f = int(dom f).

(2) The interior of the domain of f∗, int(dom f∗) is nonempty, f∗ is Gâteaux
differentiable on int(dom f∗) and dom 5 f∗ = int(dom f).

Definition 2.3 [6] Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable
function. The function ∆f : E × E → [0,+∞) defined by

∆f (x, y) := f(y) − f(x) − 〈5f(x), y − x〉

is called the Bregman distance with respect to f.

We highlight the following interesting properties of Bregman distance (see [6, 37]):

(i) ∆f (x, x) = 0, but ∆f (x, y) = 0 does not necessarily imply that x = y,
(ii) for x ∈ dom f and y, z ∈ int(dom f), we have

∆f (x, y) + ∆f (y, z) − ∆f (x, z) = 〈5g(z) −5g(y), x− y〉, (2.1)

(iii) for each z ∈ E, {xi}Ni=1 ⊂ E and {αn}Ni=1 ⊂ (0, 1) with
N∑
i=1

αi = 1, we have

∆f

(
z,∇g∗

(
N∑
i=1

αi∇g(xi)

))
≤

N∑
i=1

αi∆f (z, xi).

It is well-known that in general the Bregman distance ∆f is not a metric because it fails
to satisfy the symmetric and triangle inequality properties. Moreover, it is well known
that the duality mapping Jp

E is the sub-differential of the functional fp(.) = 1
p ||.||

p for

p > 1, see [10]. Then, the Bregman distance ∆p is defined with respect to fp as follows:

∆p(x, y) =
1

p
‖y‖p − 1

p
‖x‖p − 〈Jp

Ex, y − x〉

=
1

q
‖x‖p − 〈Jp

Ex, y〉 +
1

p
‖y‖p

=
1

q
‖x‖p − 1

q
‖y‖p − 〈Jp

Ex− Jp
Ey, y〉. (2.2)

Definition 2.4. Let C be a nonempty, closed and convex subset of a real Banach space
E and let T : C → C be a nonlinear map. The mapping I−T is said to be demiclosed

https://doi.org/10.1017/S0013091523000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000251


Split Equality Equilibrium and Fixed Point Problems 481

at zero if for any sequence {xn} ⊂ C, the following implication holds: xn ⇀ x and
(I − T )xn → 0 =⇒ x ∈ F (T ).

Definition 2.5. [8, 29] Let T : C → int(domf) be a mapping. Then,

(i) a point p ∈ C is called an asymptotic fixed point of T if C contains a sequence
{xn}, which converges weakly to p such that limn→∞ ‖Txn − xn‖ = 0. We denote

by F̂ (T ) the set of asymptotic fixed points of T;
(ii) T is called Bregman firmly nonexpansive if

〈∆f (Tx) − ∆f (Ty), Tx− Ty〉 ≤ 〈∆f (x) − ∆f (y), Tx− Ty〉, ∀x, y ∈ C.

(iii) T is called Bregman strongly nonexpansive if F̂ (T ) 6= ∅ and

∆f (p, Tx) ≤ ∆f (p, x), ∀p ∈ F̂ (T ) and x ∈ C.

(iv) T is said to be Bregman quasi-nonexpansive if

F (T ) 6= ∅ and ∆f (p, Tx) ≤ ∆f (p, x), ∀x ∈ C, p ∈ F (T ).

Recall that the metric projection PC from E onto C satisfies the following property:

‖x− PCx‖ ≤ inf
y∈C

‖x− y‖, ∀x ∈ E.

It is well known that PC is the unique minimizer of the norm distance. Moreover, PC is
characterized by the following property:

〈Jp
Ex− Jp

E(PCx), y − PCx〉 ≤ 0, ∀y ∈ C. (2.3)

The Bregman projection from E onto C denoted by ΠC also satisfies the property

∆p(x,ΠC(x)) = inf
y∈C

∆p(x, y), ∀x ∈ E. (2.4)

Also, if C is a nonempty, closed and convex subset of a p-uniformly convex and uniformly
smooth Banach space E and x ∈ E, then the following assertions hold (see [11]):

(i) z = ΠCx if and only if

〈Jp
E(x) − Jp

E(z), y − z〉 ≤ 0, ∀y ∈ C; (2.5)

(ii)

∆p(ΠCx, y) + ∆p(x,ΠCx) ≤ ∆p(x, y), ∀y ∈ C. (2.6)
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Lemma 2.6. [43] Let C be a nonempty convex subset of a Banach space E. Let g :
C → R be a convex, subdifferentiable function on C. Then g attains its minimum at
x ∈ C if and only if 0 ∈ ∂g(x) +NC(x), where NC(x) is the normal cone of C at x, that
is

NC(x) := {x̂ ∈ E∗ : 〈x− ϕ, x̂〉 ≥ 0, ∀ϕ ∈ C}.

Lemma 2.7. [10] Let E be a Banach space and x, y ∈ E. If E is q-uniformly smooth,
then there exists Cq > 0 such that

‖x− y‖q ≤ ‖x‖q − q〈JE
q (x), y〉 + Cq‖y‖q.

Lemma 2.8. [12] Let f and g be two convex functions on E, such that x0 ∈ dom f ∩
domg, where f is continuous, then

∂(f + g)(x) = ∂f(x) + ∂g(x), ∀x ∈ E.

Lemma 2.9. [27] Let E be a real p-uniformly convex and uniformly smooth Banach

space. Let z, xk ∈ E(k = 1, 2, . . . , N) and αk ∈ (0, 1) with
∑N

k=1 αk = 1. Then, we have

∆p

(
JE∗
q

(
N∑

k=1

αkJ
E
p (xk)

)
, z

)
≤

N∑
k=1

αk∆p(xk, z) − αiαjg
∗
r

(
‖JE

p (xi) − JE
p (xj)‖

)
,

for all i, j ∈ {1, 2, . . . , N} and g∗r : R+ → R+ being a strictly increasing function such
that g∗r (0) = 0.

Lemma 2.10. [40] Let E be a real p-uniformly convex and uniformly smooth Banach
space. Let Vp : E∗ × E → [0,+∞) be defined by

Vp(x, x∗) =
1

p
‖x‖p − 〈x, x∗〉 +

1

q
‖x∗‖q, ∀x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:

(i) Vp is nonnegative and convex in the first variable.

(ii) ∆p

(
x, JE∗

q (x∗)
)

= Vp(x, x∗), ∀x ∈ E, x∗ ∈ E∗.

(iii) Vp(x, x∗) + 〈JE∗
q (x∗) − x, y∗〉 ≤ Vp(x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.
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Lemma 2.11. [11] Let E be a real p-uniformly convex and uniformly smooth Banach
space. Suppose that {xn} and {yn} are bounded sequences in E. Then the following
assertions are equivalent:

(i) limn→∞ ∆p(xn, yn) = 0;
(ii) limn→∞ ||xn − yn|| = 0.

Lemma 2.12. [46] Let q ≥ 1 and r> 0 be two fixed real numbers. Then, a Banach
space E is uniformly convex if and only if there exists a continuous, strictly increasing
and convex function g : R+ → R∗, g(0) = 0 such that for all x, y ∈ Br and 0 ≤ α < 1,

‖αx+ (1 − α)y‖q ≤ α‖x‖q + (1 − α)‖y‖q −Wq(α)g(‖x− y‖),

where Wq(α) := αq(1 − α) + α(1 − α)q and Br := {x ∈ E : ‖x‖ ≤ r}.

Lemma 2.13. [38] Let E be a real Banach space and let f : E → R be a Gâteaux
differentiable and totally convex function. If x0 ∈ E and the sequence {∆f (xn, x0)} is
bounded, then the sequence {xn} is also bounded.

Lemma 2.14. [26] Let {an} ⊂ R+, {εn} ⊂ (0, 1) be a sequence such that
∑∞

n=1 εn =
∞ and {bn} ⊂ R. Assume that

an+1 ≤ (1 − εn)an + εnbn, ∀n ≥ 0.

If lim sup
k→∞

bnk ≤ 0 for every subsequence {ank} of {an} satisfying the condition

lim inf
k→∞

(ank+1 − ank) ≥ 0, then lim
k→∞

an = 0.

To solve the EP (1.6), the following assumptions are needed:

Assumption A:

(C1) f is pseudomonotone, that is, for all x, y ∈ C, f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0 and
f(x, x) = 0, for all x ∈ C.

(C2) f satisfies the Bregman–Lipschitz type condition on C, that is, there exists two
positive constants c1 and c2 such that

f(x, y) + f(y, z) ≥ f(x, z) − c1∆p(y, x) − c2∆p(y, z), ∀x, y, z ∈ C,

where p : E → (−∞,+∞] is a Legendre function. The constants c1 and c2 are
called Bregman–Lipschitz coefficients with respect to p.
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(C3) f(x, .) is convex, lower semicontinuous and subdifferentiable on C for all x ∈ C.
(C4) f is jointly weakly continuous on C ×C in the sense that if x, y ∈ C and {xn}

and {yn} converges weakly to x and y, respectively, then f(xn, yn) → f(x, y) as
n→ ∞.

3. Proposed method

In this section, we present our method and discuss some of its features. We begin with
the following assumptions under which our strong convergence result is obtained.

Assumption 3.1. We assume that the following conditions hold:

(1) (a) E1, E2 and E3 are three p-uniformly convex and uniformly smooth real Banach
spaces.

(b) Ci and Qj are nonempty closed and convex subsets of E1 and E2,
respectively, for i = 1, 2, . . . , N and j = 1, 2, . . . ,M.

(c) A : E1 → E3 and B : E2 → E3 are bounded linear operators.
(d) fi : Ci×Ci → R and gj : Qj ×Qj → R are bifunctions satisfying conditions

C1 − C4 of Assumption A.
(e) Ds : E1 → E1 and Gt : E2 → E2 are Bregman quasi-nonexpansive mappings

such that I − Ds and I − Gt are demiclosed at zero for each s = 1, 2, . . . , l and
t = 1, 2, . . . ,m.

(f) Assume that the solution set

Υ := {x̄ ∈
⋂l

s=1 F (Ds) ∩
⋂N

i=1 EP(Ci, fi), ȳ ∈
⋂m

t=1 F (Gt) ∩
⋂M

j=1 EP(Qj , gj) :
Ax̄ = Bȳ} 6= 0.

(2) {βn}∞n=1, {αn,s}ls=0, {ηn,t}mt=0 are positive sequences satisfying the following
conditions:

(a){βn} ⊂ (0, 1), lim
n→∞

βn = 0,
∑∞

n=1 βn = ∞, τ0 > 0, λ0 > 0, κ ∈ (0, 1), ε ∈
(0, 1).

(b) {αn,s} ⊂ (0, 1),
∑l

s=0 αn,s = 1 and lim inf
n→∞

αn,0αn,s > 0.

(c) {ηn,t} ⊂ (0, 1),
∑m

t=0 ηn,t = 1 and lim inf
n→∞

ηn,0ηn,t > 0.

We now present the proposed method of this paper.

Algorithm 3.2. For fixed µ ∈ E1 and ϑ ∈ E2, choose an initial guess (x0, y0) ∈
E1 × E2. Suppose that the nth iterate (xn, yn) ⊂ E1 × E2 has been constructed; then we
compute the (n+ 1)th iterate (xn+1, yn+1) via the iteration
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sn = Jq
E∗
1

(
Jp
E1

(xn) − ρnA
∗Jp

E3
(Axn −Byn)

)
,

ain = arg min
{
fi(sn, σ) + 1

τn
∆p(σ, sn) : σ ∈ Ci

}
,

zin = arg min
{
fi(a

i
n, σ) + 1

τn
∆p(σ, sn) : σ ∈ Ci

}
.

Obtain the farthest element of zin from sn, i.e.,

in ∈ arg max{∆p(sn, z
i
n) : i = 1, . . . , N}.

Set zinn = z̄n

un = J
E∗
1

q

(
αn,0J

p
E1

(z̄n) +
∑l

s=1 αn,sJ
p
E1

(Dsz̄n)
)

xn+1 = Jq
E∗
1

(
βnJ

p
E1

(µ) + (1 − βn)Jp
E1

(un)
)
,

tn = Jq
E∗
2

(
Jp
E2

(yn) + ρnB
∗Jp

E3
(Axn −Byn)

)
,

bjn = arg min
{
gj(tn, ϕ) + 1

λn
∆p(ϕ, tn) : ϕ ∈ Qj

}
,

hjn = arg min
{
gj(b

j
n, ϕ) + 1

λn
∆p(ϕ, tn) : ϕ ∈ Qj

}
.

Obtain the farthest element of hjn from tn, i.e.,

jn ∈ arg max
{

∆p(tn, h
j
n) : j = 1, . . . ,M

}
.

Set hjnn = θ̄n

vn = Jq
E∗
1

(
ηn,0J

p
E2

(θ̄n) +
∑m

t=1 ηn,tJ
p
E2

(Gtθ̄n)
)

yn+1 = Jq
E∗
2

(
βnJ

p
E2

(ϑ) + (1 − βn)J
E2
p (vn)

)
,

(3.1)

where

ρn ∈

ζ,( q‖Axn −Byn‖p

Cq‖A∗Jp
E3

(Axn −Byn)‖q +Qq‖B∗Jp
E3

(Axn −Byn)‖q
− ζ

) 1
q−1

 , n ∈ Ω

(3.2)

for small enough ζ; Cq and Qq are constants of smoothness of E1 and E2, respectively.
Otherwise, ρn = ρ (ρ being any nonnegative value), where the set of indexes Ω = {n :
Axn −Byn 6= 0}.

τn+1 =


min

{
τn, min

1≤i≤N

{
κ(∆p(a

i
n,sn)+∆p(z

i
n,ain))

fi(sn,zin)−fi(sn,ain)−fi(a
i
n,zin)

}}
, if fi(sn, z

i
n) − fi(sn, a

i
n)

−fi(ain, zin) > 0,

τn, otherwise.

(3.3)
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and

λn+1 =


min

{
λn, min

1≤j≤M

{
ε(∆p(b

j
n,tn)+∆p(h

j
n,b

j
n))

gj(tn,h
j
n)−gj(tn,b

j
n)−gj(b

j
n,h

j
n)

}}
, if gj(tn, h

j
n) − gj(tn, b

j
n)

−gj(bjn, hjn) > 0,

λn, otherwise.

(3.4)

Remark 3.3.

(a) Algorithm 3.2 solves split equality EP consisting of two strongly convex opti-
mization problems in parallel for i = 1, 2, . . . , N , as well as another two strongly
convex optimization problems in parallel for j = 1, 2, . . . ,M under bounded linear
operators.

(b) The step size {ρn} given by Equation (3.2) is generated at each iteration by some
simple computations. Thus, {ρn} is easily implemented without the prior knowl-
edge of the operator norms ‖A‖ and ‖B‖. Similarly, the step size {τn} given by
Equation (3.3) and step size {λn} given by Equation (3.4) do not depend on the
prior estimates of the Lipschitz-like constants of the pseudomonotone bifunctions
fi, i = 1, 2, . . . , N , and gj , j = 1, 2, . . . ,M , unlike the step sizes used in [14, 22],
which require finding the prior estimates of the Lipschitz-like constants of the
pseudomonotone bifunctions, which is known to be computationally expensive.

(c) Moreover, our result in this paper extends the results in [22, 25] from the framework
of Hilbert spaces to Banach spaces.

4. Convergence analysis

Lemma 4.1. The sequences {τn} and {λn} of step sizes generated by Algorithm 3.2 are
well defined and bounded.

Proof. Clearly, from Equations (3.3) and (3.4), we have τn+1 ≤ τn ∀n ∈ N and
λn+1 ≤ λn ∀n ∈ N. This implies that {τn} and {λn} are monotonically decreasing
sequences. Moreover, it follows from condition C 2 of Assumption A that

fi(sn, z
i
n) − fi(sn, a

i
n) − fi(a

i
n, z

i
n) ≤ k1,i∆p(ain, sn) + k2,i∆p(zin, a

i
n), ∀i = 1, 2, . . . , N.

Hence, we obtain for all i = 1, 2, . . . , N

κ
(
∆p(ain, sn) + ∆p(zin, a

i
n)
)

fi(sn, zin) − fi(sn, ain) − fi(ain, z
i
n)

≥
κ
(
∆p(ain, sn) + ∆p(zin, a

i
n)
)

k1,i∆p(ain, sn) + k2,i∆p(zin, a
i
n)

≥
κ
(
∆p(ain, sn) + ∆p(zin, a

i
n)
)

max{k1,i, k2,i}(∆p(ain, sn) + ∆p(zin, a
i
n))

≥ κ

max{k1,i, k2,i}
.
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Similarly, we obtain

ε
(
∆p(bjn, tn) + ∆p(hjn, b

j
n)
)

gj(tn, h
j
n) − gj(tn, b

j
n) − gj(b

j
n, h

j
n)

≥ ε

max{c1,j , c2,j}
, ∀j = 1, 2, . . . ,M.

Hence, we conclude that {τn} has lower bound min

{
τ0,

κ
max

1≤i≤N
{k1,i,k2,i}

}
> 0 and {λn}

has lower bound

min

{
λ0,

ε
max

1≤j≤M
{c1,j ,c2,j}

}
> 0. It then follows that lim

n→∞
τn = τ > 0 and lim

n→∞
λn =

λ > 0. �

Lemma 4.2. Let Ci, i = 1, 2, . . . , N and Qj , j = 1, 2, . . . ,M be nonempty, closed and
convex subsets of E1 and E2, respectively. Suppose that fi : Ci ×Ci → R, i = 1, 2, . . . , N
and gj : Qj × Qj → R, j = 1, 2, . . . ,M are bifunctions satisfying conditions C1 − C4.
Then, for all (x̄, ȳ) ∈ Υ, we have

∆p(x̄, zin) ≤ ∆p(x̄, sn) −
(

1 − κ
τn
τn+1

)(
∆p(ain, sn) + ∆p(zin, a

i
n)
)
, ∀i = 1, 2, . . . , N

(4.1)

and

∆p(ȳ, hjn) ≤ ∆p(ȳ, tn) −
(

1 − ε
λn
λn+1

)(
∆p(bjn, tn) + ∆p(hjn, b

j
n)
)
, ∀j = 1, 2, . . . ,M.

(4.2)

Proof. Since zin = arg min
{
fi(a

i
n, σ) + 1

τn
∆p(σ, sn) : σ ∈ Ci

}
, then from Lemma 2.6,

we get

0 ∈ ∂2(τnfi(a
i
n, z

i
n) + ∆p(zin, sn)) +NCi

(zin).

Then, there exists ξ ∈ ∂2fi(a
i
n, z

i
n), ξ̄ ∈ NCi

(zin), such that

τnξ + Jp
E1

(zin) − Jp
E1

(sn) + ξ̄ = 0. (4.3)

Also, by the definition of ∂2fi(a
i
n, z

i
n), we obtain

fi(a
i
n, σ) − fi(a

i
n, z

i
n) ≥ 〈σ − zin, ξ〉, ∀σ ∈ Ci.

If we replace σ with x̄ in the inequality above, we have

fi(a
i
n, x̄) − fi(a

i
n, z

i
n) ≥ 〈x̄− zin, ξ〉, ∀x̄ ∈ Υ. (4.4)
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Using the definition of NCi
(zin) together with Equation (4.3), we have

〈σ − zin, J
p
E1

(zin) − Jp
E1

(sn)〉 ≥ τn〈zin − σ, ξ〉, ∀σ ∈ Ci. (4.5)

Again, if we let σ = x̄ in Equation (4.5), we get

〈x̄− zin, J
p
E1

(zin) − Jp
E1

(sn)〉 ≥ τn〈zin − x̄, ξ〉, ∀x̄ ∈ Υ. (4.6)

The combination of Equations (4.4) and (4.6) gives

〈x̄− zin, J
p
E1

(zin) − Jp
E1

(sn)〉 ≥ τn〈fi(ain, zin) − fi(a
i
n, x̄)〉 (4.7)

≥ τnfi(a
i
n, z

i
n),

because fi(x̄, a
i
n) ≥ 0 and fi is pseudomonotone on Ci, ∀i = 1, 2, . . . , N. Similarly, since

ain = arg min{fi(sn, σ) + 1
τn

∆p(σ, sn) : σ ∈ Ci}, we obtain

〈ain − zin, J
p
E1

(ain) − Jp
E1

(sn)〉 ≥ τn
[
fi(sn, z

i
n) − fi(sn, a

i
n)
]
. (4.8)

Using Equations (4.7) and (4.8) together, we get

〈x̄− zin, J
p
E1

(zin) − Jp
E1

(sn)〉 + 〈ain − zin, J
p
E1

(ain) − Jp
E1

(sn)〉

≥ τn
[
fi(sn, z

i
n) − fi(sn, a

i
n) + fi(a

i
n, z

i
n)
]
.

Applying Bregman three-point identity Equation (2.1), we obtain

∆p(x̄, zin) ≤ ∆p(x̄, sn) − ∆p(ain, sn) − ∆p(zin, a
i
n) + τn{fi(sn, zin) − fi(sn, a

i
n) − f(ain, z

i
n)}.

Furthermore, by the definition of τn, we obtain

∆p(x̄, zin) ≤ ∆p(x̄, sn) − ∆p(ain, sn) − ∆p(zin, a
i
n)

+
τn
τn+1

τn+1{fi(sn, zin) − fi(sn, a
i
n) − fi(a

i
n, z

i
n)}

≤ ∆p(x̄, sn) − ∆p(ain, sn) − ∆p(zin, a
i
n) +

τn
τn+1

κ
(
∆p(ain, sn) + ∆p(zin, a

i
n)
)

= ∆p(x̄, sn) −
(

1 − τn
τn+1

κ

)(
∆p(ain, sn) + ∆p(zin, a

i
n)
)
. (4.9)

Following similar procedure, we obtain

∆p(ȳ, hjn) ≤ ∆p(ȳ, tn) −
(

1 − ε
λn
λn+1

)(
∆p(bjn, tn) + ∆p(hjn, b

j
n)
)
. (4.10)

�
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Observe that since lim
n→∞

(
1 − τn

τn+1
κ
)

= 1 − κ > 0, then there exists K ∈ N such that

(
1 − τn

τn+1
κ

)
> 0, ∀n ≥ K.

Hence, from Equation (4.9), we get

∆p(x̄, zin) ≤ ∆p(x̄, sn), ∀i = 1, 2 . . . , N, n ≥ K. (4.11)

Similarly, from Equation (4.10), we obtain

∆p(ȳ, hjn) ≤ ∆p(ȳ, tn), ∀n ≥ L ∈ N. (4.12)

Lemma 4.3. Suppose {xn} and {yn} are iterative sequences generated by
Algorithm 3.2 under Assumption 3.1. Then, the sequences {xn} and {yn} are bounded.

Proof. Let (x̄, ȳ) ∈ Υ. Since Ds is Bregman quasi-nonexpansive for each s = 1, 2, . . . , l,
we obtain from Equation (3.1) that

∆p(x̄, un) = ∆p

(
x̄, J

E∗
1

q

(
αn,0J

p
E1

(z̄n) +
l∑

s=1

αn,sJ
p
E1

(Dsz̄n)

))

≤ αn,0∆p(x̄, z̄n) +
l∑

s=1

αn,s∆p(x̄,Dsz̄n)

≤ αn,0∆p(x̄, z̄n) +
l∑

s=1

αn,s∆p(x̄, z̄n)

= ∆p(x̄, z̄n). (4.13)

Similarly, we obtain

∆p(ȳ, vn) ≤ ∆p(ȳ, θ̄n). (4.14)

Furthermore, from Equation (3.1), Lemma 2.7 and Lemma 2.10, we obtain
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∆p(x̄, sn) = ∆p

(
x̄, Jq

E∗
1

(
Jp
E1

(xn) − ρnA
∗Jp

E3
(Axn −Byn)

))
= Vp

(
x̄, Jp

E1
(xn) − ρnA

∗Jp
E3

(Axn −Byn)
)

=
1

p
‖x̄‖p − 〈x̄, Jp

E1
(xn)〉 + ρn〈x̄, A∗Jp

E3
(Axn −Byn)〉

+
1

q
‖Jp

E1
(xn) − ρnA

∗Jp
E3

(Axn −Byn)‖q

≤ 1

p
‖x̄‖p − 〈x̄, Jp

E1
(xn)〉 + ρn〈Ax̄, Jp

E3
(Axn −Byn)〉

+
1

q
‖Jp

E1
(xn)‖q − ρn〈Jp

E3
(Axn −Byn), Axn〉 +

Cq

q
ρqn‖A∗Jp

E3
(Axn −Byn)‖q

=
1

p
‖x̄‖p − 〈x̄, Jp

E1
(xn)〉 +

1

q
‖Jp

E1
(xn)‖q − ρn〈Jp

E3
(Axn −Byn), Axn −Ax̄〉

+
Cq

q
ρqn‖A∗J

E3
p (Axn −Byn)‖q

= ∆p(x̄, xn) − ρn〈Jp
E3

(Axn −Byn), Axn −Ax̄〉

+
Cq

q
ρqn‖A∗J

E3
p (Axn −Byn)‖q. (4.15)

Similarly, we have

∆p(ȳ, tn) ≤ ∆p(ȳ, yn) − ρn〈Jp
E3

(Axn −Byn), Bȳ −Byn〉 +
Qq

q
ρqn‖B∗Jp

E3
(Axn −Byn)‖q.

(4.16)

Combining Equations (4.15) and (4.16) and noting that Ax̄ = Bȳ, we have

∆p(x̄, sn) + ∆p(ȳ, tn) ≤ ∆p(x̄, xn) + ∆p(ȳ, yn) − ρn

[
‖Axn −Byn‖p −

ρq−1
n

q

×
(
Cq‖A∗Jp

E3
(Axn −Byn)‖q +Qq‖B∗Jp

E3
(Axn −Byn)‖q

)]
. (4.17)

Hence,

∆p(x̄, sn) + ∆p(ȳ, tn) ≤ ∆p(x̄, xn) + ∆p(ȳ, yn). (4.18)

Also, from Equation (3.1) and applying Equation (4.11), we obtain

∆p(x̄, xn+1) = ∆p

(
x̄, Jq

E∗
1

(
βnJ

p
E1

(µ) + (1 − βn)Jp
E1

(un)
))

≤ βn∆p(x̄, µ) + (1 − βn)∆p(x̄, un)

≤ βn∆p(x̄, µ) + (1 − βn)∆p(x̄, z̄n)

≤ βn∆p(x̄, µ) + (1 − βn)∆p(x̄, sn). (4.19)
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In like manner, we have

∆p(ȳ, yn+1) ≤ βn∆p(ȳ, ϑ) + (1 − βn)∆p(ȳ, tn). (4.20)

It follows from Equations (4.18), (4.19) and (4.20) that

∆p(x̄, xn+1) + ∆p(ȳ, yn+1) ≤ βn (∆p(x̄, µ) + ∆p(ȳ, ϑ)) + (1 − βn) (∆p(x̄, sn) + ∆p(ȳ, tn))

≤ βn (∆p(x̄, µ) + ∆p(ȳ, ϑ)) + (1 − βn) (∆p(x̄, xn) + ∆p(ȳ, yn))

≤ max{∆p(x̄, µ) + ∆p(ȳ, ϑ),∆p(x̄, xn) + ∆p(ȳ, yn)}
...

≤ max{∆p(x̄, µ) + ∆p(ȳ, ϑ),∆p(x̄, xN̄ ) + ∆p(ȳ, yN̄ )},
N̄ = max{K,L}. (4.21)

Therefore, {∆p(x̄, xn) + ∆p(ȳ, yn)} is bounded, and consequently {∆p(x̄, xn)} and
{∆p(ȳ, yn)} are bounded. Hence, by Lemma 2.13, the sequences {xn} and {yn} are
bounded. Therefore, {sn}, {ain}, {zin}, {un}, {tn}, {bjn}, {hjn} and {vn} are all
bounded. �

Lemma 4.4. Assume that r = sup{‖Jp
E1

(z̄n)‖, ‖Jp
E1

(Dsz̄n)‖} and let (x̄, ȳ) ∈ Υ.

Then, the following inequality holds:

∆p(x̄, xn+1) + ∆p(ȳ, yn+1) ≤ βn [∆p(x̄, µ) + ∆p(ȳ, ϑ)] + (1 − βn)[∆p(x̄, xn) + ∆p(ȳ, yn)]

− (1 − βn)

(
Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
+
Wq(ηn,t)

q
g
(
‖Jp

E2
(θ̄n) − Jp

E2
(Gtθ̄n)‖

))
, (4.22)

where Wq(αn,s) = (αn,0)q
∑l

s=1 αn,s + αn,0(
∑l

s=1 αn,s)
q and Wq(ηn,t) =

(ηn,0)q
∑m

t=1 ηn,t + ηn,0(
∑m

t=1 ηn,t)
q.
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Proof. Let (x̄, ȳ) ∈ Υ. Then, from Equation (3.1), Lemma 2.10 and Lemma 2.12, we
obtain

∆p(x̄, un) = ∆p

(
x̄, Jq

E∗
1

(
αn,0J

p
E1

(z̄n) +
l∑

s=1

αn,sJ
p
E1

(Dsz̄n)

))

= Vp

(
x̄, αn,0J

p
E1

(z̄n) +
l∑

s=1

αn,sJ
p
E1

(Dsz̄n)

)

=
1

p
‖x̄‖p − αn,0〈x̄, Jp

E1
(z̄n)〉 −

l∑
s=1

αn,s〈x̄, Jp
E1

(Dsz̄n)〉

+
1

q
‖αn,0J

p
E1

(z̄n) +
l∑

s=1

αn,sJ
p
E1

(Dsz̄n)‖q

≤ 1

p
‖x̄‖p − αn,0〈x̄, Jp

E1
(z̄n)〉 −

l∑
s=1

αn,s〈x̄, Jp
E1

(Dsz̄n)〉

+
1

q
αn,0‖Jp

E1
(z̄n)‖p +

1

q

l∑
s=1

αn,s‖Jp
E1

(Dsz̄n)‖P

− Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
=

1

p
αn,0‖x̄‖p +

l∑
s=1

αn,s
1

p
‖x̄‖p − αn,0〈x̄, Jp

E1
(z̄n)〉 −

l∑
s=1

αn,s〈x̄, Jp
E1

(Dsz̄n)〉

+
1

q
αn,0‖Jp

E1
(z̄n)‖p +

1

q

l∑
s=1

αn,s‖Jp
E1

(Dsz̄n)‖P

− Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
= αn,0

{
1

p
‖x̄‖p − 〈x̄, Jp

E1
(z̄n)〉 +

1

q
‖Jp

E1
(z̄n)‖p

}
+

l∑
s=1

αn,s

{
1

p
‖x̄‖p − 〈x̄, Jp

E1
(Dsz̄n)〉 +

1

q
‖Jp

E1
(Dsz̄n)‖p

}
− Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
= αn,0∆p(x̄, z̄n) +

l∑
s=1

αn,s∆p(x̄,Dsz̄n)

− Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
.
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By the Bregman quasi-nonexpansivity of Ds for s = 1, 2, . . . , l, we get

∆p(x̄, un) ≤ αn,0∆p(x̄, z̄n) +
l∑

s=1

αn,s∆p(x̄, z̄n) − Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
= ∆p(x̄, z̄n) − Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
. (4.23)

By the definition of xn+1 and applying Equations (4.11) and (4.13) from Equation (4.23),
we obtain

∆p(x̄, xn+1) = ∆p

(
x̄, Jq

E∗
1

(
βnJ

p
E1

(µ) + (1 − βn)Jp
E1

(un)
))

≤ βn∆p(x̄, µ) + (1 − βn)∆p(x̄, un) ≤ βn∆p(x̄, µ) + (1 − βn)

×
(

∆p(x̄, z̄n) − Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

))
≤ βn∆p(x̄, µ) + (1 − βn)∆p(x̄, sn) − (1 − βn)

Wq(αn,s)

q
g

×
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
. (4.24)

Following similar argument, we have

∆p(ȳ, yn+1) ≤ βn∆p(ȳ, ϑ) + (1 − βn)∆p(ȳ, tn) − (1 − βn)
Wq(ηn,t)

q
g

×
(
‖Jp

E2
(θ̄n) − Jp

E2
(Gtθ̄n)‖

)
. (4.25)

By adding Equations (4.24) and (4.25) and applying Equation (4.18), we get

∆p(x̄, xn+1) + ∆p(ȳ, yn+1) ≤ βn [∆p(x̄, µ) + ∆p(ȳ, ϑ)] + (1 − βn)[∆p(x̄, sn) + ∆p(ȳ, tn)]

− (1 − βn)

(
Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
+
Wq(ηn,t)

q
g
(
‖Jp

E2
(θ̄n) − Jp

E2
(Gtθ̄n)‖

))
≤ βn [∆p(x̄, µ) + ∆p(ȳ, ϑ)] + (1 − βn)[∆p(x̄, xn) + ∆p(ȳ, yn)]

− (1 − βn)

(
Wq(αn,s)

q
g
(
‖Jp

E1
(z̄n) − Jp

E1
(Dsz̄n)‖

)
+
Wq(ηn,t)

q
g
(
‖Jp

E2
(θ̄n) − Jp

E2
(Gtθ̄n)‖

))
,

which is the required inequality. �

We now present the main theorem for our proposed algorithm as follows.
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Theorem 4.5 Suppose {(xn, yn)} is a sequence generated by Algorithm 3.2 under
Assumption 3.1. Then {(xn, yn)} converges strongly to (x̄, ȳ) ∈ Υ, where x̄ = ΠΥ(µ) and
ȳ = ΠΥ(ϑ).

Proof. Let (x̄, ȳ) = (ΠΥ(µ),ΠΥ(ϑ)). It follows from Algorithm 3.2 and by applying
Lemma 2.10 (iii) that

∆p(x̄, xn+1) = ∆p

(
x̄, Jq

E∗
1

(
βnJ

p
E1

(µ) + (1 − βn)Jp
E1

(un)
))

= Vp

(
x̄, βnJ

p
E1

(µ) + (1 − βn)Jp
E1

(un)
)

≤ Vp

(
x̄, βnJ

p
E1

(µ) + (1 − βn)Jp
E1

(un) − βn

(
Jp
E1

(µ) − Jp
E1

(x̄)
))

+ βn〈Jp
E1

(µ) − Jp
E1

(x̄), xn+1 − x̄〉

= Vp

(
x̄, βnJ

p
E1

(x̄) + (1 − βn)Jp
E1

(un)
)

+ βn〈Jp
E1

(µ) − Jp
E1

(x̄), xn+1 − x̄〉

≤ βn∆p(x̄, x̄) + (1 − βn)∆p(x̄, un) + βn〈Jp
E1

(µ) − Jp
E1

(x̄), xn+1 − x̄〉

≤ (1 − βn)∆p(x̄, sn) + βn〈Jp
E1

(µ) − Jp
E1

(x̄), xn+1 − x̄〉. (4.26)

In the same vein, we have

∆p(ȳ, yn+1) ≤ (1 − βn)∆p(ȳ, tn) + βn〈Jp
E2

(ϑ) − Jp
E2

(ȳ), yn+1 − ȳ〉. (4.27)

Hence, by adding Equations (4.26) and (4.27) and applying Equation (4.18), we get

∆p(x̄, xn+1) + ∆p(ȳ, yn+1) ≤ (1 − βn)[∆p(x̄, sn) + ∆p(ȳ, tn)]

+ βn

(
〈Jp

E1
(µ) − Jp

E1
(x̄), xn+1 − x̄〉 + 〈Jp

E2
(ϑ) − Jp

E2
(ȳ), yn+1 − ȳ〉

)
≤ (1 − βn)[∆p(x̄, xn) + ∆p(ȳ, yn)]

+ βn

(
〈Jp

E1
(µ) − Jp

E1
(x̄), xn+1 − x̄〉 + 〈Jp

E2
(ϑ) − Jp

E2
(ȳ), yn+1 − ȳ〉

)
= (1 − βn)[∆p(x̄, xn) + ∆p(ȳ, yn)] + βnχn, ∀n ≥ 1, (4.28)

where χn :=
(
〈Jp

E1
(µ) − Jp

E1
(x̄), xn+1 − x̄〉 + 〈Jp

E2
(ϑ) − Jp

E2
(ȳ), yn+1 − ȳ〉

)
.

In order to show that {(xn, yn)} converges strongly to (x̄, ȳ) by Lemma 2.14, we only need
to show that lim supk→∞ χnk

≤ 0 for every subsequence {∆p(xnk , x̄)} of {∆p(xn, x̄)} and
{∆p(ynk , ȳ)} of {∆p(yn, ȳ)} satisfy the inequality

lim inf
k→∞

([
∆p(x̄, xnk+1) + ∆p(ȳ, ynk+1)

]
−
[
∆p(x̄, xnk) + ∆p(ȳ, ynk)

])
≥ 0. (4.29)
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Now, from Algorithm 3.2 and Lemma 4.2, we obtain

∆p(x̄, xn+1) = ∆p

(
x̄, Jq

E∗
1
(βnJ

p
E1

(µ) + (1 − βn)Jp
E1

(un))
)

≤ βn∆p(µ, x̄) + (1 − βn)∆p(x̄, un)

≤ βn∆p(µ, x̄) + (1 − βn)∆p(x̄, z̄n)

≤ βn∆p(µ, x̄) + (1 − βn)∆p(x̄, sn) − (1 − βn)

×
(

1 − τn
τn+1

κ

)(
∆p(ainn , sn) + ∆p(zinn , ainn )

)
. (4.30)

In the same vein, we obtain

∆p(ȳ, yn+1) ≤ βn∆p(ϑ, ȳ) + (1 − βn)∆p(ȳ, tn) − (1 − βn)

×
(

1 − λn
λn+1

η

)(
∆p(bjnn , tn) + ∆p(hjnn , bjnn )

)
. (4.31)

Adding Equations (4.30) and (4.31) together, we obtain

∆p(x̄, xn+1) + ∆p(ȳ, yn+1) ≤ βn[∆p(µ, x̄) + ∆p(ϑ, ȳ)] + (1 − βn)[∆p(x̄, sn) + ∆p(ȳ, tn)]

− (1 − βn)

(
1 − τn

τn+1
κ

)(
∆p(ainn , sn) + ∆p(zinn , ainn )

)
− (1 − βn)

(
1 − λn

λn+1
η

)(
∆p(bjnn , tn) + ∆p(hjnn , bjnn )

)
. (4.32)

Applying Equation (4.17) in Equation (4.32), we obtain

∆p(x̄, xn+1) + ∆p(ȳ, yn+1) ≤ βn [∆p(µ, x̄) + ∆p(ϑ, ȳ)] + (1 − βn) [∆p(x̄, xn) + ∆p(ȳ, yn)]

− (1 − βn)ρn

[
‖Axn −Byn‖p −

ρq−1
n

q

(
Cq‖A∗Jp

E3
(Axn −Byn)‖q

+Qq‖B∗Jp
E3

(Axn −Byn)‖q
)]

− (1 − βn)

(
1 − τn

τn+1
κ

)(
∆p(ainn , sn) + ∆p(zinn , ainn )

)
− (1 − βn)

(
1 − λn

λn+1
η

)(
∆p(bjnn , tn) + ∆p(hjnn , bjnn )

)
. (4.33)
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By Equation (4.29), Assumption 3.1(2)(a) and (4.33), we obtain

lim sup
k→∞

(
(1 − βnk)ρnk

[
‖Axnk −Bynk‖

p −
ρq−1
nk

q

(
Cq‖A∗J

E3
p (Axnk −Bynk)‖q

+Qq‖B∗J
E3
p (Axnk −Bynk)‖q

)])
≤ lim sup

k→∞

(
βnk [∆p(µ, x̄) + ∆p(ϑ, ȳ)] + (1 − βnk)

[
∆p(x̄, xnk) + ∆p(ȳ, ynk)

]
−
[
∆p(x̄, xnk+1) + ∆p(ȳ, ynk+1)

])
= − lim inf

k→∞

([
∆p(x̄, xnk+1) + ∆p(ȳ, ynk+1)

]
−
[
∆p(x̄, xnk) + ∆p(ȳ, ynk)

])
≤ 0. (4.34)

In the same vein as in Equation (4.34), we get using Equation (4.29),
Assumption 3.1(2)(a) and Equation (4.33) that

lim sup
k→∞

(
(1 − βnk)

(
1 −

τnk
τnk+1

κ

)(
∆p(a

ink
nk

, snk) + ∆p(z
ink
nk

, a
ink
nk

)
)

+

(
1 −

λnk
λnk+1

η

)(
∆p(b

jnk
nk

, tnk) + ∆p(h
jnk
nk

, b
jnk
nk

)
))

≤ lim sup
k→∞

(
βnk [∆p(µ, x̄) + ∆p(ϑ, ȳ)] + (1 − βnk)

[
∆p(x̄, xnk) + ∆p(ȳ, ynk)

]
−
[
∆p(x̄, xnk+1) + ∆p(ȳ, ynk+1)

])
= − lim inf

k→∞

([
∆p(x̄, xnk+1) + ∆p(ȳ, ynk+1)

]
−
[
∆p(x̄, xnk) + ∆p(ȳ, ynk)

])
≤ 0. (4.35)

Now, suppose we let %nk = Cq‖A∗Jp
E3

(Axnk − Bynk)‖q + Qq‖B∗Jp
E3

(Axnk − Bynk)‖q.
Using the condition we placed on our step size ρnk , we have that

ρq−1
nk

<
q‖Axnk −Bynk‖

p

%nk
− ζ,

it follows that

ρq−1
nk

%nk < q‖Axnk −Bynk‖
p − ζ%nk , (4.36)

Hence, by Equations (4.34) and (4.36), we have
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ζ%nk
q

<

(
‖Axnk −Bynk‖

p −
ρq−1
nk

q
%nk

)
→ 0, as k → ∞.

Thus, Cq‖A∗Jp
E3

(Axnk −Bynk)‖q +Qq‖B∗Jp
E3

(Axnk −Bynk)‖q → 0 as k → ∞,

which implies that

lim
k→∞

‖A∗Jp
E3

(Axnk −Bynk)‖q = 0 (4.37)

and

lim
k→∞

‖B∗Jp
E3

(Axnk −Bynk)‖q = 0. (4.38)

Additionally, we obtain from Equation (4.34) that

lim sup
k→∞

(
(1 − βnk)ρnk

[
‖Axnk −Bynk‖

p
])

≤ lim sup
k→∞

(
βnk [∆p(µ, x̄) + ∆p(ϑ, ȳ)] + (1 − βnk)

[
∆p(x̄, xnk) + ∆p(ȳ, ynk)

]
−
[
∆p(x̄, xnk+1) + ∆p(ȳ, ynk+1)

])
+ lim sup

k→∞
(1 − βnk)

ρqnk
q
%nk

= − lim inf
k→∞

([
∆p(x̄, xnk+1) + ∆p(ȳ, ynk+1)

]
−
[
∆p(x̄, xnk) + ∆p(ȳ, ynk)

])
≤ 0. (4.39)

Thus, we conclude from Equations (4.34), (4.35) and (4.39) that

lim
k→∞

‖Axnk −Bynk‖ = 0, (4.40)



limk→∞ ∆p(a
ink
nk

, snk) = 0,

limk→∞ ∆p(z
ink
nk

, a
ink
nk

) = 0,

limk→∞ ∆p(b
jnk
nk

, tnk) = 0,

limk→∞ ∆p(h
jnk
nk

, b
jnk
nk

) = 0.

(4.41)
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Therefore, by Lemma 2.11, we obtain

limk→∞ ‖a
ink
nk

− snk‖ = 0,

limk→∞ ‖z
ink
nk

− a
ink
nk

‖ = 0,

limk→∞ ‖b
jnk
nk

− tnk‖ = 0,

limk→∞ ‖h
jnk
nk

− b
jnk
nk

‖ = 0.

(4.42)

Observe that by Equation (4.42) and Lemma 2.11, we have

lim
k→∞

‖snk − z
ink
nk

‖ = 0, lim
k→∞

∆p(snk , z
ink
nk

) = 0. (4.43)

In like manner, we have

lim
k→∞

‖tnk − h
jnk
nk

‖ = 0, lim
k→∞

∆p(tnk , h
jnk
nk

) = 0. (4.44)

By the definitions of in and jn, it follows that

lim
k→∞

∆p(snk , z
i
nk

) = 0, i = 1, 2, . . . , N and lim
k→∞

∆p(tnk , h
j
nk

) = 0, j = 1, 2, . . . ,M.

(4.45)

Consequently, we have

lim
k→∞

‖snk − zink‖ = 0, i = 1, 2, . . . , N and lim
k→∞

‖tnk , h
j
nk

‖ = 0, j = 1, 2, . . . ,M.

(4.46)

From Equation (4.1) and by applying the three-point identity (2.1) and (4.46), we have

(
1 − κ

τnk
τnk+1

)
∆p(aink , snk) ≤ ∆p(x̄, sn) − ∆p(x̄, zink)

≤ ∆p(x̄, snk) − ∆p(x̄, zink) + ∆p(snk , z
i
nk

)

= 〈x̄− snk , J
p
E1

(zink) − Jp
E1

(snk)〉 → 0, k → ∞.

Hence, we have
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∆p(aink , snk) → 0, k → ∞, i = 1, 2, . . . , N.

Consequently, we obtain

‖aink − snk‖ → 0, k → ∞, i = 1, 2, . . . , N. (4.47)

Following similar procedure, we have

‖bjnk − tnk‖ → 0, k → ∞, j = 1, 2, . . . ,M. (4.48)

Furthermore, using Equations (4.22) and (4.29), we have

lim sup
k→∞

(1 − βnk)

(
Wq(αnk,s

)

q
g
(
‖Jp

E1
(z̄nk) − Jp

E1
(Dsz̄nk)‖

)
+
Wq(ηnk,t)

q
g
(
‖Jp

E2
(θ̄nk) − Jp

E2
(Gtθ̄nk)‖

))
≤ lim sup

k→∞

(
βnk [∆p(µ, x̄) + ∆p(ϑ, ȳ)] + (1 − βnk)

[
∆p(x̄, xnk) + ∆p(ȳ, ynk)

]
−
[
∆p(x̄, xnk+1) + ∆p(ȳ, ynk+1)

])
= − lim inf

k→∞

([
∆p(x̄, xnk+1) + ∆p(ȳ, ynk+1)

]
−
[
∆p(x̄, xnk) + ∆p(ȳ, ynk)

])
≤ 0. (4.49)

Thus,

lim
k→∞

(
Wq(αnk,s

)

q
g
(
‖Jp

E1
(z̄nk) − Jp

E1
(Dsz̄nk)‖

)
+
Wq(ηnk,t)

q
g
(
‖Jp

E2
(θ̄nk) − Jp

E2
(Gtθ̄nk)‖

))
= 0.

Hence, we have

lim
k→∞

g
(
‖Jp

E1
(z̄nk) − Jp

E1
(Dsz̄nk)‖

)
= 0, s = 1, 2, . . . , l,

lim
k→∞

g
(
‖Jp

E2
(θ̄nk) − Jp

E2
(Gtθ̄nk)‖

)
= 0, t = 1, 2, . . . ,m.

By the property of g, and sine Jq
E∗
1

and Jq
E∗
2

are norm-to-norm uniformly continuous on

bounded subsets of E 1 and E 2, respectively, then we obtain

lim
k→∞

‖Dsz̄nk − z̄nk‖ = 0, ∀s = 1, 2, . . . , l (4.50)
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and

lim
k→∞

‖Gtθ̄nk − θ̄nk‖ = 0, ∀t = 1, 2, . . . ,m. (4.51)

Observe that from Equation (3.1) and by Equation (4.40), we obtain

‖Jp
E1

(snk) − Jp
E1

(xnk)‖ = ‖Jp
E1

(xnk) − ρnkA
∗Jp

E3
(Axnk −Bynk) − Jp

E1
(xnk)‖

= ρnk‖A
∗Jp

E3
(Axnk −Bynk)‖ → 0 as k → ∞. (4.52)

Also, because E 1 is uniformly smooth, Jq
E∗
1

is norm-to-norm uniformly continuous on

bounded subsets of E 1, then we have

lim
k→∞

‖snk − xnk‖ = 0. (4.53)

In the same vein, we get

lim
k→∞

‖tnk − ynk‖ = 0. (4.54)

Moreover, it is easy to see from Equations (4.46) and (4.53)

lim
k→∞

‖zink − xnk‖ ≤ lim
k→∞

‖zink − snk‖ + lim
k→∞

‖snk − xnk‖ = 0, ∀i = 1, 2, . . . , N.

(4.55)

In the same way, we obtain from Equations (4.46) and (4.54) that

‖hjnk − ynk‖ ≤ ‖hjnk − tnk‖ + ‖tnk − ynk‖ → 0 as k → ∞, ∀j = 1, 2, . . . ,M. (4.56)

Moreover, we obtain from Equations (3.1) and (4.50) that

lim
k→∞

‖Jp
E1

(unk) − Jp
E1

(z̄nk)‖ = ‖αnk,0
Jp
E1

(z̄nk) +
l∑

s=1

αnk,s
Jp
E1

(Dsz̄nk) − Jp
E1

(z̄nk)‖

≤ αnk,0
‖Jp

E1
(z̄nk) − J(z̄nk)‖ +

l∑
s=1

αnk,s
‖Jp

E1
(Dsz̄nk) − Jp

E1
(z̄nk)‖,

which implies that

lim
k→∞

‖Jp
E1

(unk) − Jp
E1
z̄nk‖ = 0.

By the uniform continuity of Jq
E∗
1

on bounded subsets of E∗
1 , we have

lim
k→∞

‖unk − z̄nk‖ = 0. (4.57)

Hence, from Equations (4.55) and (4.57), we obtain
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lim
k→∞

‖unk − zink‖ = 0, ∀i = 1, 2, . . . , N. (4.58)

Similarly, we obtain

lim
k→∞

‖vnk − hjnk‖ = 0, ∀j = 1, 2, . . . ,M. (4.59)

It is easy to see from Equations (4.55) and (4.58) that

‖unk − xnk‖ ≤ ‖unk − zink‖ + ‖zink − xnk‖ → 0 as k → ∞. (4.60)

Similarly, we obtain from Equations (4.56) and (4.59) that

‖vnk − ynk‖ ≤ ‖vnk − hjnk‖ + ‖hjnk − ynk‖ → 0 as k → ∞. (4.61)

Furthermore, from Equation (3.1) and the fact that lim
k→∞

βnk = 0, we obtain

lim
k→∞

‖Jp
E1

(xnk+1) − Jp
E1

(unk)‖ = 0.

In the same way, we get

lim
k→∞

‖Jp
E2

(ynk+1) − Jp
E2

(vnk)‖ = 0.

Since Jp
E∗
1

is norm-to-norm uniformly continuous on bounded subsets of E 1, we obtain

lim
k→∞

‖xnk+1 − unk‖ = 0. (4.62)

Similarly, we get

lim
k→∞

‖ynk+1 − vnk‖ = 0. (4.63)

Hence, from Equations (4.60) and (4.62), we obtain

lim
k→∞

‖xnk+1 − xnk‖ = 0. (4.64)

In the same vein, from Equations (4.61) and (4.63), we get

lim
k→∞

‖ynk+1 − ynk‖ = 0. (4.65)

Since {xn} and {yn} are bounded, then wω(xn) and wω(yn) are nonempty. Now, let
(x∗, y∗) ∈ wω(xn, yn) be arbitrary elements. Then, there exists subsequences {xnk} of

https://doi.org/10.1017/S0013091523000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000251


502 E. C. Godwin and others

{xn} and {ynk} of {yn} that converge weakly to x∗ ∈ E1 and y∗ ∈ E2, respectively.

Also, from Equations (4.55) and (4.56), {zink} converges weakly to x∗ ∈ Ci for each

i = 1, 2, . . . , N and {hjnk} converges weakly to y∗ ∈ Qj for each j = 1, 2, . . . ,M. Using

Equations (4.50) and (4.51) and by the demiclosedness of I −Ds and I −Gt, we obtain

x∗ ∈ F (Ds), ∀s = 1, 2, . . . , l and y∗ ∈ F (Gt), ∀t = 1, 2, . . . ,m, (4.66)

which implies that

x∗ ∈
l⋂

s=1

F (Ds) and y∗ ∈
m⋂
t=1

F (Gt). (4.67)

Next, recall that

aink = arg min
σ∈Ci

{fi(snk , σ) +
1

τn
∆p(σ, snk)}.

Using Lemma 2.6 and applying condition (C4), we get

0 ∈ ∂2(τnkfi(snk , a
i
nk

) + ∆p(aink , snk)) +NCi
(aink).

Hence, there exists ςink ∈ ∂2fi(snk , a
i
nk

) and ς̄ink ∈ NCi
(aink) such that

τnk ς
i
nk

+ Jp
E1

(aink) − Jp
E1

(snk) + ς̄ink = 0. (4.68)

Since ς̄ink ∈ NCi
(aink), 〈ω − aink , ς̄

i
nk

〉 ≤ 0 for all ω ∈ Ci, then this together with

Equation (4.68) gives

τnk〈ω − aink , ς
i
nk

〉 ≥ 〈aink − ω, Jp
E1

(aink) − Jp
E1

(snk)〉, ∀ω ∈ Ci. (4.69)

Again, since ςink ∈ ∂2fi(snk , a
i
nk

), we obtain

fi(snk , ω) − fi(snk , a
i
nk

) ≥ 〈w − aink , ς
i
nk

〉 ∀ω ∈ Ci. (4.70)

Combining Equations (4.69) and (4.70), we obtain

τnk

[
fi(snk , ω) − fi(snk , a

i
nk

)
]
≥ 〈aink − ω, Jp

E1
(aink) − Jp

E1
(snk)〉, ∀ω ∈ Ci,

which implies that

τnk

[
fi(snk , a

i
nk

) − fi(snk , ω)
]
≤ 〈Jp

E1
(snk) − Jp

E1
(aink), aink − ω〉

≤ ‖Jp
E1

(snk) − Jp
E1

(aink)‖‖aink − ω‖. (4.71)
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Since Jp
E1

is uniformly continuous, applying Equation (4.47) to Equation (4.71) and using

Equation (4.53) together with the fact that xnk ⇀ x∗, we get

−fi(x∗, ω) ≤ 0, ∀ω ∈ Ci, i = 1, 2, . . . , N,

which implies that

fi(x
∗, ω) ≥ 0, ∀ω ∈ Ci, i = 1, 2, . . . , N.

Hence, we have

x∗ ∈
N⋂
i=1

EP(Ci, fi).

Similarly, we obtain

gj(y
∗, z) ≥ 0, ∀z ∈ Qj , j = 1, 2, . . . ,M,

which implies that

y∗ ∈
M⋂
j=1

EP(Qj , gj).

Next, recall that {xnk} and {ynk} converges to x∗ and y∗, respectively, where A : E1 →
E3 and B : E2 → E3 are bounded linear operators. Then, by Equation (4.40) and the
weakly lower semi-continuity of the norm, we have

‖Ax∗ −By∗‖ ≤ lim inf
k→∞

‖Axnk −Bynk‖ = 0,

which implies that

Ax∗ = By∗

Since (x∗, y∗) ∈ wω(xn, yn) is an arbitrary element, then it follows that

wω(xn, yn) ⊂ Υ.

Next, by the boundedness of {xnk} and {ynk}, there exist subsequences {xnkj } of {xnk}
and {ynkj } of {ynk} such that xnkj

⇀ x̂ ∈ E1 and ynkj
⇀ ŷ ∈ E2 and
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lim
j→∞

(
〈Jp

E1
(µ) − Jp

E1
(x̄), xnkj

− x̄〉 + 〈Jp
E2

(ϑ) − Jp
E2

(ȳ), ynkj
− ȳ〉

)
= lim sup

k→∞

(
〈Jp

E1
(µ) − Jp

E1
(x̄), xnk − x̄〉 + 〈Jp

E2
(ϑ) − Jp

E2
(ȳ), ynk − ȳ〉

)

Since x̄ = ΠΥ(µ) and ȳ = ΠΥ(ϑ), then by Equation (2.5), (4.64) and (4.65), we have

lim sup
k→∞

(
〈Jp

E1
(µ) − Jp

E1
(x̄), xnk+1

− x̄〉 + 〈Jp
E2

(ϑ) − Jp
E2

(ȳ), ynk+1
− ȳ〉

)
= lim sup

k→∞

(
〈Jp

E1
(µ) − Jp

E1
(x̄), xnk − x̄〉 + 〈Jp

E1
(µ) − Jp

E1
(x̄), xnk+1−xnk

〉
)

+ lim sup
k→∞

(
〈Jp

E2
(ϑ) − Jp

E2
(ȳ), ynk − ȳ〉 + 〈Jp

E2
(ϑ) − Jp

E2
(ȳ), ynk+1−ynk

〉
)

= lim
j→∞

(
〈Jp

E1
(u) − Jp

E1
(x̄), xnkj

− x̄〉 + 〈Jp
E2

(ϑ) − Jp
E2

(ȳ), ynkj
− ȳ〉

)
= 〈Jp

E1
(µ) − Jp

E1
(x̄), x̂− x̄〉 + 〈Jp

E2
(ϑ) − Jp

E2
(ȳ), ŷ − ȳ〉

≤ 0. (4.72)

Hence, by Equation (4.72), we have lim sup
k→∞

χnk
≤ 0. Therefore, by applying Lemma 2.14

to Equation (4.28), it follows that {(xn, yn)} converges strongly to (x̄, ȳ) ∈ Υ as
required. �

Some corollaries

The following consequent result can easily be obtained from Theorem 4.5 by setting
l = m = N = M = 1.

Corollary. Let E1, E2 and E3 be three p-uniformly convex Banach space and C,Q be
nonempty, closed and convex subsets of E1 and E2, respectively. Suppose f : C ×C → R
and g : Q×Q→ R be bifunctions satisfying (C1)–(C4) of Assumption A. Let A : E1 →
E3 and B : E2 → E3 be bounded linear operators and let D : E1 → E1 and G : E2 → E2

be Bregman quasi-nonexpansive mappings such that I−D and I−G are demiclosed at
zero and Υ := {x̄ ∈ F (D) ∩ EP(C, f), ȳ ∈ F (G) ∩ EP(Q, g) : Ax̄ = Bȳ} 6= ∅. Suppose
other conditions of Theorem 4.5 hold. For fixed µ ∈ E1 and ϑ ∈ E2 and initial point
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(x0, y0) ∈ E1 × E2, let {(xn, yn)} be a sequence generated as follows:

sn = Jq
E∗
1

(
Jp
E1

(xn) − ρnA
∗Jp

E3
(Axn −Byn)

)
,

yn = arg min{f(sn, σ) + 1
τn

∆p(σ, sn) : σ ∈ C},
zn = arg min{f(yn, σ) + 1

τn
∆p(σ, sn) : σ ∈ C}.

un = J
E∗
1

q

(
αn,0J

p
E1

(zn) + αn,1J
p
E1

(Dzn)
)

xn+1 = Jq
E∗
1

(
βnJ

p
E1

(µ) + (1 − βn)Jp
E1

(un)
)
,

tn = Jq
E∗
2

(
Jp
E2

(yn) + ρnB
∗Jp

E3
(Axn −Byn)

)
,

bn = arg min{g(tn, ϕ) + 1
λn

∆p(ϕ, tn) : ϕ ∈ Q},
hn = arg min{g(bn, ϕ) + 1

λn
∆p(ϕ, tn) : ϕ ∈ Q}.

vn = Jq
E∗
1

(
ηn,0J

p
E2

(hn) + ηn,1J
p
E2

(Ghn)
)

yn+1 = Jq
E∗
2

(
βnJ

p
E2

(ϑ) + (1 − βn)J
E2
p (vn)

)
,

(4.73)

where ρn ∈

ζ,( q‖Axn−Byn‖p

Cq‖A∗Jp
E3

(Axn−Byn)‖q+Qq‖B∗Jp
E3

(Axn−Byn)‖q
− ζ

) 1
q−1

 , n ∈ Ω, for

small enough ζ; Cq and Qq are constants of smoothness of E1 and E2, respectively.
Otherwise, ρn = ρ (ρ being any nonnegative value), where the set of indexes Ω = {n :
Axn −Byn 6= 0}.

τn+1 =


min

{
τn,min

{
κ(∆p(yn,sn)+∆p(zn,yn))

f(sn,zn)−f(sn,yn)−f(yn,zn)

}}
, if f(sn, zn) − f(sn, yn)

−f(yn, zn) > 0,

τn, otherwise.

(4.74)

and

λn+1 =


min

{
λn,min

{
ε(∆p(bn,tn)+∆p(hn,bn))

g(tn,hn)−g(tn,bn)−g(bn,hn)

}}
, if g(tn, hn) − g(tn, bn)

−g(bn, hn) > 0,

λn, otherwise.

(4.75)

Then, the sequence {(xn, yn)} generated by Equation (4.73) converges strongly to (x̄, ȳ) ∈
Υ.

Let Er = Hr, r = 1, 2, 3 be real Hilbert spaces, then we obtain the following consequent
result for approximating a common solution of multiple sets split equality pseudomono-
tone EP and common fixed point problems of quasi-nonexpansive mappings in real Hilbert
spaces.
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Corollary 4.7. Let H1, H2 and H3 be three real Hilbert spaces, and let Ci and Qj be
nonempty closed and convex subsets of H1 and H2, respectively, for i = 1, 2, . . . , N and
j = 1, 2, . . . ,M. Suppose fi : Ci×Ci → R and gj : Qj×Qj → R are bifunctions satisfying
(C1)–(C4) of Assumption A. Let A : H1 → H3 and B : H2 → H3 be bounded linear
operators. Let Ds : H1 → H1 and Gt : H2 → H2 be quasi-nonexpansive mappings such
that Υ := {x̄ ∈

⋂l
s=1 F (Ds)∩

⋂N
i=1 EP(Ci, fi), ȳ ∈

⋂m
t=1 F (Gt)∩

⋂M
j=1 EP(Qj , gj) : Ax̄ =

Bȳ} 6= ∅. Suppose other conditions of Theorem 4.5 hold. For fixed µ ∈ H1 and ϑ ∈ H2

and initial point (x0, y0) ∈ H1 ×H2, let {(xn, yn)} be a sequence generated as follows:



sn = (xn − ρnA
∗(Axn −Byn)) ,

ain = arg min
{
τnfi(sn, σ) + 1

2‖σ − sn‖2 : σ ∈ Ci

}
,

zin = arg min
{
τnfi(a

i
n, σ) + 1

2‖σ − sn‖2 : σ ∈ Ci

}
.

Obtain the farthest element of zin from sn, i.e.,

in ∈ arg max
{

1
2‖sn − zin‖2 : i = 1, . . . , N

}
.

Set zinn = z̄n

un = αn,0z̄n +
∑l

s=1 αn,s(Dsz̄n)

xn+1 = βn(µ) + (1 − βn)(un),

tn = (yn + ρnB
∗(Axn −Byn)) ,

bjn = arg min
{
λngj(tn, ϕ) + 1

2‖ϕ− tn‖2 : ϕ ∈ Qj

}
,

hjn = arg min
{
λngj(b

j
n, ϕ) + 1

2‖ϕ− tn‖2 : ϕ ∈ Qj

}
.

Obtain the farthest element of hjn from tn, i.e.,

jn ∈ arg max
{

1
2‖tn, h

j
n‖2 : j = 1, . . . ,M

}
.

Set hjnn = θ̄n

vn = ηn,0θ̄n +
∑m

t=1 ηn,t(Gtθ̄n)

yn+1 = βn(ϑ) + (1 − βn)(vn),

(4.76)

where ρn ∈
(
ζ,
(

2‖Axn−Byn‖2

‖A∗(Axn−Byn)‖2+‖B∗(Axn−Byn)‖2 − ζ
))

, n ∈ Ω, for small enough ζ.

Otherwise, ρn = ρ (ρ being any nonnegative value), where the set of indexes Ω = {n :
Axn −Byn 6= 0}.

τn+1 =


min

{
τn, min

1≤i≤N

{
κ
2

‖ain−sn‖2+‖zin−ain‖2

fi(sn,zin)−fi(sn,ain)−fi(a
i
n,zin)

}}
, if fi(sn, z

i
n) − fi(sn, a

i
n)

−fi(ain, zin) > 0,

τn, otherwise

(4.77)

and
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λn+1 =


min

{
λn, min

1≤j≤M

{
ε
2

‖bjn−tn‖2+‖hjn−b
j
n‖2

gj(tn,h
j
n)−gj(tn,b

j
n)−gj(b

j
n,h

j
n)

}}
, if gj(tn, h

j
n) − gj(tn, b

j
n)

−gj(bjn, hjn) > 0,

λn, otherwise.

(4.78)

Then the sequence {(xn, yn)} generated by Equation (4.76) converges strongly to (x̄, ȳ) ∈
Υ.

5. Application

5.1. Multiple set split equality variational inequality problem

In this section, we apply our result to study the multiple set split equality variational
inequality problem (MSSEVIP).
Let U : C → E∗ be a nonlinear mapping. The classical VIP is formulated as locating a
point

x∗ ∈ C such that 〈x̄− x∗, U(x∗)〉 ≥ 0, ∀x̄ ∈ C. (5.1)

The solution set of VIP (5.1) is denoted by VI(C,U). Variational inequalities have been
found very applicable in several real-world problems such as optimization problems, min-
imax theorems, differential equations and in certain applications to economic theory
and mechanics. For more details on variational inequalities, see [2, 35, 36, 44] and the
references therein.
Now we consider the MSSEVIP defined as follows:

find x̄ ∈ Ci such that 〈Uix̄, x− x̄〉 ≥ 0, ∀x ∈ Ci, i = 1, 2, . . . , N

and ȳ ∈ Qj such that 〈Vj ȳ, y − ȳ〉 ≥ 0, ∀y ∈ Qj , j = 1, 2, . . . ,M

such that Ax̄ = Bȳ, (5.2)

where Ui : E1 → E1 and Vj : E2 → E2 are two nonlinear mappings, and A : E1 → E3 and
B : E2 → E3 are two bounded linear operators. When viewed separately, Equation (5.2)
consists of two classical multiple sets variational inequality problem (MSVIP) whose
solution sets are denoted by VI(Ci, Ui) and VI(Qj , Vj), respectively.
Let U : C → E∗ be a nonlinear mapping. Then, U is said to be

(D1) pseudomonotone; if for any x, y ∈ C, we have

〈Ux, y − x〉 ≥ 0 =⇒ 〈Uy, y − x〉 ≥ 0,

(D2) K -Lipschitz continuous, if there exists a constant K > 0 such that

‖Ux− Uy‖ ≤ K‖x− y‖, ∀x, y ∈ C,
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(D3) sequentially weakly continuous, if for any sequence {xn} ⊂ C, we have xn ⇀ x ∈
C implying that Uxn ⇀ Ux ∈ E∗.

We need the following lemma to establish our next result.

Lemma 5.1. [14] Let C be a nonempty, closed convex subset of a reflexive, smooth
and strictly convex Banach space E, U : C → E∗ be a nonlinear mapping. Then

ΠC

(
Jq
E∗ [Jp

E(x) − λU(y)]
)

= arg min
ω∈C

{λ〈ω − y, U(y)〉 + ∆p(ω, x)} (5.3)

for all x ∈ E, y ∈ C and λ ∈ (0,+∞).

Setting fi(x, y) = 〈Uix, y − x〉, ∀x, y ∈ Ci, i = 1, 2, . . . , N and gj(x, y) = 〈Vjx, y −
x〉, ∀x, y ∈ Qj , j = 1, 2, . . . ,M in Algorithm (3.2), then the bifunctions fi and gj satisfy
conditions (C1)–(C4) of Assumption A (see [14]).

Hence, by applying Theorem 4.5 and Lemma 5.1, we obtain the following consequent
result for approximating a common solution of MSSEVIP and common fixed point prob-
lem for finite families of Bregman quasi-nonexpansive mappings in p-uniformly convex
real Banach spaces, which are also uniformly smooth.

Theorem 5.2. Let E1, E2 and E3 be three p-uniformly convex and uniformly smooth
real Banach spaces. Let Ci, i = 1, 2, . . . , N and Qj , j = 1, 2, . . . ,M be nonempty, closed
and convex subsets of E1 and E2, respectively. Let Ui : Ci → E∗ and Vj : Qj → E∗ be
two nonlinear mappings satisfying conditions (D1)–(D3) above. Let Ds : E1 → E1, s =
1, 2, . . . , l and Gt : E2 → E2, t = 1, 2, . . . ,m be two finite families of Bregman quasi-
nonexpansive mappings such that I − Ds and I − Gt are demiclosed at zero for each
s and t, respectively. Suppose that Assumption 3.12(a)–2(c) holds and the solution set
Υ := {x̄ ∈ F (Ds) ∩ VI(Ci, Ui), ȳ ∈ F (Gt) ∩ VI(Qj , Vj) : Ax̄ = Bȳ} 6= ∅. Then, the
sequence {xn, yn} generated by Algorithm (5.3) below converges strongly to (x̄, ȳ) ∈ Υ,
where x̄ = ΠΥ(µ) and ȳ = ΠΥ(ϑ).

Algorithm 5.3. For fixed µ ∈ E1 and ϑ ∈ E2, choose an initial guess (x0, y0) ∈
E1 × E2. Suppose that the nth iterate (xn, yn) ⊂ E1 × E2 has been constructed, then we
compute the (n+ 1)th iterate (xn+1, yn+1) via the iteration

https://doi.org/10.1017/S0013091523000251 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000251


Split Equality Equilibrium and Fixed Point Problems 509



sn = Jq
E∗
1

(
Jp
E1

(xn) − ρnA
∗Jp

E3
(Axn −Byn)

)
,

ain = ΠCi

[
Jp
E∗
1
(Jp

E1
(sn) − τnUi(sn))

]
, i = 1, 2, . . . , N

zin = ΠCi

[
Jp
E∗
1
(Jp

E1
(ain) − τnUi(sn))

]
, i = 1, 2, . . . , N

in ∈ arg max
{

∆p(sn, z
i
n) : i = 1, . . . , N

}
, zinn = z̄n

un = J
E∗
1

q

(
αn,0J

p
E1

(z̄n) +
∑N

i=1 αn,iJ
p
E1

(Dsz̄n)
)

xn+1 = Jq
E∗
1

(
βnJ

p
E1

(µ) + (1 − βn)Jp
E1

(un)
)
,

tn = Jq
E∗
2

(
Jp
E2

(yn) + ρnB
∗Jp

E3
(Axn −Byn)

)
,

bjn = ΠQj

[
J
E∗
2

p (J
E2
p (tn) − λnVj(tn))

]
j = 1, 2, . . . ,M

hjn = ΠQj

[
J
E∗
2

p (J
E2
p (tn) − λnVj(b

j
n))

]
j = 1, 2, . . . ,M

jn ∈ arg max
{

∆p(tn, h
j
n) : j = 1, . . . ,M

}
, hjnn = θ̄n

vn = Jq
E∗
1

(
ηn,0J

p
E2

(θ̄n) +
∑m

t=1 ηn,tJ
p
E2

(Gtθ̄n)
)

yn+1 = Jq
E∗
2

(
βnJ

p
E2

(ϑ) + (1 − βn)J
E2
p (vn)

)
.

where ρn ∈

ζ,( q‖Axn−Byn‖p

Cq‖A∗JE3
p (Axn−Byn)‖q+Qq‖B∗JE3

p (Axn−Byn)‖q
− ζ

) 1
q−1

 n ∈ Ω, for

small enough ζ, Cq and Qq are constants of smoothness of E1 and E2, respectively.
Otherwise, ρn = ρ (ρ being any nonnegative value), where the set of indexes Ω = {n :
Axn −Byn 6= 0}.

τn+1 =

min

{
τn, min

1≤i≤N

{
κ(∆p(a

i
n,sn)+∆p(z

i
n,ain))

〈Uisn−Uia
i
n,zin−ain〉

}}
, if 〈Uisn − Uia

i
n, z

i
n − ain〉 > 0,

τn, otherwise

and

λn+1 =

min

{
λn, min

1≤j≤M

{
ε(∆p(b

j
n,tn)+∆p(h

j
n,b

j
n))

〈Vjtn−Vjb
j
n,h

j
n−b

j
n〉

}}
, if 〈Vjtn − Vjb

j
n, h

j
n − bjn〉 > 0,

λn, otherwise.

6. Computational Experiments

In this section, we demonstrate the efficiency and applicability of our proposed method
with two numerical examples. In all the experiments, we consider the case when l = m =
N = M = 5.
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Example 6.1. Let Er = Rm, r = 1, 2, 3, equipped with induced norm ‖x‖ =√∑m
i=1 |xi| and the inner product 〈x, y〉 =

∑m
i=1 xiyi, for all x = (x1, x2, . . . , xm) ∈ Rm

and y = (y1, y2, . . . , ym) ∈ Rm. Let Ci = Qj = C, where the feasible set C has the form

C = {(x1, x2, . . . , xm) ∈ Rm
+ : |xk| ≤ 1, k = 1, 2, . . . ,m}.

Consider the following problem:

Find (x̄, ȳ) ∈ Υ :=

{
x̄ ∈ F (Ds) ∩

N⋂
i=1

EP(Ci, fi),

ȳ ∈ F (Gt) ∩
M⋂
j=1

EP(Qj , gj) : Ax̄ = Bȳ

 ,

where fi : Rm × Rm → R is given by

fi(x, y) =
n∑

k=1

(qiky
2
k − qikx

2
k), i = 1, 2, . . . , N,

where qik ∈ (0, 1) is randomly selected ∀i = 1, 2, . . . , N, k = 1, 2, . . . ,m and Ds : Rm →
Rm is defined by

Ds(x) =
x

s+ 1
, ∀s = 1, 2, . . . , l.

In the same vein, let gj : Rm × Rm → R is given by

gj(x, y) =
m∑

k=1

(qjky
2
k − qjkx

2
k), j = 1, 2, . . . ,M,

where qjk ∈ (0, 1) is randomly selected ∀j = 1, 2, . . . ,M, k = 1, 2, . . . , 5 and Gt : Rm →
Rm is defined by

Gt(x) =
x

t+ 1
, ∀t = 1, 2, . . . , 5.

It is easy to see that conditions (C1)–(C4) of Assumption A are satisfied and Ds and
Gt are Bregman quasi-nonexpansive mappings for s = 1, 2, . . . , l and t = 1, 2, . . . ,m,
respectively, I − Ds and I − Gt are demiclosed at zero. Moreover, we define A(x) = x

2
and B(x) = x

3 , then A and B are bounded linear operators. Furthermore, Υ = {0}. In
this example, we choose βn = 3

2n+3 , κ= 0.36, τ0 = 0.24, ε= 0.5, λ0 = 0.4, αn,0 = 3n
8n+11 ,

αn,s = 1
5 (1− 3n

8n+11 ), s = 1, 2, . . . , 5, ηn,0 = 2n
4n+7 , ηn,t = 1

5 (1− 2n
4n+7 ), t = 1, 2, . . . , 5. Using

‖xn+1−xn‖
‖x2−x1‖

< 10−4 as our stopping criterion, we generate randomly different starting

points (µ, ϑ), (x0, y0) ∈ E1 × E2 for different cases of m = 20, 50, 100 and 500.
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Figure 1. Top left: m = 20; top right: m = 50; bottom left: m = 100; bottom right: m = 500.

We plot the graphs ‖xn+1 − xn‖ against the number of iterations. The numerical results
can be seen in Figure 1.

The next example is presented in an infinite dimensional space setting.

Example 6.2. Let Er = L2 ([0, 1]), r = 1, 2, 3, with the induced norm given by

‖x‖L =
∫ 1

0
|x(s)|2 ds and the corresponding inner product 〈x, y〉 =

∫ 1

0
x(s)y(s) ds. Let

the feasible sets Ci and Qj be defined as follows:

Ci := {x ∈ H : ‖x‖L ≤ 1} i = 1, 2, . . . , 5 and Qj := {x ∈ H : ‖x‖L ≤ 1} j = 1, 2, . . . , 5.

Let fi(x, y) = 〈Six, y − x〉 and gj(x, y) = 〈Tjx, y − x〉 with the operators (Six)(t) =

max
{

0, x(t)i

}
for i = 1, 2, . . . , 5 and (Tjx)(t) = max

{
0, x(t)j

}
for j = 1, 2, . . . , 5. Then,

it is easy to see that each fi is monotone (and by implication, pseudomonotone) on Ci.
Similarly, gj is pseudomonotone on Qj. Furthermore, let Ds : H → H and Gt : H → H
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Figure 2. Top left: Case I; top right: Case II; bottom left: Case III; bottom right: Case IV.

be defined by Ds(x)(t) = x(t)
2s and Gt(x)(t) = x(t)

2t , then the mappings Ds and Gt are

quasi-nonexpansive ∀s = 1, 2, . . . , 5 and t = 1, 2, . . . , 5.Moreover, we defineA(x)(t) = x(t)
3

and B(x)(t) = x(t)
5 , then A and B are bounded linear operators. The solution set Υ = {0}.

We choose βn = 1
n+2 , αn,0 = n+1

2n+3 , αn,s = 1
5 (1 − n+1

2n+3 ), s = 1, 2, . . . , 5, ηn,0 = n+2
2n+5 ,

ηn,t = 1
5 (1 − n+2

2n+5 ), t = 1, 2, . . . , 5, κ= 0.54, τ0 = 0.63, ε= 0.75, λ0 = 0.83, and using
‖xn+1−xn‖
‖x2−x1‖

< 10−4 as stopping criterion.

We choose fixed points µ = t2 + 2, ϑ = 4t3 + 3 and different starting points as follows:

Case I: x0 = t2 + 4, y0 = t3 + 2t+ 1
Case II: x0 = t4 + 5, y0 = t2 + t+ 3
Case III: x0 = sin(2t), y0 = cos(5t)
Case IV: x0 = exp(t), y0 = exp(2t).
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We plot the graph of errors against the number of iterations in each case. The numerical
results can be found in Figure 2.

7. Conclusion

In this article, using Bregman distance, we proposed and studied a new algorithm for
approximating the common solution of multiple set split equality pseudomonotone EP
and fixed points of Bregman quasi-nonexpansive mappings in real p-uniformly convex
Banach spaces, which are also uniformly smooth. The algorithm under discourse is
designed in such a way that its convergence does not rely on prior estimates of the
Lipschitz constants of the pseudomonotone bifunctions as well as the prior knowledge
of the norm of the bounded linear operators. We proved a strongly convergent theorem
under some mild conditions on our parameters. We gave a theoretical application of our
result and finally present two numerical examples to show the efficiency and applicabil-
ity of our method. The result presented in this article extends numerous results in the
literature in this direction of research.
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