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Geometric Phase in Phasing of Antenna Arrays
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Abstract. The response of a pair of differently polarized antennas is
determined by their polarization states and a phase between them which
has a geometric part which becomes discontinuous at singular points in
the parameter space. Some consequences are described.

Introduction The geometric phase (also popularly known as Berry's phase)
finds some of its most easily visualizable manifestations in the physics of polar-
ized light (Bhandari 1997). In 1956, Pancharatnam defined the 'in-phase' con-
dition for two different, non-orthognal polarization states to be one for which
their interference yields maximum intensity and discovered that under a cycle
of transformations of the polarization state along a closed geodesic polygon on
the Poincare sphere (PS) the beam acquires a phase equal to half the solid angle
subtended by the polygon at the centre. Further work by the present author
has shown that the above geometric phase exhibits measurable jumps at sin-
gular points in the parameter space such that a circuit around the singularity
results in a measurable phase shift equal to 2n1r (Bhandari 1991, 1997). The flat
behaviour of the phase near a singularity has been used in adaptive optics to
make a spatial light modulator for pure intensity modulation, keeping phase con-
stant (Gordon and Gourlay 1996). In arrays phased by geometric phase shifters
(Fox 1947), phase singularities lead to the possibility of an array looking in two
different directions at two different wavelengths (Bhandari 1995).

A pair of antennas with different polarization Take two identical el-
liptically polarized antennas, in phase with each other, so that their resultant
intensity response is maximum 'on-axis'. Now rotate one of the antennas with
respect to the other by an angle ¢/2 (figure 1). The two will no longer be in
phase in that their combined response will not be maximum 'on-axis'. The phase
difference w between them (Pancharatnam), given by tan'l/J == cos(} tan(¢/2), is
shown in figure 1 for a few values of the polar angle () of the states on the PS.
Note the phase shift (i) is of magnitude 1r for a 21r rotation on the PS and (ii)
jumps through ±1r near () == 900

, ¢ == 1800 (as happens for 21r rotation in real
space of particles with odd half integer spin, verified in analogous polarization
experiments in an optical interferometer (Bhandari 1993)). We note that a sim-
ilar behaviour is implicit in the special case (}1 == (}2, Q==V==U==O of equation (8)
in Morris, Radhakrishnan, & Seielstad (1964) 2

2This equation has been re-derived by Weiler (1973) and Nityananda (1994).
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Figure 1. Two elliptically polarized antennas in states A and P, in
phase when ¢ = 0, get out of phase when ¢ =1= 0, by an amount shown
in the curves on the right.
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Interference nulls for non orthogonal states When radiation from a par-
tially_polarized source with degree of polarization p and eigenpolarizations P
and P is picked up by two antennas tuned to polarizations Al and A2 , then
for every polarization state AI, there is a state A2 , not orthogonal to AI, such
that the correlation of the two outputs is zero (Radhakrishnan 1994). A simple
way to prove this curious result is to consider a superposition of two interference
patterns; (i) due to a fraction (1 + p}/2 of the radiation in state P and (ii) due
to a fraction (1 - p)/2 in state P, with a phase difference of magnitude n , which
is a geometric phase due to the surface enclosed by the closed geodesic curve
P Al P A2 P on the PS (a hemisphere).
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