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Abstract

Let M be a forward-shift-invariant subspace and N a backward-shift-invariant subspace in the Hardy
space H2 on the bidisc. We assume that H2

= N ⊕ M . Using the wandering subspace of M and N ,
we study the relations between M and N . Moreover we study M and N using several natural operators
defined by shift operators on H2.
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1. Introduction

Let 02 be the torus, that is, the Cartesian product of two unit circles 0 in C. Let p = 2
or p = ∞. The usual Lebesgue spaces, with respect to the Haar measure m on 02,
are denoted by L p

= L p(02), and H p
= H p(02) is the space of all f in L p whose

Fourier coefficients

f̂ ( j, `) =

∫
02

f (z, w)z̄ j w̄` dm(z, w)

vanish if at least one of j and ` is negative. Then H p is called the Hardy space. As
02

= 0z × 0w, H p(0z) and H p(0w) denote the one-variable Hardy spaces.
Let PH2 be the orthogonal projection from L2 onto H2. For φ in L∞, the Toeplitz

operator Tφ is defined by

Tφ f = PH2(φ f ) for all f ∈ H2.

A closed subspace M of H2 is said to be forward-shift-invariant if Tz M ⊂ M and
Tw M ⊂ M , and a closed subspace N of H2 is said to be backward-shift-invariant if
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T ∗
z N ⊂ N and T ∗

w N ⊂ N . Let PM and PN be the orthogonal projections from H2

onto M and N , respectively. In this paper, we assume that M ⊕ N = H2, that is,
PM + PN = I where I is the identity operator on H2. Let

A = PM Tz PN and B = PN T ∗
w PM .

For φ in H∞,

Vφ f = PM (φ f ) for all f ∈ M and Sφ f = PN (φ f ) for all f ∈ N .

Suppose that

V = Vz V ∗
w − V ∗

wVz and S = Sz S∗
w − S∗

wSz .

It is known [4] that AB|M = V and B A|N = S . Guo and Yang [3] showed that AB is
Hilbert–Schmidt under some mild conditions. In this paper, we study M or N when A,
B, AB or B A is of finite rank. Izuchi and Nakazi [4] described an invariant subspace
M or N with A = 0 or B = 0. Mandrekar [6], Ghatage and Mandrekar [2] and
Nakazi [7, 8] described an invariant subspace M with AB = 0. Izuchi and Nakazi [4]
and Izuchi et al. [5] described an invariant subspace N with B A = 0.

For a forward-shift-invariant subspace M , put

M1 = ker V ∗
z , M2 = ker V ∗

w and M0 = M1 ∩ M2.

These are called wandering subspaces for M . In this paper, [·] denotes the closed span.
For a backward-shift-invariant subspace N , with M = H2

	 N , put

N1 = [T ∗
z M1], N2 = [T ∗

w M2] and N0 = N1 ∩ N2.

These are called wandering subspaces for N .
In Section 2 we decompose and study M and N using the wandering subspaces

M1, M2, N1 and N2. In Section 3 we study M and N when A or B is of
finite rank. For an operator K , r(K ) denotes the rank of K . In Section 4 we
show that r(AB) = dim N1 ∩ N2 in general, and r(B A) = dim M1 ∩ M2 under some
mild conditions.

In this paper, for a bounded linear operator X on H2, ranX = X H2 and ker X =

{ f ∈ H2
| X f = 0}.

2. Wandering subspaces

Let M be a forward-shift-invariant subspace, and N be a backward-shift-invariant
subspace with H2

= M ⊕ N . Put

M∞
z =

∞⋂
n=1

{ f ∈ M | z̄n f ∈ M} and M∞
w =

∞⋂
n=1

{ f ∈ M | w̄n f ∈ M},

https://doi.org/10.1017/S1446788708000256 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000256


[3] Invariant subspaces in the bidisc and wandering subspaces 369

and

N∞
z =

∞⋂
n=1

{ f ∈ N | zn f ∈ N } and N∞
w =

∞⋂
n=1

{ f ∈ N | wn f ∈ N }.

In the case of one variable, M∞
z = N∞

z = [0]. In the case of two variables, M∞
z is also

always [0] but N∞
z may not be [0]. In fact, if N ⊃ q1 H2(0z) then N∞

z ⊃ q1 H2(0z)

where q1 = q1(z) is an inner function of one variable.

THEOREM 1. Let N be a backward-shift-invariant subspace and M = H2
	 N.

(1) M∞
z = M∞

w = [0] and M =
∑

∞

n=0 ⊕ T n
z M1 =

∑
∞

n=0 ⊕ T n
w M2.

(2) N = [
⋃

∞

n=0T ∗n
z N1] ⊕ N∞

z = [
⋃

∞

n=0T ∗n
w N2] ⊕ N∞

w .

PROOF. (1) is well known. To prove (2): if f ∈ N∞
z , then by definition zn f ∈ N

for any n ≥ 1, and hence f is orthogonal to [
⋃

∞

n=0T ∗n
z N1]. Conversely, suppose

that f is orthogonal to
⋃

∞

n=0T ∗n
z N1. Since f ⊥N1, z f is orthogonal to M1 + zM

because N1 = T ∗
z M1 and f ∈ N . Hence z f ∈ N . Since f ⊥T ∗

z N1, z2 f is orthogonal
to M1 + zM because T ∗

z N1 = T ∗2
z M1 and z f ∈ N . Hence z2 f ∈ N . By repeating the

same argument, we can show that zn f belongs to N for any n ≥ 1. This implies (2). 2

COROLLARY 2. Let N be a backward-shift-invariant subspace.

(1) N = N∞
z if and only if N = H2(0z) ⊗ (H2(0w) 	 q2 H2(0w)) where

q2 = q2(w) is an inner function of one variable.
(2) N = [

⋃
∞

n=0T ∗n
z N1] if and only if for each nonzero f in N there exists n ≥ 1 such

that zn f /∈ N.

PROOF. (1) If N = N∞
z then N1 = 0 and so T ∗

z M1 = 0. Hence M1 ⊂ H2(0w), so
M1 = q2 H2(0w) by a well-known theorem of Beurling [1]. Thus M = q2 H2, and so

N = H2(0z) ⊗ (H2(0w) 	 q2 H2(0w)).

Conversely, if M = q2 H2 then M1 = q2 H2(0w), and so N1 = T ∗
z M1 = 0. Part (2) is

clear by (2) of Theorem 1. 2

By (1) of Theorem 1, both M1 and M2 are cyclic subspaces for Tz and Tw: that is,[ ⋃
(n,m)≥(0,0)

T n
z T m

w M j

]
= M for j = 1, 2.

It may happen that [ ⋃
(n,m)≥(0,0)

T n
z T m

w M0

]
= M,

where M0 = M1 ∩ M2. By (2) of Theorem 1, if N∞
z = [0] or N∞

w = [0] then N1 or N2
is a cyclic subspace for T ∗

z and T ∗
w: that is,
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(n,m)≥(0,0)

T ∗n
z T ∗m

w N j

]
= N for j = 1, 2.

In general, N0 may not be a cyclic subspace because N0 = [0] may happen. We can ask
whether T ∗

z M0 or T ∗
w M0 is a cyclic subspace for T ∗

z and T ∗
w because N1 ⊃ T ∗

z M0 and
N2 ⊃ T ∗

w M0. However, this is not true. If M = zH2 then N = H2(0w) and M0 = [z].
Then T ∗

w M0 = [0] and T ∗
z M0 = [1].

EXAMPLE 1. Let N = H2(0z) + H2(0w). Then the following hold.

(1) N1 = wH2(0w), N2 = zH2(0z) and N0 = [0].
(2) [

⋃
n≥0T ∗n

z N1] = wH2(0w), [
⋃

n≥0T ∗n
w N2] = zH2(0z) and [

⋃
(n,m)≥0T ∗n

z
T ∗m

w N0] = [0].
(3) N∞

z = H2(0z) and N∞
w = H2(0w).

EXAMPLE 2. Let N = C and M = zH2
+ wH2. Then the following hold.

(1) N1 = N2 = N0 = C.
(2) [

⋃
n≥0T ∗n

z N1] = [
⋃

n≥0T ∗n
w N2] = [

⋃
(n,m)≥(0,0)T

∗n
z T ∗m

w N0] = N .
(3) N∞

z = N∞
w = [0].

EXAMPLE 3. Let

N = (H2(0z) 	 q1 H2(0z)) ⊗ (H2(0w) 	 q2 H2(0w))

and M = q1 H2
+ q2 H2, where q1 = q1(z) and q2 = q2(w) are inner functions of one

variable.

(1) M1 = q1(H2(0w) 	 q2 H2(0w)) ⊕ q2 H2(0w) and M2 = q2(H2(0z) 	 q1 H2

(0z)) ⊕ q1 H2(0z).
(2) N1 = (T ∗

z q1)(H2(0w) 	 q2 H2(0w)), N2 = (T ∗
wq2)(H2(0z) 	 q1 H2(0z)) and

N0 = 〈(T ∗
z q1)(T ∗

wq2)〉.
(3) [

⋃
n≥0 T ∗n

z N1] = [
⋃

n≥0 T ∗n
w N2] = [

⋃
(n,m)≥(0,0) T ∗n

z T ∗m
w N0] = N .

PROOF. (2) and (3) follow from (1). It is known [4] that

M = q2 H2
⊕ q1(H2

	 q2 H2) = (H2(0z) ⊗ q2 H2(0w))

⊕{q1 H2(0z) ⊗ (H2(0w) 	 q2 H2(0w))}.

Hence (1) follows. 2

3. r(A) < ∞ or r(B) < ∞

Recall that A = PM Tz PN and B = PN T ∗
w PM (see Introduction). In this section, we

are interested in the case when A or B is of finite rank. We know a characterization
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of A = 0 or B = 0 (see [3]). In fact, A = 0 if and only if N = H2 or N = H2
	 q H2

where q = q(w) is an inner function of one variable, and B = 0 if and only if M = [0]

or M = q H2 where q = q(z) is an inner function of one variable. In one-variable
Hardy space, either A is of rank one for any N or B is of rank one for any M .

LEMMA 3. Let M be a forward-shift-invariant subspace of H2 and N = H2
	 M.

(1) [ranA] ⊆ M1 and ker A = { f ∈ N | Tz f ∈ N } ⊕ M.
(2) [ranA∗

] = N1 and ker A∗
= { f ∈ M | T ∗

z f ∈ M} ⊕ N.
(3) M1 = [ranA] ⊕ {ker A∗

	 (Tz M ⊕ N )}.
(4) M = [ranA] ⊕ (ker A∗

	 N ) and N = [ranA∗
] ⊕ (ker A 	 M).

PROOF. (1) By the definitions, [ranA] = [PM Tz N ] ⊆ M1 because Tz N is orthogonal
to Tz M and

ker A = { f ∈ N | Tz f ∈ N } ⊕ M.

(2) Since T ∗
z M = T ∗

z M1 ⊕ M , [ranA∗
] = [T ∗

z M1] = N1. By definition,

ker A∗
= { f ∈ M | T ∗

z f ∈ M} ⊕ N .

(3) is clear from (1) and the fact that H2
= [ranA] ⊕ ker A∗. (4) is clear from (1), (2)

and the fact that H2
= [ranA∗

] ⊕ ker A. 2

LEMMA 4. Let M be a forward-shift-invariant subspace of H2 and N = H2
	 M.

(1) [ranA] = M1 	 (M1 ∩ ker T ∗
z ).

(2) ker A∗
= (M1 ∩ ker T ∗

z ) ⊕ Tz M ⊕ N.

PROOF. (1) Since Tz N⊥ ker T ∗
z , Tz N⊥M1 ∩ ker T ∗

z , so PM Tz N⊥M1 ∩ ker T ∗
z .

Hence, by (1) of Lemma 3, [ranA] ⊆ M1 	 (M1 ∩ ker T ∗
z ). If f ∈ M1 and f ⊥ranA,

then f ⊥Tz N and so T ∗
z f ⊥N . Hence T ∗

z f ∈ N ∩ M , because T ∗
z M1⊥M . Hence

T ∗
z f = 0. (2) follows from (1), by (2) of Lemma 3. 2

LEMMA 5. Let M be a forward-shift-invariant subspace of H2. If [ranA] 6= M1, then
M1 = [ranA] ⊕ q2 H2(0w).

PROOF. By Lemma 4, M1 	 [ranA] = M1 ∩ ker T ∗
z and M1 ∩ ker T ∗

z ⊂ H2(0w)

because ker T ∗
z = H2(0w). Hence w(M1 ∩ ker T ∗

z )⊥zM , and so

w(M1 ∩ ker T ∗
z ) ⊆ M1 ∩ ker T ∗

z .

By a theorem of Beurling [1], M1 	 [ranA] = q2 H2(0w) for some one-variable inner
function q2 = q2(w). 2
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THEOREM 6. Let M be a nonzero forward-shift-invariant subspace.

(1) If r(A) < ∞, then there is a one-variable inner function q2 = q2(w) such that

M1 = ranA ⊕ q2 H2(0w) and M = q2 H2
⊕

{ ∞∑
j=0

⊕ (ranA)z j
}

where q2 = q2(w) is a one-variable inner function.
(2) If r(B) < ∞, then there is a one-variable inner function q1 = q1(z) such that

M2 = ranB∗
⊕ q1 H2(0z) and M = q1 H2

⊕

{ ∞∑
j=0

⊕ (ranB∗)w j
}

where q1 = q1(z) is a one-variable inner function.
(3) If r(A) < ∞ and r(B) < ∞ then there exist two inner functions q1 = q1(z)

and q2 = q2(w) such that q1 H2
+ q2 H2 is a closed forward-shift-invariant

subspace, M ⊇ q1 H2
+ q2 H2, and

dim{M1 + M2}/{q1 H2(0z) + q2 H2(0w)} ≤ r(A) + r(B).

PROOF. Since dim M1 = ∞ by [7, Theorem 3], if r(A) < ∞ then [ranA] 6= M1, and
so by Lemma 3, M1 = [ranA] ⊕ q2 H2(0w) for some one-variable inner function
q2 = q2(w). This implies (1). If r(B) < ∞, then r(B∗) < ∞. Since B∗

= PM Tw PN ,
(1) implies (2). If r(A) < ∞ and r(B) < ∞, (1) and (2) imply (3) because it is
known [4] that q1 H2

+ q2 H2 is closed. 2

COROLLARY 7.

(1) If A = 0, then M = [0] or M = q2 H2 for some one-variable inner function
q2 = q2(w).

(2) If B = 0, then M = [0] or M = q1 H2 for some one-variable inner function
q1 = q1(z).

COROLLARY 8.

(1) If 0 ≤ n ≤ ∞ and 0 ≤ m ≤ ∞, then there exist invariant subspaces M and N
such that r(A) = n and r(B) = m.

(2) If r(B) = 0, then r(A) = 0 or r(A) = ∞. If r(A) = 0, then r(B) is 0 or ∞.

PROOF. (1) Let 1 ≤ n < ∞ and 1 ≤ m < ∞. Suppose that M = zm H2
+ wn H2.

Then

M1 = wn H2(0w) + [1, w, . . . , wn−1
]zm and

M2 = zm H2(0z) + [1, z, . . . , zm−1
]wn.

By (1) and (2) of Theorem 6, r(A) = n and r(B) = m.
(2) If r(B) = 0, then by (2) of Corollary 7, M = [0] or M = q1 H2 where q1 = q1(z)

is a one-variable inner function. If M = [0] then r(A) = 0 by definition. If M = q1 H2
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then M1 = q1 H2(0w), and so if r(A) < ∞ then by (1) of Theorem 6 M1 ⊃ q2 H2(0w)

for some one-variable inner function q2 = q2(w). This implies that q1 is constant.
Hence M = H2, and so A = 0. 2

For a finite Blaschke product q, deg q denotes the number of zeros of q counting
multiplicity.

COROLLARY 9. If M = q1 H2
+ q2 H2 where q1 = q1(z) and q2 = q2(w) are one-

variable inner functions, then

[ranA] = q1(H2(0w) 	 q2 H2(0w)) and [ranB∗
] = q2(H2(0z) 	 q1 H2(0z)).

If r(A) < ∞ and r(B) < ∞, then r(A) = deg q2 and r(B) = deg q1.

COROLLARY 10. Let M be a forward-shift-invariant subspace. If M is of finite
codimension n, then r(A) ≤ n, r(B) ≤ n, and M ⊇ q1 H2

+ q2 H2 where q1 = q1(z)
and q2 = q2(w) are one-variable finite Blaschke products.

PROOF. By the definitions of A and B, it is clear that r(A) ≤ n and r(B) ≤ n. The
second statement follows from (3) of Theorem 6. 2

PROPOSITION 11. Let M be a forward-shift-invariant subspace. Then M ⊇ q1 H2

+ q2 H2 for some one-variable inner functions q1 = q1(z) and q2 = q2(w) if and only
if [ranA] 6= M1 and [ranB∗

] 6= M2.

PROOF. The ‘if’ part is clear by Lemma 5. If M ⊇ q1 H2, then q1 H2(0z) is orthogonal
to wM , and so q1 H2(0z) ⊆ M2. Hence Lemma 4 implies that [ranB∗

] 6= M2.
Similarly we can prove that if M ⊇ q2 H2 then [ranA] 6= M1. 2

PROPOSITION 12. N1 = [ranA∗
] and N2 = [ranB]. Hence dim N1 = r(A) and

dim N2 = r(B).

PROOF. This follows from (2) of Lemma 3. 2

4. r(AB) < ∞ or r(B A) < ∞

Let M be a forward-shift-invariant subspace and N = H2
	 M . Recall the

definitions of V and S in the Introduction. It is known [4] that AB|M = V and
B A|N = S . Then AB = 0 if and only if V = 0, and B A = 0 if and only if S = 0.
We know the characterization of an invariant subspace such that AB = 0 or B A = 0.
In fact, it is known (see [6–8]) that AB = 0 if and only if M = q H2 for some inner
function q. Recently it was proved (see [4, 5]) that B A = 0 if and only if

N = (H2(0z) 	 q1 H2(0z)) ⊗ (H2(0w) 	 q2 H2(0w)),

N = (H2(0z) 	 q1 H2(0z)) ⊗ H2(0w), or

N = H2(0z) ⊗ (H2(0w) 	 q2 H2(0w)),

where q1 = q1(z) and q2 = q2(w) are one-variable inner functions. In this section, we
study invariant subspaces such that r(AB) < ∞ or r(B A) < ∞.
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LEMMA 13. Let M be a forward-shift-invariant subspace and N = H2
	 M.

(1) r(B A) = dim([PM Tz N ] ∩ [PM Tw N ]).
(2) r(AB) = dim([PN T ∗

z M] ∩ [PN T ∗
w M]).

PROOF. (1) Since [B AH2
] = [B[ranA]], r(B A) = dim((ker B)⊥ ∩ [ranA]). This

implies (1) because (ker B)⊥ = [ranB∗
] = [PM Tw N ] and [ranA] = [PM Tz N ]2.

(2) can be proved similarly. 2

THEOREM 14. Let M be a forward-shift-invariant subspace of H2 and N = H2
	 M.

(1) If M1 ∩ ker T ∗
z = [0] and M2 ∩ ker T ∗

w = [0], then r(B A) = dim M1 ∩ M2.
(2) r(AB) = dim N1 ∩ N2.

PROOF. (1) By (1) and (2) of Lemma 3,

[ranA] = [PM Tz N ] ⊆ M1 and [ranB∗
] = [PM Tw N ] ⊆ M2.

By Lemma 4, if M1 ∩ ker T ∗
z = [0] then [PM Tz N ] = M1, and if M2 ∩ ker T ∗

w = [0]

then [PM Tw N ] = M2. Hence, r(B A) = dim M1 ∩ M2 by Lemma 13.
(2) Since [PN T ∗

z M] = [PN T ∗
z M1] = N1 and [PN T ∗

w M] = [PN T ∗
w M2] = N2, by

Lemma 13 r(AB) = dim N1 ∩ N2. 2

In (1) of Theorem 14, we need the condition M1 ∩ ker T ∗
z = M2 ∩ ker T ∗

w = [0].
In fact, M1 ∩ M2 is always nontrivial but B A may be zero.
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