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On Differential Torsion Theories and Rings
with Several Objects

Abhishek Banerjee

Abstract. Let R be a small preadditive category, viewed as a “ring with several objects.” A right
R-module is an additive functor from Rop to the category Ab of abelian groups. We show that every
hereditary torsion theory on the category (Rop , Ab) of right R-modules must be diòerential.

1 Introduction

Let R be a ring equipped with a derivation δ ∶ R → R and let Mod−R be the cate-
gory of right R-modules. A δ-derivation on a right R-module M is an additive map
d ∶ M → M satisfying d(mr) = d(m)r+mδ(r) for anym ∈ M and any r ∈ R. Follow-
ing Bland [3], a hereditary torsion theory τ = (T,F) on Mod−R is said to be diòer-
ential if the torsion submoduleMτ ⊆ M satisûes d(Mτ) ⊆ Mτ for every M ∈ Mod−R
and every δ-derivation d ∶ M → M on M.

he signiûcance of diòerential torsion theories in the literature is the fact that they
allow a δ-derivation on a module M to be extended to the “module of quotients”
Qτ(M) of M with respect to the torsion theory τ. For a hereditary torsion the-
ory τ, we recall (see, for instance, [3, §2]) that themodule of quotients Qτ(M) is the
“τ-injective envelope” Eτ(M/Mτ) of the torsion free quotient M/Mτ of M. It was
shown byGolan [8] that if d ∶ M → M is a δ-derivation satisfying d(Mτ) ⊆ Mτ , then
there is a δ-derivation d ∶ Qτ(M) → Qτ(M) on Qτ(M) extending d. However, the
question of uniqueness of the extension d was le� open in [8], and the uniqueness
was ûnally established by Bland [3, Proposition 2.1]. he diòerentiability of torsion
theories and related questions on extending derivations were also studied extensively
in [15, 17, 18]. A striking result of Lomp and van den Berg [10] showed that, in fact,
every hereditary torsion theory on Mod−R must be diòerential.

In this paper,we prove that all hereditary torsion theories are diòerential for mod-
ules over a preadditive category R, which we treat as a “ring with several objects,”
following the philosophy ofMitchell [14]. Indeed, ifR is a preadditive category with a
single object ∗, then R is described completely bymeans of theHom-object R(∗, ∗),
which is an ordinary ring. As such, an arbitrary preadditive category R becomes a
more general kind of ring, i.e., a “ring with several objects.” hen a right moduleM
over R is an additive functor M ∶ Rop → Ab, where Ab is the category of abelian
groups. In fact, the idea of replacing rings with preadditive categories has proved
to be very in�uential in several ûelds of mathematics, such as commutative algebra
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(see, for example, [19, 20]), algebraic geometry (see, for example, [6]), and cohomol-
ogy theories (see, for example, [11–13]). In [1],we have previously workedwith torsion
theories on (Rop ,Ab), where R is a small abelian category.
Accordingly,we consider a small preadditive categoryR and the category (Rop,Ab)

of right R-modules, which is a locally ûnitely presentable Grothendieck category. A
derivation δ on R consists of additive maps δ(a, b) ∶ R(a, b) → R(a, b) on each of
theHom-objects of R satisfying δ( f ○ g) = δ( f ) ○ g + f ○ δ(g) with respect to com-
position of morphisms in the category R (see Deûnition 2.1). hen our ûrst result
is heorem 2.5, which shows that every Gabriel ûlter on the Grothendieck category
(Rop ,Ab) is δ-invariant.
By a δ-derivation d on an R-module M ∈ (Rop ,Ab), we will mean a family of

homomorphisms d = {d(r) ∶M(r)→M(r)}r∈Ob(R) satisfying

d(r) ○M(h) =M(h) ○ d(a) +M(δ(h))

for any h ∈ R(r, a), r, a ∈ Ob(R) (see Deûnition 2.7). We consider a hereditary tor-
sion theory τ = (Tτ ,Fτ) on (Rop ,Ab) and let Mτ ⊆ M be the torsion subobject of
M. For the category (Rop ,Ab), we know that hereditary torsion classes correspond
to localizing subcategories aswell as to Gabriel ûlters in (Rop ,Ab). his enables us to
prove heorem 2.9, which shows that any δ-derivation d on anyM ∈ (Rop ,Ab) sat-
isûes d(a)(Mτ(a)) ⊆Mτ(a) for every a ∈ Ob(R). In other words, every hereditary
torsion theory on (Rop ,Ab) is diòerential.
Finally, we consider the “module of quotients” Qτ(M) of M with respect to τ,

constructed as in [7, §2.2]. We concludewithheorem 2.13,wherewe show that every
δ-derivation d on M extends uniquely to a δ-derivation d on Qτ(M).

2 Hereditary Torsion Theories are Differential

hroughout,we letR be a small preadditive category,whichwewill see as a “ringwith
several objects,” following the philosophy ofMitchell [14]. Given objects a, b ∈ R, we
will denote by R(a, b) the abelian group consisting of morphisms in R from a to b.
he following notion of a derivation on a ringwith several objects is implicit at several
places in the literature.

Deûnition 2.1 LetR be a small preadditive category. Aderivation δ onR is a family
of homomorphisms

δ(a, b) ∶ R(a, b)Ð→ R(a, b) a, b ∈ Ob(R)

satisfying the following condition (for any a, b, c ∈ Ob(R)):

δ(c, a)( f ○ g) = (δ(b, a)( f )) ○ g + f ○ (δ(c, b)(g)) f ∈ R(b, a), g ∈ R(c, b).

When there is no danger of confusion, for any morphism f ∈ R(b, a) in R, we will
denote δ(b, a)( f ) simply by δ( f ).

It is clear that if R is a preadditive category with a single object ∗, then a deriva-
tion on R is simply an ordinary derivation on the ring R(∗, ∗). We now give some
examples of derivations on small preadditive categories.
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Example 2.2 (a) Let k be a commutative ring. Let (A, δ) be a pair consisting
of a k-algebra A equipped with a k-linear derivation δ and let (M , δM) be a “pre-
(A, δ)-module” in the sense of Tanaka [16, Deûnition 3.1]. In other words, M is a le�
A-module and δM ∶ M → M is a k-linear map satisfying

δM(am) = δ(a)m + aδM(m) ∀ a ∈ A,m ∈ M .

We consider the category Pre(A,δ) whose objects are pre-(A, δ)-modules,with amor-
phism f ∶ (M , δM) → (N , δN) being given by an ordinary A-module morphism
f ∶ M → N . hen if C ⊆ Pre(A,δ) is any subcategory that is small and full, it is evident
that the homomorphisms

δ((M , δM), (N , δN)) ∶
Pre(A,δ) ((M , δM), (N , δN)) → Pre(A,δ) ((M , δM), (N , δN))

f ↦ δN ○ f − f ○ δM

for every (M , δM), (N , δN) ∈ Ob(C) deûne a derivation on C in the sense of
Deûnition 2.1.

(b) IfH is aHopf algebra, the notion of an “H-module category” or “H-category”
arises naturally in studying Galois coverings of categories (see Cibils and Solotar
[5, §2]) and in noncommutative geometry (see Kaygun and Khalkhali [9, §6]). Ex-
plicitly speaking, anH-category is a preadditive category Cwhere eachmorphism set
is an H-module, and if f , g are two composable morphisms in C, the action of H
satisûes h(g ○ f ) = ∑ h(1)(g) ○ h(2)( f ) for each h ∈H. Here, the coproduct ∆ on H

is given in Sweedler notation by ∆(h) = ∑ h(1) ⊗ h(2) for every h ∈H.
We now consider some x ∈H such that ∆(x) = x⊗ 1+ 1⊗x. For example,H could

be the universal enveloping algebra U(L) of a Lie algebra L, and we could take any
x ∈ L. hen if C is a smallH-module category, it is clear that the action of the element
x on each morphism set of C gives a derivation on C in the sense of Deûnition 2.1.

IfR is a small preadditive category, a rightR-module is simply an additive functor
M ∶ Rop → Ab, where Ab is the category of abelian groups. As such, the category of
right R-modules will be denoted by (Rop ,Ab). For any a ∈ Ob(R), we consider the
representable functor

Ha ∶ Rop Ð→ Ab r z→ R(r, a) ∀ r ∈ Ob(R).

We now recall the following well known result.

Proposition 2.3 LetR be a small preadditive category. hen the category (Rop ,Ab) of
rightR-modules is aGrothendieck categorywith the representable functors {Ha}a∈Ob(R)
forming a set of ûnitely generated projective generators.

Proof We refer the reader to, for instance, [6, Lemma 2.2] for the fact that (Rop ,Ab)
is aGrothendieck categorywith the representable functors {Ha}a∈Ob(R) being a set of
projective generators. From the Yoneda lemma,we know that for anyM ∈ (Rop ,Ab),
we haveHom(Rop ,Ab)(Ha ,M) =M(a). Since colimits are computed componentwise
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in the functor category, it follows that

limÐ→
i∈I

Hom(Rop ,Ab)(Ha ,Mi) = limÐ→
i∈I

Mi(a) = Hom(Rop ,Ab)(Ha , limÐ→
i∈I

Mi),

where {Mi}i∈I is a ûltered system of objects in (Rop ,Ab) connected by monomor-
phisms. It follows that each Ha ∈ (Rop ,Ab) is a ûnitely generated object. ∎

Let a ∈ Ob(R) and consider a subobject I ⊆ Ha in (Rop ,Ab). hen, we have
I(r) ⊆ Ha(r) = R(r, a) for each r ∈ Ob(R). If h ∈ R(b, a) = Hom(Rop ,Ab)(Hb ,Ha)
is amorphism in R, we set

h−1(I)(r) ∶= { f ∈ R(r, b) ∣ h ○ f ∈ I(r)} ∀ r ∈ Ob(R).

It is evident that h−1(I) ⊆ Hb as a right R-module.
he notion of a Gabriel ûlter in a Grothendieck category with a set of ûnitely gen-

erated projective generators is due to Garkusha [7, §2.1]. Because of Proposition 2.3,
we can consider Gabriel ûlters in (Rop ,Ab).

Deûnition 2.4 LetRbe a small preadditive category. AGabrielûlterG={Ga}a∈Ob(R)
on (Rop ,Ab) is a collection such that the following hold:
(i) For each a ∈ Ob(R),Ga is a family of subobjects of Ha ∈ (Rop ,Ab).
(ii) For each a ∈ Ob(R), Ha ∈ Ga .
(iii) If I ∈ Ga and h ∈ R(b, a) = Hom(Rop ,Ab)(Hb ,Ha) is a morphism in R, then

h−1(I) ∈ Gb .
(iv) Let J ∈Ga . If K ⊆Ha is such that h−1(K) ∈Gb for everymorphism h ∈R(b, a)=

Hom(Rop ,Ab)(Hb ,Ha) satisfying Im ( h○__ÐÐ→) ⊆ J(r) for each r ∈ Ob(R), then
K ∈ Ga .

It may be shown (see [7, §2.1]) that aGabriel ûlterG = {Ga}a∈Ob(R) on (Rop ,Ab)
also satisûes the following property: for I, J ⊆ Ha for some a ∈ Ob(R) with J ⊆ I, we
have

J ∈ Ga Ô⇒ I ∈ Ga .

We now consider the preadditive categoryR along with a derivation δ in the sense of
Deûnition 2.1. LetG = {Ga}a∈Ob(R) be aGabriel ûlter on (Rop ,Ab). Wewill say that
G is δ-invariant if for each a ∈ Ob(R) and each I ∈ Ga , there exists some J ∈ Ga such
that δ(J(r)) ⊆ I(r) as subsets of Ha(r) = R(r, a), for all r ∈ Ob(R). his brings us
to our ûrst main result.

heorem 2.5 Let R be a small preadditive category equipped with a derivation δ.
hen every Gabriel ûlter G = {Ga}a∈Ob(R) on (Rop ,Ab) is δ-invariant.

Proof We ûx some a ∈ Ob(R) and consider some I ∈ Ga . By deûnition, I ⊆ Ha in
(Rop ,Ab). Since I ↪ Ha is a morphism of functors, we note that for any morphism
g ∈ R(r, r′) in R, we have a commutative diagram
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I(r′) ÐÐÐÐ→ Ha(r′) = R(r′ , a)

__○g
×××Ö

__○g
×××Ö

I(r) ÐÐÐÐ→ Ha(r) = R(r, a).
In other words, wemust have

(2.1) f ∈ I(r′) Ô⇒ f ○ g ∈ I(r) ∀ r, r′ ∈ Ob(R), g ∈ R(r, r′).
We now set

J(r) ∶= { f ∈ I(r) ⊆ Ha(r) = R(r, a) ∣ δ( f ) ∈ I(r)} ∀ r ∈ Ob(R).
It is clear that J(r)⊆ I(r)⊆Ha(r) for each r ∈ Ob(R). We consider some f ∈ J(r′) and
amorphism g ∈ R(r, r′). Since J(r′) ⊆ I(r′), it follows from (2.1) that the composition
f ○ g ∈ I(r). Additionally, we have
(2.2) δ( f ○ g) = δ( f ) ○ g + f ○ δ(g).
Since f ∈ J(r′),we know that δ( f ) ∈ I(r′). Applying (2.1) to each of the two terms on
the right-hand side of (2.2), it follows that δ( f ○ g) ∈ I(r). Hence, f ○ g ∈ J(r), and
we realize that J is also a functor, i.e., J ∈ (Rop ,Ab). Clearly, J ⊆ Ha in (Rop ,Ab).

We now consider a morphism h ∈ R(b, a) = Hom(Rop ,Ab)(Hb ,Ha) satisfying
Im ( h○__ÐÐ→) ⊆ I(r) for each r ∈ Ob(R). We claim that

(2.3) (δ(h))−1(I) ⊆ h−1(J)
in the category (Rop ,Ab). Indeed, if f ∈ (δ(h))−1(I)(r) for some r ∈ Ob(R), we
know that δ(h) ○ f ∈ I(r). On the other hand, the assumption on the morphism
h ∈ R(b, a) guarantees that h ○δ( f ) ∈ I(r). Hence, δ(h ○ f ) = δ(h)○ f +h ○δ( f ) lies
in I(r). he assumption on themorphism h also guarantees that h ○ f ∈ I(r). From
the deûnition of J(r),we now get h ○ f ∈ J(r). In otherwords,we have f ∈ h−1(J)(r).
Finally, since I ∈ Ga ,we notice that property (iii) ofGabriel ûlters inDeûnition 2.4

implies that (δ(h))−1(I) ∈ Gb . From (2.3), we know that (δ(h))−1(I) ⊆ h−1(J) and
hence h−1(J) ∈ Gb . It now follows from property (iv) of Gabriel ûlters in Deûnition
2.4 that J ∈ Ga . ∎

By deûnition, a torsion theory on (Rop ,Ab) (see, for instance, [2, §1.1]) is a pair
τ = (Tτ ,Fτ) of strict and full subcategories of (Rop ,Ab) satisfying the following two
conditions.
(a) For anyM ∈ Tτ andN ∈ Fτ , we haveHom(Rop ,Ab)(M,N) = 0.
(b) For each M ∈ (Rop ,Ab) we have a short exact sequence 0 → Mτ → M →

M/Mτ → 0,withMτ ∈ Tτ being a torsion object andM/Mτ ∈ Fτ being a torsion
free object.

he subcategory Tτ is called the torsion class, while Fτ is called the torsion free
class. Further,when the torsion class Tτ is closed under subobjects, the torsion theory
τ is said to be hereditary, and Tτ becomes a hereditary torsion class. Since (Rop ,Ab)
is a locally ûnitely presented Grothendieck category, hereditary torsion classes
in (Rop ,Ab) are the same as localizing subcategories of (Rop ,Ab) (see, for instance,
[4,heorem 1.13.5]).
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In the category (Rop ,Ab), we know (see [7, heorem 2.1]) that there is a one-to-
one correspondence between hereditary torsion classes and Gabriel ûlters given as
follows: if τ = (Tτ ,Fτ) is a hereditary torsion theory, we can associate a Gabriel ûlter
Gτ = {Gτ

a}a∈Ob(R) by setting

Gτ
a ∶= {I ⊆ Ha ∣ Ha/I ∈ Tτ}.

On the other hand, given aGabriel ûlterG = {Ga}a∈Ob(R), we can associate a hered-
itary torsion class TG ⊆ (Rop ,Ab), deûned by setting

(2.4) Ob(TG) ∶= {M ∣ Ker(x ∶ Ha →M) ∈ Ga

for each x ∈ Hom(Rop ,Ab)(Ha ,M), a ∈ Ob(R)} .
Inwhat follows,wewill make the convention that if x is an element ofM(a) for some
M ∈ (Rop ,Ab) and a ∈ Ob(R), we also denote by x the corresponding morphism
Ha →M.

Lemma 2.6 LetM ∈ (Rop ,Ab) be a rightR-module. Let τ = (Tτ ,Fτ) be a hereditary
torsion theory on (Rop ,Ab) andGτ = {Gτ

a}a∈Ob(R) the corresponding Gabriel ûlter on
(Rop ,Ab). For each a ∈ Ob(R), we now set

(2.5) M′(a) ∶= {x ∈ Hom(Rop ,Ab)(Ha ,M) ∣ Ker(x ∶ Ha Ð→M) ∈ Gτ
a} .

hen the following hold.
(i) he association a ↦ M′(a) is a functor, i.e., M′ is also a right R-module with

M′ ⊆M in (Rop ,Ab).
(ii) he right R-moduleM′ is torsion, i.e.,M′ ∈ Tτ .
(iii) hemoduleM′ is the torsion subobject ofM, i.e.,M′ =Mτ .

Proof (i)We consider some h ∈ R(b, a) and the correspondingmorphism h ∶ Hb →
Ha in (Rop ,Ab). hen for any x ∈M′(a) ⊆M(a) and any object r ∈ Ob(R),we have

Ker(Hb
hÐ→ Ha

xÐ→M)(r) = { f ∈ R(r, b) ∣ x(r)(h ○ f ) = 0}

= { f ∈ R(r, b) ∣ h ○ f ∈ Ker(Ha
xÐ→M)(r)}

= h−1(Ker(Ha
xÐ→M))(r).

(2.6)

Since x ∈M′(a), we know that (Ker(Ha
x→M)) ∈ Gτ

a . From (2.6) and property (iii)

ofGabriel ûlters inDeûnition 2.4,we see thatKer(Hb
x○h→ M) ∈ Gτ

b , i.e., x○h ∈M′(b).
his shows that M′ is a functor on Rop, and it is clear that M′ ⊆M.

(ii)We consider amorphism x ∶ Ha →M′ for some a ∈ Ob(R). hen x ∈M′(a) ⊆
M(a), and it follows from (2.5) that Ker(x ∶ Ha →M′) = Ker(x ∶ Ha →M′ ↪M) ∈
Gτ
a . Applying (2.4), it is now clear that M′ ∈ Tτ .
(iii) From parts (i) and (ii), we know that M′ ⊆ M is a torsion object. Since

Mτ contains all torsion subobjects of M, we must have M′ ⊆ Mτ . We now con-
sider x ∈ Mτ(a) for some a ∈ Ob(R). Since Mτ ∈ Tτ , we know from (2.4) that
Ker(Ha

x→Mτ ↪M) = Ker(Ha
x→Mτ) ∈ Gτ

a . From the deûnition ofM′(a) in (2.5),
it now follows that x ∈M′(a). Hence,M′ =Mτ . ∎
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Deûnition 2.7 Let R be a small preadditive category equipped with a derivation δ.
LetM ∈ (Rop ,Ab) be a rightR-module. A δ-derivation d onM is a family of abelian
group homomorphisms

d = {d(r) ∶M(r)→M(r)}r∈Ob(R)
satisfying the condition

d(r) ○M(h) =M(h) ○ d(a) +M(δ(h))
for any h ∈ R(r, a), r, a ∈ Ob(R). Here, M(h) is the morphism M(h) ∶ M(a) →
M(r) induced by h ∈ R(r, a). When there is no danger of confusion, we denote the
morphism d(r) simply by d.

For example, take any x ∈ Ob(R) and consider the right module Hx ∈ (Rop ,Ab).
hen it can be easily veriûed that the family of homomorphisms {d(r) ∶= δ(r, x) ∶
Hx(r)→ Hx(r)}r∈Ob(R) gives a δ-derivation on the right module Hx .

Deûnition 2.8 Wewill say that ahereditary torsion theory τ = (Tτ,Fτ)on (Rop,Ab)
is diòerential if for every moduleM ∈ (Rop ,Ab) and every δ-derivation d on M, we
have d(Mτ(a)) ⊆Mτ(a), ∀ a ∈ Ob(R).

For the category of modules over a given ring, the notion of a diòerential torsion
theory was introduced by Bland [3, §1]. he notion we have introduced inDeûnition
2.8 extends this idea to the case of “rings with several objects.”

In [10] it was shown that every hereditary torsion theory on the category ofmod-
ules over an ordinary ring is diòerential. We are now ready to prove the main result
of this paper.

heorem 2.9 Let R be a small preadditive category equipped with a derivation δ.
hen every hereditary torsion theory on (Rop ,Ab) is diòerential.

Proof Let τ = (Tτ ,Fτ) be a hereditary torsion theory on (Rop ,Ab) and let Gτ =
{Gτ

a}a∈Ob(R) be theGabriel ûlter corresponding to τ. We consider a rightR-module
M equipped with a δ-derivation d and an element x ∈ Mτ(a) for some a ∈ Ob(R).
We need to show that d(x) ∈Mτ(a).

Using Lemma 2.6, we know that

K ∶= Ker(Ha
xÐ→M) ∈ Gτ

a .

From heorem 2.5, we know that the Gabriel ûlter Gτ is δ-invariant. As such, there
exists J ∈ Gτ

a such that δ(J(r)) ⊆ K(r) for each r ∈ Ob(R). We now set I ∶= J ∩
K ⊆ Ha . Since Gτ = {Gτ

a}a∈Ob(R) is a Gabriel ûlter, it follows (see [7, §2.1]) that
I = J ∩ K ∈ Gτ

a .
We consider the element d(x) = d(a)(x) ∈ M(a). We now pick a morphism

h ∈ I(r) ⊆ Ha(r) = R(r, a). hen h ∈ K(r), and henceM(h)(x) = 0. Since h ∈ J(r),
it follows that δ(h) ∈ K(r). Hence, we also have M(δ(h))(x) = 0. Since d is a
δ-derivation on M, we know that

(d(r) ○M(h))(x) = (M(h) ○ d(a))(x) + (M(δ(h)))(x).
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his yieldsM(h)(d(x)) = 0 for any h ∈ I(r) ⊆ Ha(r). It follows that the composition

I ↪ Ha
d(x)ÐÐ→M is always zero. We now know that

I ⊆ Ker(Ha
d(x)→ M)

as subobjects ofHa . Since I ∈ Gτ
a ,wemust haveKer(Ha

d(x)→ M) ∈ Gτ
a . It now follows

from Lemma 2.6 that d(x) ∈Mτ(a). his proves the result. ∎

Suppose that R is an ordinary ring equipped with a derivation δ and that M is an
object of the categoryMod−R of right R-modules. If τ = (T , F) is a hereditary torsion
theory on Mod−R, we know that it must also be a diòerential torsion theory by [10].
As explained in the introduction, the signiûcance of diòerential torsion theories in
the literature is the fact that every δ-derivation on a module M ∈ Mod−R can be
extended uniquely to a δ-derivation on “themodule of quotients” Qτ(M) of M with
respect to τ.

We will now show that this property continues to hold in the category ofmodules
over a “ring with several objects.” We ûx a hereditary torsion theory τ = (Tτ ,Fτ)
on (Rop ,Ab). For any M ∈ (Rop ,Ab), the ‘module of quotients’ Qτ(M) ofM with
respect to τ is constructed by setting (see [7, §2.2])

(2.7) Qτ(M)(a) ∶= limÐ→
I∈Gτ

a

Hom(Rop ,Ab)(I,M/Mτ) ∀ a ∈ Ob(R).

It is clear from the properties of the Gabriel ûlter Gτ = {Gτ
a}a∈Ob(R) that the colimit

in (2.7) is ûltered. Additionally, sinceHa ∈ Gτ
a for each a ∈ Ob(R),we have canonical

morphisms

M(a)Ð→ (M/Mτ)(a)
= Hom(Rop ,Ab)(Ha ,M/Mτ)Ð→ limÐ→

I∈Gτ
a

Hom(Rop ,Ab)(I,M/Mτ)

= Qτ(M)(a)

determining amorphism ΦM ∶M→ Qτ(M) in (Rop ,Ab).

Lemma 2.10 Let τ = (Tτ ,Fτ) be a hereditary torsion theory on (Rop ,Ab). Let
N ∈ (Rop ,Ab) be a torsion free module equipped with a δ-derivation d. For some
a ∈ Ob(R), let F ∈ Qτ(N)(a) be an element represented by F ∶ I → N for some I ∈ Gτ

a .
Let K = I ∩ J ∈ Gτ

a , where J ∈ Gτ
a is such that δ(J(r)) ⊆ I(r) for every r ∈ Ob(R).

hen the association

(2.8) f ∈ K(r)z→ d(F(r)( f )) − F(r)(δ( f )) ∈ N(r)

is amorphism from K to N in (Rop ,Ab), giving an element d(F) ∈ Qτ(N)(a).

Proof We consider some r′ ∈ Ob(R) and some h ∈ R(r′ , r). In order to show
that the association in (2.8) gives a morphism in (Rop ,Ab), we must verify that the
following diagram is commutative:
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K(r) d(F)(r)ÐÐÐÐ→ N(r)

K(h)
×××Ö

×××Ö
N(h)

K(r′) d(F)(r′)ÐÐÐÐ→ N(r′).
For some f ∈ K(r), on the one hand, we have

N(h)(d(F)(r)( f ))(2.9)

= N(h)(d(F(r)( f ))) −N(h)(F(r)(δ( f )))
= d(N(h)(F(r)( f ))) −N(δ(h))(F(r)( f )) −N(h)(F(r)(δ( f ))) .

In (2.9), we notice that since K = I ∩ J and J has been chosen so that δ(J(r)) ⊆ I(r)
for every r ∈ Ob(R), we know that δ( f ) ∈ I(r), i.e., δ( f ) is in the domain of F(r).
On the other hand, we have

d(F)(r′)(K(h)( f ))
= d(F)(r′)( f ○ h)
= d(F(r′)( f ○ h)) − F(r′)(δ( f ○ h))
= d(N(h)(F(r)( f ))) − F(r′)(δ( f ) ○ h) − F(r′)( f ○ δ(h))
= d(N(h)(F(r)( f ))) −N(h)(F(r)(δ( f ))) −N(δ(h))(F(r)( f )) .

his proves the result. ∎

Since Gτ = {Gτ
a}a∈Ob(R) is a Gabriel ûlter, for any F ∈ Qτ(N)(a), it is clear that

the element d(F) ∈ Qτ(N)(a) deûned in Lemma 2.10 does not depend on the choice
of I, J ∈ Gτ

a . As such, we have a well-deûnedmorphism

d(a) ∶ Qτ(N)(a)Ð→ Qτ(N)(a) F z→ d(F).
For the sake of convenience, we will almost always drop the mention of the object a
and simply write d ∶ Qτ(N)(a)→ Qτ(N)(a).

Lemma 2.11 Let τ = (Tτ ,Fτ) be a hereditary torsion theory on (Rop ,Ab). Let N ∈
(Rop ,Ab) be a torsion freemodule equipped with a δ-derivation d. hen, the family of
morphisms

d(a) ∶ Qτ(N)(a)Ð→ Qτ(N)(a) ∀ a ∈ Ob(R)
deûnes a δ-derivation on Qτ(N).

Proof We take a, a′ ∈ Ob(R) and some h ∈ R(a′ , a). We consider an element
F ∈ Qτ(N)(a) represented by a morphism F ∶ I → N for some I ∈ Gτ

a . We choose
J ∈ Gτ

a such that δ(J(r)) ⊆ I(r) for each r ∈ Ob(R). We set K = I ∩ J ∈ Gτ
a and let

I′ ∈ Gτ
a′ be given by I′ = h−1(K)∩(δ(h))−1(K). Again,we consider J′ ∈ Gτ

a′ such that
δ(J′(r)) ⊆ I′(r) for each r ∈ Ob(R) and set K′ = I′ ∩ J′ ∈ Gτ

a′ . We put Q = Qτ(N).
We claim that

d(Q(h)(F)) = Q(h)((d(F))) +Q(δ(h))(F).
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For r ∈ Ob(R) and f ∈ K′(r), we have

d(Q(h)(F))(r)( f ) = d(Q(h)(F)(r)( f )) − (Q(h)(F))(r)(δ( f ))
= d(F(r)(h ○ f )) − F(r)(h ○ δ( f )) .

On the other hand, we have

Q(h)((d(F)))(r)( f ) +Q(δ(h))(F)(r)( f )
= (d(F))(r)(h ○ f ) + F(r)(δ(h) ○ f )
= d(F(r)(h ○ f )) − F(r)(δ(h ○ f )) + F(r)(δ(h) ○ f )
= d(F(r)(h ○ f )) − F(r)(h ○ δ( f )) .

his proves the result. ∎

Lemma 2.12 Let τ = (Tτ ,Fτ) be a hereditary torsion theory on (Rop ,Ab). Let
N ∈ (Rop ,Ab) be a torsion free module equipped with a δ-derivation d. hen, the
δ-derivation d on Qτ(N) li�s the δ-derivation d on N. In other words, the following is
a commutative diagram

(2.10)

N(a) ΦN(a)ÐÐÐÐ→ Qτ(N)(a)

d(a)
×××Ö

×××Ö
d(a)

N(a) ΦN(a)ÐÐÐÐ→ Qτ(N)(a)

for each a ∈ Ob(R). Additionally, d is the unique δ-derivation on Qτ(N) li�ing the
δ-derivation d on N.

Proof We consider F ∈ N(a). hen F corresponds to a morphism F ∶ Ha → N,
which gives an element of Qτ(N)(a). For any r ∈ Ob(R) and any f ∈ Ha(r) =
R(r, a), we now have

d(F)(r)( f ) = d(F(r)( f )) − F(r)(δ( f ))
= d(N( f )(F)) − F(r)(δ( f ))
= N( f )(d(F)) +N(δ( f ))(F) − F(r)(δ( f ))
= N( f )(d(F)) + F(r)(δ( f )) − F(r)(δ( f ))
= d(F)(r)( f ).

his proves that the square (2.10) is commutative. To prove the uniqueness, suppose
that d

′

is another δ-derivation on Qτ(N) li�ing the δ-derivation d on N. We put
Q = Qτ(N). For any morphism h ∶ b → a in R, we observe that

(d(b) − d′(b)) ○Q(h)

= (Q(h) ○ d(a) +Q(δ(h))) − (Q(h) ○ d′(a) +Q(δ(h)))

= Q(h) ○ (d(a) − d′(a)) .

(2.11)
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It follows from (2.11) that (d−d′) is amorphismof functors, i.e., amorphism (d−d′) ∶
Qτ(N) → Qτ(N) in (Rop ,Ab). Because d and d′ both li� the δ-derivation d on N,
it follows that composing (d − d′) ∶ Qτ(N) → Qτ(N) with the canonical morphism
ΦN ∶ N → Qτ(N) gives 0. As such, there is an induced morphism Coker(ΦN) →
Qτ(N) through which (d − d′) ∶ Qτ(N) → Qτ(N) factors. But we know (see [7,
Proposition 2.4 & heorem 2.5]) that Coker(ΦN) ∈ Tτ and Qτ(N) ∈ Fτ . Hence,
themorphism Coker(ΦN) → Qτ(N)must be zero, which shows that 0 = (d − d′) ∶
Qτ(N)→ Qτ(N). ∎

heorem 2.13 LetR be a small preadditive category equippedwith a derivation δ. Let
M ∈ (Rop ,Ab) be a right R-module equipped with a δ-derivation d. Let τ = (Tτ ,Fτ)
be a hereditary torsion theory on (Rop ,Ab). hen, there is a unique δ-derivation d on
Qτ(M) li�ing d, i.e., we have a commutative diagram

M(a) ΦM(a)ÐÐÐÐ→ Qτ(M)(a)

d(a)
×××Ö

×××Ö
d(a)

M(a) ΦM(a)ÐÐÐÐ→ Qτ(M)(a)
for every a ∈ Ob(R).

Proof As before, let Mτ ⊆ M be the torsion subobject of M. From heorem 2.9,
we know that d(Mτ(a)) ⊆ Mτ(a) for all a ∈ Ob(R). As such, d(a) induces maps
M(a)/Mτ(a) → M(a)/Mτ(a) that we continue to denote by d(a). Since M/Mτ

is torsion free, we can apply Lemma 2.12 to obtain a unique δ-derivation d on
Qτ(M/Mτ) = Qτ(M) such that

M(a) p(a)ÐÐÐÐ→ (M/Mτ)(a)
ΦM/Mτ (a)
ÐÐÐÐÐÐ→ Qτ(M/Mτ)(a) = Qτ(M)(a)

d(a)
×××Ö

d(a)
×××Ö

×××Ö
d(a)

M(a) p(a)ÐÐÐÐ→ (M/Mτ)(a)
ΦM/Mτ (a)
ÐÐÐÐÐÐ→ Qτ(M/Mτ)(a) = Qτ(M)(a)

is commutative. Suppose that d
′

is another δ-derivation on Qτ(M/Mτ) = Qτ(M)
such that the following diagram is commutative:

M(a) ΦM(a)ÐÐÐÐ→ Qτ(M/Mτ)(a) = Qτ(M)(a)

d(a)
×××Ö

×××Ö
d
′
(a)

M(a) ΦM(a)ÐÐÐÐ→ Qτ(M/Mτ)(a) = Qτ(M)(a).
hen we have

d
′(a) ○ΦM/Mτ(a) ○ p(a) = d′(a) ○ΦM(a) = ΦM(a) ○ d(a)

= ΦM/Mτ(a) ○ p(a) ○ d(a)
= d(a) ○ΦM/Mτ(a) ○ p(a).
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Since p(a) is an epimorphism, it follows from the above that

d
′(a) ○ΦM/Mτ(a) = d(a) ○ΦM/Mτ(a) = ΦM/Mτ(a) ○ d(a).

From the uniqueness of the li�ing in Lemma 2.12, we obtain d
′(a) = d(a). his

proves the result. ∎
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