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Abstract

Let M be a forward-shift-invariant subspace and N a backward-shift-invariant subspace in the Hardy
space H? on the bidisc. We assume that H> = N @ M. Using the wandering subspace of M and N,
we study the relations between M and N. Moreover we study M and N using several natural operators
defined by shift operators on H?.
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1. Introduction

Let "2 be the torus, that is, the Cartesian product of two unit circles I in C. Let p =2
or p=o0c. The usual Lebesgue spaces, with respect to the Haar measure m on I'2,
are denoted by L? = LP(I'?), and HP = HP(I'?) is the space of all f in L? whose
Fourier coefficients

£, 0 :/ fz, wzw' dm(z, w)
F2

vanish if at least one of j and ¢ is negative. Then H? is called the Hardy space. As
=T, x Ty, H(I',) and HP(I',,) denote the one-variable Hardy spaces.

Let Py be the orthogonal projection from L2 onto H?2. For ¢ in L™, the Toeplitz
operator Ty is defined by

Tpf = Pya(¢f) forall f e H?

A closed subspace M of H? is said to be forward-shift-invariant if T,M C M and
T,M C M, and a closed subspace N of H? is said to be backward-shift-invariant if
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TYN CN and T;N C N. Let Py and Py be the orthogonal projections from H 2
onto M and N, respectively. In this paper, we assume that M @& N = H?, that is,
Py + Py = I where I is the identity operator on H?2. Let

A=PyT,Py and B=PyT,Py.
For ¢ in H*®,
Vof = Pu(@f) forall feM and Syf = Py(¢f) forall feN.
Suppose that
V=V Vy—VyV, and S=8.S; —S;S..

It is known [4] that AB|y =)V and BA|y = S. Guo and Yang [3] showed that AB is
Hilbert—Schmidt under some mild conditions. In this paper, we study M or N when A,
B, AB or BA is of finite rank. Izuchi and Nakazi [4] described an invariant subspace
M or N with A=0 or B=0. Mandrekar [6], Ghatage and Mandrekar [2] and
Nakazi [7, 8] described an invariant subspace M with AB = 0. Izuchi and Nakazi [4]
and Izuchi et al. [5] described an invariant subspace N with BA = 0.

For a forward-shift-invariant subspace M, put

My =%ker V), My=kerV, and Mo=M;NM,.

These are called wandering subspaces for M. In this paper, [-] denotes the closed span.
For a backward-shift-invariant subspace N, with M = H> & N, put

Ny =[TfM], Ny=[T:M,] and No=N;NNa.

These are called wandering subspaces for N.

In Section 2 we decompose and study M and N using the wandering subspaces
M, M>, Nip and N,. In Section 3 we study M and N when A or B is of
finite rank. For an operator K, r(K) denotes the rank of K. In Section 4 we
show that r(AB) = dim N N N, in general, and r(BA) = dim M| N M, under some
mild conditions.

In this paper, for a bounded linear operator X on H?, ranX = X H? and ker X =
{f e H2 | Xf =0}

2. Wandering subspaces

Let M be a forward-shift-invariant subspace, and N be a backward-shift-invariant
subspace with H> = M & N. Put

MP=(YfeM|Z"feM) and MY =({feM|uw"feM),

n=1 n=1
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and

o.¢] o
N®=(feN|"feN} and NP =[){feN|w'feN)

n=1 n=1
In the case of one variable, M2° = N2° = [0]. In the case of two variables, M° is also
always [0] but N>° may not be [0]. In fact, if N D q1H?(T,) then N> g H*(T,)
where g1 = ¢1(z) is an inner function of one variable.
THEOREM 1. Let N be a backward-shift-invariant subspace and M = H*> & N.
() MX=MP=[0landM =32 ®T'M; =) ,20®TiM>.
@ N=IUZT Nl @ N° = (U Ty Mol @ N,
PROOF. (1) is well known. To prove (2): if f € N°, then by definition z" f € N
for any n > 1, and hence f is orthogonal to [UZOZOTZ*”Nl]. Conversely, suppose
that f is orthogonal to | J;- (7" Ny. Since fLNj, zf is orthogonal to M; +zM
because Ny = T*M; and f € N. Hence zf € N. Since f LT}N1, Z2 f is orthogonal

to My + zM because TN = TZ*2M1 and zf € N. Hence z> f € N. By repeating the
same argument, we can show that z”* f belongs to N for any n > 1. This implies (2). O

COROLLARY 2. Let N be a backward-shift-invariant subspace.

(1) N=NX if and only if N=H>T,;)® (H*(Ty) O q@H*(I'y)) where
q2 = q2(w) is an inner function of one variable.

2) N= [UZOZOTZ*" N1] if and only if for each nonzero f in N there exists n > 1 such
that 7" f ¢ N.

PROOF. (1) If N = N{° then N; =0 and so T M; =0. Hence M C H2(y,), so
M = ngz(Fw) by a well-known theorem of Beurling [1]. Thus M = quZ, and so
N = H*(T;) ® (H*(Ty) © 2 H*(T'y)).

Conversely, if M = gy H? then M| = g2 H*(T',), and so N| = T;M; =0. Part (2) is
clear by (2) of Theorem 1. O
By (1) of Theorem 1, both M and M, are cyclic subspaces for T, and T),: that is,

[ TZ”TﬁMj]:M for j =1, 2.
(n,m)>(0,0)

It may happen that
[ T, M()i| =M,
(n,m)=(0,0)

where Mo = M| N M. By (2) of Theorem 1, if N2° = [0] or N° = [0] then N; or N
is a cyclic subspace for 7" and 7;: that is,
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[ U TZ*"T;;mNj]zN for j =1, 2.
(n,m)=(0,0)

In general, No may not be a cyclic subspace because Ny = [0] may happen. We can ask
whether T My or T,; My is a cyclic subspace for T* and 7,5 because N1 O T M, and
N> D Ty My. However, this is not true. If M = zH? then N = H%(I'y) and Mg = [z].
Then Ty Mo = [0] and T* Mo = [1].

EXAMPLE 1. Let N = H*(I';) + H*(I',). Then the following hold.

() Ni=wH?*(T'y), N, =zH*(T;) and Ny = [0].

@) Up=oTX" Nl =wH*(Ty),  [Up=oTy"Nol = zH*(T2) and [y m=0T2"
T No] = [0].

(3) N> =H*I)and N = H*(T'y).

EXAMPLE 2. Let N = C and M = zH* + wH?. Then the following hold.

(1) Ni=N,=Ny=C.

(2) [UnzOTz*an] = [UnEOth;nNZ] = [U(n,m)z(0,0) Tz*n TzszO] = N.

(3) NX=NF =0l

EXAMPLE 3. Let
N = (H*(;) © ¢ H*(T',)) ® (H*(T,) © 2 H*(T'y))

and M = g1 H? + g> H?, where g1 = ¢1(z) and ¢> = g»(w) are inner functions of one
variable.

() Mi=q(H*Tw) © 2H*(Ty)) ® 2 H*(Ty) and My = q2(H*(T;) © 1 H?
(T2) ® i H*(T,).

(2) Ni=(T}q)(H*(Ty) © ¢2H*(Ty)), Nao= (Tiq2)(H*(T;) © g1 H*(T';)) and
No = ((T¥q)(T;}q2)).

3 Uuso "Nl =1U,50 Ty N2l = U my=0.0) T T Nol = N.

PROOF. (2) and (3) follow from (1). It is known [4] that

M = qH? ® q1(H? © 2 H%) = (H*(T';) ® 2 H*(T'))
Sl H*(T;) ® (H*(Ty) © 2 H*(Tw))).

Hence (1) follows. O

3. r(A) <occorr(B) <o

Recall that A = Py T, Py and B = PyT,; Py (see Introduction). In this section, we
are interested in the case when A or B is of finite rank. We know a characterization
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of A=0or B =0 (see [3]). Infact,A:OifandonlyifN:H2 orN:HzeqH2
where ¢ = ¢(w) is an inner function of one variable, and B = 0 if and only if M = [0]
or M =qH? where g = ¢q(z) is an inner function of one variable. In one-variable
Hardy space, either A is of rank one for any N or B is of rank one for any M.

LEMMA 3. Let M be a forward-shift-invariant subspace of H*> and N = H> © M.

(1) [ranA]C MjandkerA={feN|T,feN}d M.

(2) [ranA*]=Njandker A*={feM|T fecM}®N.

(3) M) =[ranA] & {ker A* © (T;M & N)}.

4) M =[ranA] ® (ker A*© N) and N = [ranA*] @ (ker A © M).

PROOF. (1) By the definitions, [ranA] =[Py T;N] S M because T, N is orthogonal
to T M and

kerA={feN|T,feN}d M.
(2) Since T)M =T M & M, [ranA*] = [T M] = N;. By definition,
kerA*={feM|T feM}®N.

(3) is clear from (1) and the fact that HZ = [ranA] @ ker A*. (4) is clear from (1), (2)
and the fact that H2 = [ranA*] & ker A. O

LEMMA 4. Let M be a forward-shift-invariant subspace of H> and N = H> & M.
(1) [ranA] =M, © (M| Nker T}).
(2) kerA*=M;NkerT})®T.M D N.

PROOF. (1) Since TN LkerT}, T,N1M;NkerT}, so PyT,NLM;NkerT}.
Hence, by (1) of Lemma 3, [ranA] € M; © (M| Nker T). If f € My and f LranA,
then f1T.N and so T f1N. Hence T f € N N M, because T;M; 1L M. Hence
T} f =0. (2) follows from (1), by (2) of Lemma 3. O

LEMMA 5. Let M be a forward-shift-invariant subspace of H>. If [ranA] % M, then
My = [ranA] ® g HA(T',)).

PROOF. By Lemma 4, M; © [ranA]= M Nker T and M; Nker T} C H*(T'y)
because ker T* = H?*(I'y). Hence w(M; N ker T})LzM, and so

w(My Nker T) € My Nker T}.

By a theorem of Beurling [1], M © [ranA] = ¢ H 2(r,,) for some one-variable inner
function ¢» = g2 (w). O
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THEOREM 6. Let M be a nonzero forward-shift-invariant subspace.

(1) Ifr(A) < oo, then there is a one-variable inner function g, = q>(w) such that
w .
M =ranA ® ¢ H>(Ty) and M =qH>® {Z ® (ranA)zf}
=0

where g3 = q2(w) is a one-variable inner function.
(2) Ifr(B) < oo, then there is a one-variable inner function q1 = q1(z) such that

o0
M>=ranB* ® i H>(T;) and M =q H>® {Z ® (ranB*)w-i}
j=0

where g1 = q1(2) is a one-variable inner function.

(3) Ifr(A) <oo and r(B) < oo then there exist two inner functions q1 = q1(z)
and g> = qa(w) such that qiH*> + q2H? is a closed forward-shift-invariant
subspace, M D q1H?> + g2 H?, and

dim{M + Ma}/{q H*(T)) + g2 H*(Ty)} < r(A) +r(B).

PROOF. Since dim M| = oo by [7, Theorem 3], if #(A) < oo then [ranA] # M}, and
so by Lemma 3, M| =[ranA] ® ¢o H 2(Fw) for some one-variable inner function
q2 = q2(w). This implies (1). If r(B) < oo, then r(B*) < co. Since B* = Py Ty, Py,
(1) implies (2). If r(A) < oo and r(B) <00, (1) and (2) imply (3) because it is
known [4] that quz + quz is closed. O

COROLLARY 7.

(1) If A=0, then M =[0] or M =q,H? for some one-variable inner function

92 = q2(w).
(2) If B=0, then M =[0] or M = qH? for some one-variable inner function
q1 = q1(2).

COROLLARY 8.

(1) If0<n<ooand 0 <m < o0, then there exist invariant subspaces M and N
such that r(A) = n and r (B) = m.
2) Ifr(B)=0,thenr(A)=00rr(A)=o0. Ifr(A) =0, then r(B) is 0 or co.

PROOF. (1) Let 1 <n <oo and 1 <m < oo. Suppose that M =z"H? + w"H?.
Then

My = w"H*(Ty) +[1, w, ..., w" 'z" and

My =7"H* )+l z,....2" "

By (1) and (2) of Theorem 6, ¥(A) = n and r(B) = m.
(2)If r(B) = 0, then by (2) of Corollary 7, M = [0]or M = qu2 where g1 = ¢1(2)
is a one-variable inner function. If M = [0] then r(A) = 0 by definition. If M =g H 2
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then M| = q1H2(Fw), and so if r(A) < oo then by (1) of Theorem 6 M| D q2H2(Fw)
for some one-variable inner function g2 = g2(w). This implies that g; is constant.
HenceM:Hz, andso A =0. |

For a finite Blaschke product ¢, deg ¢ denotes the number of zeros of ¢ counting

multiplicity.
COROLLARY 9. If M =g H? + qo H? where q1 = q1(z) and q> = q2(w) are one-
variable inner functions, then

[ranA] = g1 (H*(Ty) © 2 H*(Ty)) and [ranB*] = g2(H*(T';) © g1 H*(T',)).
Ifr(A) <ooandr(B) < oo, then r(A) =deg g and r(B) = deg q.

COROLLARY 10. Let M be a forward-shift-invariant subspace. If M is of finite
codimension n, then r(A) <n, r(B) <n, and M D qu2 + quz where q1 = q1(2)
and q3 = q>(w) are one-variable finite Blaschke products.

PROOF. By the definitions of A and B, it is clear that 7(A) <n and r(B) <n. The
second statement follows from (3) of Theorem 6. O

PROPOSITION 11. Let M be a forward-shift-invariant subspace. Then M D g1 H>

+ g2 H? for some one-variable inner functions q1 = q1(z) and g = q>(w) if and only
if [ranA] # M| and [ranB*] # M.

PROOF. The ‘if” partis clear by Lemma 5. If M D gy H?, then g1 H?(I';) is orthogonal
to wM, and so quz(l"Z) C M;. Hence Lemma 4 implies that [ranB*] # M.

Similarly we can prove that if M D g» H? then [ranA] # M. O
PROPOSITION 12. Nj =[ranA*] and N, =[ranB]. Hence dim N1 =r(A) and
dim N =r(B).

PROOF. This follows from (2) of Lemma 3. O

4. r(AB) <ooorr(BA) <o

Let M be a forward-shift-invariant subspace and N = H>© M. Recall the
definitions of V and S in the Introduction. It is known [4] that AB|y =) and
BA|y =S8. Then AB =0 if and only if V =0, and BA =0 if and only if S =0.
We know the characterization of an invariant subspace such that AB =0 or BA =0.
In fact, it is known (see [6—-8]) that AB =0 if and only if M =g H 2 for some inner
function ¢. Recently it was proved (see [4, 5]) that BA =0 if and only if

N = (H*(;) © 1 H*(T,)) ® (H*(Ty) © g2 H*(Tw)),
N = (H*(I';) © 1 H*(T,)) ® H*(T,), or
N = H*(I',) ® (H*(Ty) © 2 H*(Tw)),

where g1 = ¢1(z) and g = g2(w) are one-variable inner functions. In this section, we
study invariant subspaces such that r(AB) < oo or r(BA) < oo.
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LEMMA 13. Let M be a forward-shift-invariant subspace and N = H> © M.

(1) r(BA) =dim((PyT,N1N[PyTyN]).
(2) r(AB)=dim([PyT M1 N [PyT:M]).

PROOF. (1) Since [BAH?]=[B[ranA]], r(BA) = dim((ker B)* N [ranA]). This
implies (1) because (ker B)J- = [ranB*] =[Py TyN] and [ranA] =[Py T.N]>.
(2) can be proved similarly. U

THEOREM 14. Let M be a forward-shift-invariant subspace of H*> and N = H> © M.

(1) If My Nker T = [0] and M Nker T = [0], then r(BA) = dim M; N Ma.
(2) r(AB) =dim N; N Na.

PROOF. (1) By (1) and (2) of Lemma 3,
[ranA] = [Py T,N] € M, and [ranB*]=[PyT,N]C M,.

By Lemma 4, if My Nker T} =[0] then [Py T;N] = M, and if M, Nker T, =[0]
then [Py Ty, N] = M>. Hence, r(BA) = dim M| N M, by Lemma 13.

(2) Since [PNTM]=[PNTM|]=N; and [PyTyM]=[PyT;M2]= N>, by
Lemma 13 r(AB) = dim N1 N Nj. O

In (1) of Theorem 14, we need the condition My Nker T, = M> Nker T,; = [0].
In fact, M1 N M, is always nontrivial but B A may be zero.
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