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Outline, Notation, Preliminaries

1.1 General Context

Numerical simulations of relativistic nonequilibrium fluid dynamics1 have had

enormous success in describing, explaining, and predicting experimental data

from relativistic nuclear collisions. At the same time, nuclear collision experi-

ments have had a tremendous importance in pushing the development of rel-

ativistic fluid dynamics out of equilibrium, both on a formal level such as the

first-principles derivation of the fluid dynamics equations of motion and on the

practical level through the development of algorithms for obtaining numerical

solutions. This interplay between theory and experiment has led to the creation of

a vibrant subfield of relativistic nonequilibrium (or viscous) fluid dynamics which

unites research from traditionally separate disciplines such as string theory, clas-

sical gravity, computational physics, nuclear physics, and high-energy physics.

While the early “gold-rush” years aimed at constraining the shear viscosity of

quantum chromodynamics (QCD) may be coming to an end, new, previously

unexpected avenues have opened up in the past 10 years, such as the duality

between fluids and gravity, the applicability of fluid dynamics to small systems

below the femtoscale, the role of thermal fluctuations in relativistic systems, fluid

dynamics in the presence of anomalies, anisotropic hydrodynamics, an action

formulation for dissipative fluid dynamics, relativistic magneto-hydrodynamics,

and the role of nonhydrodynamic modes. It is probably fair to say that 10 years

ago, only very few people expected such rich and novel physics to emerge from the

old discipline of hydrodynamics! At the time of writing, the research in relativistic

viscous fluid dynamics is alive and well, with vibrant new ideas continuing to be

proposed and new experimental data from the Relativistic Heavy-Ion Collider

(RHIC) as well as the Large Hadron Collider (LHC) continuing to stream in.

1 As is common in the literature, we will use the terms “fluid dynamics” and
“hydrodynamics” synonymously.
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This wealth of experimental data is key to confirm or rule out theory predictions,

and, sometimes, to challenge the relativistic hydrodynamics community, as has

happened, for instance, through the discovery of flow-like signals in proton–

proton collisions at the LHC. The borders between the traditionally separate

high-energy physics and high-energy nuclear physics communities, never solid to

begin with, have now started to disintegrate completely, with all of the present

LHC experiments (ALICE, ATLAS, CMS, and LHCb) having working groups

directly or indirectly aimed at studying the properties of relativistic viscous

fluids. Recently, gravitational wave observations from LIGO have added to the

treasure trove of data by providing measurements of black-hole nonhydrody-

namic modes as well as neutron star mergers, which likely will play a key role

in calibrating future relativistic viscous fluid dynamics simulations of compact

stars.

The influx of new experimental capabilities and manpower is a welcome addi-

tion to the field, which continues to grow and strengthen, with no obvious limit

in sight. The future of relativistic fluid dynamics looks bright, indeed!

1.2 Timeline of Major Events

The current formulation of relativistic viscous fluid dynamics did not appear out

of nowhere. The following timeline summarizes some of the major events (heavily

biased by personal opinion!) that played a vital role in the development of the

field.

• Pre-1950s: Work on relativistic equations of motion for viscous fluids by

Maxwell and Cattaneo [1, 2].

• 1960s–1970s: Work on relativistic equations of motion for viscous fluids by

Müller, Israel, and Stewart [3–5].

• 1982: Analytic fluid modeling of heavy-ion collision by Bjorken [6].

• 1980s–1990s: First theoretical calculations for transport coefficients in gauge

theories [7–9].

• 1990s–early 2000s: Relativistic ideal fluid modeling of heavy-ion collisions by

multiple groups [10–16], including predictions for observables, in particular for

the magnitude of the so-called elliptic flow.

• 2000: Calculation of shear viscosity in gauge theories to leading order in weak

coupling by Arnold, Moore, and Yaffe [17].

• 2001: Following a breakthrough discovery in string theory [18], calculation of

the shear viscosity for a gauge theory to leading order in strong coupling by

Policastro, Son, and Starinets [19].

• 2001: The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Laboratory (BNL) starts operation.

• 2003: Analytic calculation indicating a strong sensitivity of elliptic flow to

changes in shear viscosity by Teaney [20].
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• 2001–2003: Work on relativistic equations of motion for viscous fluids by

Muronga [21, 22].

• 2004: Magnitude of elliptic flow measured by RHIC experiments, finding overall

agreement with relativistic ideal fluid dynamics simulations [23–26].

• 2005: BNL press release: “RHIC Scientists Serve Up ‘Perfect’ Liquid” [27]:

the matter created in relativistic ion collisions behaves like a liquid with a

very small viscosity approaching the string theory bound. No constraints on

viscosity value.

• 2007: Theory of relativistic viscous fluid dynamics set up as an effective field

theory of long-lived, long-wave excitations by two groups [28, 29].

• 2007: 2+1 relativistic viscous fluid modeling of elliptic flow in heavy-ion colli-

sions by several groups [30–33]. First constraints on QCD shear viscosity value,

placing it much closer to the strong coupling results than the weak coupling

results.

• 2010: The Large Hadron Collider (LHC) at CERN starts operation.

• 2010: Understanding that nuclear geometry fluctuations drive triangular flow

in heavy-ion collisions by Alver and Roland [34].

• 2010: Analytic fluid modeling of heavy-ion collisions with two-dimensional flow

by Gubser [35].

• 2010: Formulation of relativistic anisotropic hydrodynamics by two groups

[36, 37].

• 2010: Fully 3+1d relativistic viscous hydrodynamic simulations of heavy-ion

collisions by Schenke, Jeon, and Gale [38].

• 2010: Elliptic flow measured in proton–proton collisions at the LHC [39].

• 2012: Elliptic flow measured in proton-lead collisions at the LHC [40–43].

• 2015: Discovery of an off-equilibrium “hydrodynamic” attractor by Heller and

Spalińksi [44].

• 2015: Elliptic flow measured in proton-gold, deuteron-gold, and 3He-gold colli-

sions at RHIC, confirming relativistic viscous hydrodynamics predictions [45].

• 2016: Observation of nonhydrodynamic mode ring-down of a black hole through

gravitational wave data by LIGO [46, 47].

1.3 Notation and Conventions

Throughout this work, natural units will be used in which Planck’s constant, the

speed of light and Boltzmann’s constant will be set to unity, � = c = kB = 1.

Much of the theoretical groundwork will be performed in d space-time dimen-

sion (d − 1 spatial dimensions and one time-like dimension). The convention

used for the metric tensor is that of the mostly plus convention, and Greek

letters (μ, ν, λ, . . .) will be used to denote indices of space-time vectors, with

μ = 0 denoting time-like directions and the other entries denoting space-like

directions. In general, curved space-time will be assumed, but the symbol gμν may

refer to the metric tensor in both curved and flat space-times. The symbol ∇μ
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will indicate a geometric covariant derivative, while a plain coordinate derivative

will be denoted as ∂μ. Gauge-covariant derivatives will be denoted as Dμ.

For space vectors, Latin indices from the middle of the alphabet (i, j, k) will

be used, and space-time indices may thus be decomposed as μ = (0, i). Space

vectors also will be denoted by boldface letters, e.g. v or arrows, e.g. �v whereas

space gradients will be denoted by the symbol ∂ or �∂.

1.4 Preliminaries

The modern theory of relativistic fluid dynamics relies heavily on the frame-

work of general relativity, even when aiming for exclusive applications to flat

Minkowski space-time. Readers unaccustomed with the relation between fluid

dynamics and general relativity may appreciate the analogy with electromag-

netism, where charges and currents go hand in hand with electric and magnetic

fields (cf. Section 1.5). Fluid dynamics concerns itself with the dynamics of

energy and momentum, which distort space-time and thus go hand in hand with

gravitational fields. Unlike the case of electromagnetism, it is possible and useful

to consider fluid dynamics without the associated gravitational fields because

gravity is much weaker than the electromagnetic force. However, it is natural

to consider fluid dynamics in the presence of gravitational fields which is most

easily incorporated through the framework of general relativity.

In order to keep the book self-contained we have therefore added a very brief

introduction to the main concepts and equations of relativistic velocities and

general relativity in Appendices A and B, respectively. Readers familiar with

general relativity may skip this material without detriment, while readers looking

for a more detailed discussion on relativity may benefit from consulting one of

the excellent textbooks on this topic.

1.5 An Analogy to Fluid Dynamics: Particle Diffusion

As an introduction to many of the concepts discussed in this book, let us consider

a simple analogy to fluid dynamics: nonrelativistic diffusion. Specifically, consider

a system with a conserved charge (such as the electric charge). Local charge

conservation can be written in terms of the charge density n and the associated

current density �j as

∂tn+ �∂ ·�j = 0 . (1.1)

Because charge is the only conserved quantity, the current density �j is not a

fundamental object. Therefore, �j must in some way depend on the local charge

density n.

In global equilibrium, one can expect the current density to vanish and the

charge density to be constant. Deviations from global equilibrium will involve
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gradients of n and nonvanishing currents. Hence it is natural to consider an

expansion of �j in terms of gradients of n, known as the gradient expansion.2 The

lowest order in this gradient expansion is zeroth order, where �j(0) = 0, because

it is not possible to write down a vector in terms of the scalar n. Zeroth-order

diffusion therefore corresponds to ∂tn = 0, or static charge density distribution,

which in contrast to its fluid dynamics equivalent (the Euler equation) is not

very useful in practice.

The next order in the gradient expansion of �j is first order in gradients. There

are two possible structures to first-order gradients of n that one can write down:

∂tn and �∂n, of which only the latter is a vector. Hence from the effective field

theory expansion, we can expect �j ∝ �∂n.

However, there is one other structure to first order in gradients contributing

to �j that we could consider if we slightly enlarge our original setup. Because

moving electric charges are associated with electromagnetic fields, we should

consider gradients of the gauge potentials Φ, �A as building blocks in addition

to gradients of n. The gauge potentials are typically referred to as “sources,”

and may be neglected if desired (for instance, if the charge under consideration

is not electric and/or the associated gauge fields are very weak). However, in

full generality gradients of sources are to be included in the gradient expansion,

which to first order in gradients suggests �j ∝ �E (Ohm’s law) where �E is the

“electric” field associated with the gauge potentials.3 Therefore, to first order in

gradients one has

�j(1) = −D�∂n+ σ �E , (1.2)

where D,σ are two proportionality coefficients (“transport coefficients”) and the

sign choices are convention. D,σ are better known as diffusion constant and

conductivity, respectively. The effective field theory framework cannot be used

to calculate values for D,σ (for this, a particular microscopic theory, such as

kinetic theory, must be selected). However, effective field theory can be used to

obtain relations among transport coefficients, such as the Einstein relations

σ = Dχ , (1.3)

2 Note that no mention of a microscopic description giving rise to �j is made, such as
“currents arise from moving electrons.” For this reason, the gradient expansion is universal
in the sense that it contains all terms allowed by symmetries alone, which corresponds to
the framework of effective field theory. On the other hand, effective field theory cannot be
used to derive the quantitative value of the coefficients arising in the gradient expansion
(e.g. the dependence of the diffusion constant on the electron charge).

3 In principle, also �j ∝ �B is possible, where �B is the “magnetic” field. However, most systems

in nature respect a symmetry known as parity (space direction flips), which forbids �j ∝ �B.
We taciturnly assume symmetry under parity in the following, even though the study of
parity-violating fluids is a vibrant research subfield in itself.
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where χ is the static charge susceptibility.4 Plugging (1.2) in the equation for

charge conservation (1.1), neglecting the source �E → 0, and assuming D to be

constant leads to

∂tn = D∂2n , (1.4)

which is the familiar diffusion equation. Based on the derivation above, the

diffusion equation (1.4) can be expected to provide a good approximation to the

actual evolution of the charge density as long as higher-order gradient corrections

are small.

Considering higher-order corrections in the gradient expansion, one encounters

terms such as �j ∝ �∂∂2n, j ∝ �∂
(
�∂n · �∂n

)
j ∝ �∂∂2∂2n, etc. Since the number of

possible combinations of gradients of n increases factorially, it is plausible that

the gradient series diverges whenever �∂n �= 0. For a divergent series, higher-order

corrections are not small for any �∂n �= 0, hence requiring small higher-order

corrections would imply that the diffusion equation (1.4) is only applicable for

static situations where ∂tn = 0.

Given the phenomenal success of using the diffusion equation in a large num-

ber of nonstatic situations, clearly the criterion of requiring small higher-order

gradient corrections must be too strict. It should be replaced by a different

criterion that does justice to the success of the diffusion equation, as well as

correctly predicting its breakdown. This book reviews the progress made toward

formulating such a criterion for the case of relativistic fluid dynamics.

1.6 Outline of This Book

This books starts by giving a derivation of classical relativistic fluid dynamics

from first principles, using only symmetries and the techniques from effective

field theory (Section 2.1). In particular, no underlying kinetic theory picture

is assumed, which allows studying transport for systems that do not have any

well-defined quasi-particles. Familiar results such as the Euler and Navier–Stokes

equations and second-order conformal fluid dynamics are obtained in this fashion,

and applications such as neutron star structure, cosmology, and Bjorken and

Gubser flows are considered (Section 2.2). We then proceed to discuss the diver-

gence of the hydrodynamic gradient expansion, and a nonperturbative definition

of hydrodynamics through out-of-equilibrium attractor solutions in Section 2.3.

The main criterion for the applicability of fluid dynamics is summarized in

form of the Central Lemma of fluid dynamics in this section. Hydrodynamic

4 As a note to expert readers, a quick way to derive the Einstein relations is to calculate

two-point retarded correlation functions 〈�j�j〉, once in the canonical approach (neglecting

the sources �A = 0 from the outset) and once in the variational approach where 〈�j�j〉 ∝ δ�j

δ �A
.

The Einstein relations then follow from the fact that both approaches must agree with each
other.
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correlation functions and hydrodynamic collective modes are discussed in

Section 2.4, showing that the relativistic Navier–Stokes equations are acausal.

Section 2.5 describes the standard resummation procedure that cures problems

with causality for relativistic viscous fluid dynamics, giving rise to a set of

equations of motion that provide the backbone of modern numerical simulations

of relativistic viscous fluids. Section 2.6 expands the scope beyond classical

fluids by discussing hydrodynamic fluctuations, an action formulation, and the

application of quantum field theory techniques to fluid dynamics.

Chapter 3 aims at connecting the effective description of fluid dynamics to

particular microscopic theories and/or techniques. For systems with well-defined

quasi-particles, Section 3.1 provides kinetic-theory calculations of hydrodynamic

transport coefficients and collective modes. The following sections provide a

discussion of the corresponding calculations from a strongly coupled systems

perspective using the conjectured gauge/gravity duality (Section 3.2), free ther-

mal field theory (Section 3.3), and lattice gauge theory (Section 3.4).

Chapter 4 contains a review of theory components and models that are nec-

essary to apply relativistic fluid dynamics to real-world relativistic nuclear colli-

sion systems, including nuclear geometries (Sections 4.3 and 4.4), calculations

of energy deposition assuming weak/strong coupling (Sections 4.5 and 4.6),

numerical algorithms to solve relativistic viscous fluid dynamics (Section 4.8),

hadronization procedures (Section 4.9), and the calculation of experimentally

accessible observables (Section 4.10).

Chapter 5 provides theory-data comparisons from relativistic fluid dynamics

simulations of nuclear collisions, while Chapter 6 summarizes our understanding

of, and prospects for, fluid dynamics theory in the twenty-first century and

beyond.
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