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Apstract: Two kinds of MHS equilibrium are studied; isaothermal and
nonisothermal. The onsets of two-ribbon flares and flare-lu. ;s are
explained by this study.

I. Introduction

The characteristic of two-ribban flares is the large flare-laoap
systems which appear at the onset of the {lare and rise upward
slowly into the carona. Actually, the flare and Lthe loop may be
different manifestations of a glabal loss of equilibrium. lhe
magnetastatic equilibrium canfigurations abave active regions and
quiet regions have been investigated analytically and numerdcally.
(For example, Priest et al., 1980; Melville et al., 1984, 19087,
Jackers, 1978; Heavyvaerts et al., 1980; Sun et al., 1967) .
However, the actual number of solutiaons obtained so far is still
small. New solutions of the equilibrium equations need to be found
to explain new observationul phenomena Although in many of thaose
studies gravity had been considered, an isothermal simplifying
assumption was still being wused. The comparison between the
theoretical models and the abservational phenomena had been
restricted by the assumption

In this paper two dimensionless equations of dsothermal MHS
equilibrium are studied. They are

- 3
AF + aF ~exp(-z/H) = 0, (1
AF + aF* 7. exp(-z/H) = 0. (2)
To evaech equation a new similarity is derived. The properties of
the solutions are examined. A nonisothecrmal MHS equilibrium

equation is also studied and ils numericel solution is obtained.
In Section II, the similarity solutions of Equatians (1) and (2)
and the numerical solution of the nonisothermal equation are
derived and discussed. The results are summarized in Section III.

II. Besic Equations and Equilibrium Solutions

In Cartesian coordinates, the magnetohydrostatic equilibrium
equations are

(1/47) (9%x8) x 0 - ¥ - pg. = 0 (3)
V-8 =0 (4)

They can be reduced to a single partiasl differential equation

b
AF + aF . exp(-z/H) = 0O, (5)
where a, b are two parameters. As to the meanings of the method
which is similar to that expounded by Blumon and Cole (19724), we

obtained a similarity variable
* Project supported by NSFC of China
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AtH(b-1)

v - [J”" f e sin (../:‘u)] / cos («/2H) (6]
E
(£ 40, b#0), and a solution of Equstion (5) may be expressed as
R -~ ~ (2/7¢b—4)) .

Folw,z) = Flu) (exp (2/2M) /cosl x/2H)) 7 (7)

where f(v) must be a solution of the following equation,
AZHE (B-1)° 2 (wi1) 2 (b+1) .
(v’ — =) f" ¢ uF ' ———— F ¢ daR’f" = (8)
& b1 (b-1)

{ See Sun et al., 1987). Equation (8) may have a powcr series
solution of the following form:

f(v) = a voa vt a v a v o a v e oL (9)

(<) 1 < 3 n

After substituting for £ from Cquation (9) in Equation (8) we find
that Equation (U) has solutions only if the parameter b equals
one of some separsted values. Therefcore the equilibrium states
correoponding respectively to the solutions of Equastiaon (5) are
"quantized". If b is a Tunction of time, when it varies with time
the equilibrium canfigurations cannot vary smcothly with time It
follows Lhat the equilibrium stutes of different values b are
disjoinl scts in the sense that one state cannot evolve smoothly
Lo wnother state of a different b; during the variation global

low of equilibrium occurs. Now we only discuss the

b-1.5 and b=3. When b=3, after substituting for { from
(YU} in Fquation (8), we deriuc a recurrence formula

caettficients of the power series

) _ o . s
(n-11(n-2)yan® /¢ ) " )
@ - " a -(daH L aaa}/ln"-3n+2),
" n -3ne2 nTe v, k=0 v
vkytk=n
2 2
AH 2 1 n+2 3
Lhen, Id |S 4 —— |a | + daH® — la (i< n—1)| .
¥ 2 n-2 - . rnax
£ 2 n-&

It is ecasy to verify Lhat for the equilibrium solution of
must be equal to zera, and ai, a2z are arbitrary. Note that

except fTor the origin, if

3 o
(i=0,1,2)} =« w/1/ (20 oH®)

|q
max
G

£ > aa®H?

statas of
relatiaon -

of the
(10)

b=3 ac

lv_1‘§1

the series must be almost everywhere convergent. It means

there is an equilibrium configuration corresponding

to

(12)

that
the

convergent series. If the paremeters do not satisfy the conditions

tr1), (12}, it 1s quite possible that the series 1is not
convergent, and there is not an equilibrium configuration
corresponding to it When any of the parameters (a, A/E, a1,

a2)varies with time, the vquilibrium configuration depending on

them may become into nonequilibrium, and collapses.
anothaer cause of the violent bursts.
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The state of b=1.5 is similar to that of h=3. In this state te
recurrence formula for the coefficients of the power saeries is as

follows:
A4 ~
a = - {————— (n=1) (n-2) a _ + darf ] /[(nmd](nmﬁ)] (13)
n -2 n-22 N
4k
where
[- n—1 n—-1
d = ¥ a a a_ - d d ]/QG 7 (14)
" l— i,j,k=4,(L+J'l'l;:Y)+b; » ok L',J'=btl'£)’):rn»b b

It is easy to verify that if acFaimaz=do=da=de=da=ca=du=0, a+ and

as are arbitrsery (but they are all smaller than 1) and Asz/dE« 1,

aHz/da/z< 1/4, the power serics is almost cverywhere convergent,
and the cquilibrium configuration exists. Otherwise, the latter
may not exist. In order to compare the cquiliurium coanfigurations
with the relevant observational phenomena, we consider
nonisotharmal cases. In this paper we anly study a model of a
temperature distribution which only depends on F. 1t is as follows
: v
T'= T/ [1—log [ (F-F ) + 1] J (15)
o

where a’= o/ Bo. @<, vacl, are dimensionless parameters. This
model denotes that the highest temperature in the region

considered occurs at the neutral sheet. Now Equation (5) becomes

( ) £ 1) vz L4y b
al ”[“”‘Fo)”} [““’“ Cpernin) U (hmef ) aF T

1 Lo - 2/ H
+ —2——(?0(30H z} e = ¢ () (16)

where Fo is the value of F at which the temperature is not
affected by magnetic field. (The meaning of Co and f3c are the same

as those in Melville et al., 1984). After substituting for = in
the right-hand side of fquation (16} from the isothermal solution
of F, and solving numerically the Poisson aquation, we derive o
second approximate solution of Equation {16). (The first

approximate solution is the caorresponding isothcermal solulion) .
Then we perform a standard iteration, say

AF = ¢ (F ) (17)
n n-1

where n = 1, 2, 3, ......... , assuming that solutions exist.
IIT. Summary

The equilibrium states of different values of b in Ecquatian (S)
are disjoint sets, a state cannot evalve smoothly to another state
of a different b. For a given value of b, conditions (13) and (14)
can help one to discriminate between the definite existence and

the possibility thatno equilibrium exists. A set of perameters
satisfying the conditions corresponds to an equilibrium
configuration. Otherwise equilibrium may not exist. Variation of
parameters may caeuse a global lcss of equilibrium. This means

that an eruption of MHS structures and & two-ribbon flasres occur.

The numerical sclution of Equation (16} (for b=1.5) wa s aobtained
successfully. Fig. 1 shows one of the equilibrium configurations
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for b=1.5, A=0.0. There is a neutral sheet there. The directions
of the magnetic fields are denoted by arrows. Fig. 2 shows one . of
the equilibrium configurations for b=3, A=1.0 (See Sun and Liu
1989) . When parameter A becomes zero, the configuration evolves to
that shown in Fig. 1; it wmeens that a neutral sheet occurs. Fig. 3
shows a nonisaothermal equilibrium configuration. It is clear thsat,
when the temperature of the plasma nesar the neutral sheet rises, a
great part of the magnetic field rises upward, and a part of the
weak field - originally located over the neutral sheet - becomes
e magnetic island and the magnetic field lines curve upward.
Because equilibrium still exists, the confipuretion can be seen
for quite o long time. Following the rise of temperature at the
neutral sheet, loops with strong magnetic fields occur
successively at higher and higher heights, and the highest
temperature layer is alweys loceted at the top of the loops. It is
much more likely that nonisothermal equilibrium is responsible for
the post-flare phenomena. In the case of b=3, & similer situation
may also occur when A » (.

”.——'—m\\ -{40
. L -~ S
Fig. 1 Isclthermal equilibrium for b=1.5 // N
Solid line: neutlral sheet; dashed line: ) ”,._*\\.\ \-*20
magnetic field line. Relative coordinales ’l //’—'-"““‘s\\\ \
N\
1 ,’/’ SN\
I /, AR
122 1 3 1 A 0
s0 60 40 €0
5‘
-
N 7
Fig. 2 Isothermal equilibrium for b = 3. \ //
Relative coordinales. \\ //
! 4
* :
- 4
\ 6,.-""~ / -
P S R g i) \‘ \ . S ] P
- - - < 7’
DA TR Rt -0 N / \ / yd
. SIS \ \
CNoommmm=zas R \\ | /l J"'\ \ / //
=~ N P \ ;. N | i 3
\“l:"_‘l/ . 3 \‘II \ t / —
~7 Jeo Seo Aty Vo Ja -
2 \ A lil ,J / / / ,/ 2‘
3\ \ ‘\H" /V-\] e Pl 4 l 7 ’/L
~ sl AP A S S
0 ¢xH
.’.,-—- - ~."\ 14
P R S -
, -~ YN Fig. 3 Nonisothermal equilibrium of
/ /./ '\_ N 420 b=1.35. Dash-dolted lineimagnetic field
{7 \ \] line; Dolted-line: magnetic island;
(| eI \ / relalive coordinates.
AN 1" N -'/'
SN N 1 N Lo
80 60 40 20 0

References

Bluman, G.W. and Cole, J.0., Similarity Methods for ODifferential
Equations, Springer-Verlag, (1974).
Brown, A., Ap. J. 128 (1958).

Heyvaerts, J., Lasry, J.M. and Witomskey, G., Lecture

782 (1980).

Notes Math.

Jockers, K., Solar Phys. 58 (1978)

Melville, J.P., Hood, A.W. and Priest, E.R., Solar Phys. 92
(1984) .

Melville, J.P., Hood, A.W. and Priest, E.R., Geophys. Astrophys.

Fluid Dynamics 39 (1987).
Priest,-E.R. and Milne, A.M., Solar Phys. 65 (1980).
Sun, K., Zhang, 0. and Wang, Y., Kexue Tongbao 32 (1987).

https://doi.org/10.1017/50252921100154399 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100154399

