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INTERACTING URNS ON A FINITE DIRECTED GRAPH
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Abstract

We introduce a general two-colour interacting urn model on a finite directed graph,
where each urn at a node reinforces all the urns in its out-neighbours according to a fixed,
non-negative, and balanced reinforcement matrix. We show that the fraction of balls of
either colour converges almost surely to a deterministic limit if either the reinforcement
is not of Pólya type or the graph is such that every vertex with non-zero in-degree can
be reached from some vertex with zero in-degree. We also obtain joint central limit the-
orems with appropriate scalings. Furthermore, in the remaining case when there are no
vertices with zero in-degree and the reinforcement is of Pólya type, we restrict our anal-
ysis to a regular graph and show that the fraction of balls of either colour converges
almost surely to a finite random limit, which is the same across all the urns.

Keywords: Reinforcement; Pólya urns; Friedman urns; limit theorems; opinion dynamics
on networks; synchronisation
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1. Introduction

Systems with multiple components that evolve randomly through self-reinforcement or rein-
forcement via interactions with other components of the system have been of great interest for
a long time. Interacting urn models are often used to analyse such systems. Recently, there has
been a lot of activity in the area of interacting urns [8, 4, 5, 6, 2, 13]. In simplest terms, an urn
model or an urn process refers to a discrete-time random process that involves updating the
configuration of an urn consisting of balls of different colours, according to some reinforce-
ment rule. Here by the configuration of an urn at time t, we mean a vector whose ith element
represents the number of balls of colour i in the urn at time t. The reinforcement process is
assumed to be Markovian; that is, the reinforcement at any time depends only on the present
urn configuration. The most common means of self-reinforcement is to select a ball uniformly
at random from the urn at time t, and then, depending on the colour of the drawn ball, to add
to or remove from the urn a certain number of balls of each colour. Such an urn model can
be fully described by the initial configuration of the urn and the associated replacement matrix
whose (i, j)th element is the number of balls of colour j added to or removed from the urn when
a ball of colour i is drawn.
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Interacting urns on a finite directed graph 167

Traditionally, the study of urn models is classified based on the type of replacement matrix.
For instance, the replacement matrix for the classical Pólya urn model is the identity matrix.
That is, at every time-step a ball is drawn and is replaced in the urn along with another ball of
the same colour. The asymptotic properties of the Pólya urn model have been studied exten-
sively [9]. The best-known result for the Pólya urn model is that the fraction of balls of each
colour converges almost surely to a random limit, which is distributed according to a beta
distribution with parameters depending on the initial configuration of the urn. An immediate
generalisation of the two-colour Pólya urn model is the Friedman urn model [7], where the
chosen ball is replaced with α ≥ 0 balls of the same colour and β > 0 balls of the other colour.
In this case, the fraction of balls of either colour approaches the deterministic limit 1/2 with
probability 1. Several other generalisations of the Pólya urn model have been studied; we refer
the reader to [9] for details.

1.1. General two-colour interacting urn model

In this paper, we study urn processes involving more than one urn. We define a general two-
colour interacting urn model as a random process involving N urns, such that the reinforcement
in each urn depends on all the urns or on a non-trivial subset of the given set of N urns.
More precisely, suppose there are N urns with configurations (Wt

i , Bt
i), where Wt

i and Bt
i denote

the number of white balls and black balls respectively, at time t ≥ 0 in the ith urn, for every
i ∈ [N] := {1, . . . , N}. Let

Zt
i = Wt

i

Wt
i + Bt

i

be the proportion of white balls in the ith urn at time t and Ft = σ
(
Zs

i : 0 ≤ s ≤ t, i ∈ [N]
)
.

Define (It
i,W , It

i,B) := (Wt
i , Bt

i) − (Wt−1
i , Bt−1

i ) to be the reinforcement in the ith urn at time t.
We consider non-negative and finite reinforcement, that is, 0 ≤ It

i,W , It
i,B < ∞ for every i ∈ [N]

and t ≥ 0, such that {(It
i,W , It

i,B)}i∈[N] are conditionally independent given Ft−1 for every t ≥ 1.
If the evolution of the ith urn depends on urns {i1, . . . , iki} ⊆ [N], then the distribution of
(It

i,W , It
i,B) conditioned on Ft−1 is determined by Zt−1

i1
, . . . , Zt−1

iki
. We call the set {i1, . . . , iki}

the dependency set of the ith urn. In particular, in a graph-based general two-colour interacting
urn model, a natural choice for the dependency set of an urn is the collection of urns in its
neighbourhood.

Several special cases of the general two-colour interacting urn model have been studied
recently. In [5, 6] and [13], interacting urn models were studied with Pólya- and Friedman-type
reinforcements respectively. More precisely, in [5, 6] the authors take

P
(
(It

i,W , It
i,B) = (1, 0)|Ft−1

)= pZt−1
i + (1 − p)

1

N

N∑
j=1

Zt−1
j

and
P
(
(It

i,W , It
i,B) = (0, 1)|Ft−1

)= 1 − P
(
(It

i,W , It
i,B) = (1, 0)|Ft−1

)
,

for every i ∈ [N] and some fixed p ∈ [0, 1]. Thus, the dependency set of every urn is the entire
set of urns. In other words, the underlying network of interactions is a complete undirected
graph on N vertices with self-loops at every vertex. Graph-based interactions in urn processes
have been studied before in [1, 2] and [14].

In this paper, we consider N interacting two-colour urns which are placed at the vertices of a
finite directed graph. A ball is drawn independently and uniformly at random, simultaneously
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168 G. KAUR AND N. SAHASRABUDHE

from every urn. Each urn then reinforces all the urns in its out-neighbourhood according to a
reinforcement matrix R. More precisely, if

R =
(

α δ

γ β

)

is a reinforcement matrix, then if a white ball is drawn from an urn, all its out-neighbours are
reinforced with α white and δ black balls; and if the ball drawn is black, the out-neighbours
are reinforced with γ white and β black balls. We restrict our discussion to a non-negative
reinforcement matrix which is balanced; that is, α + δ = γ + β.

1.2. Summary of results

We state our main results in Section 4. To study the asymptotic properties of Zt
i for the

proposed model with reinforcement matrix R, we divide the discussion into two parts based
on the type of reinforcement matrix, namely, Pólya type (when δ = γ = 0) and non-Pólya type
(when γ + δ > 0 and α + β > 0). For non-Pólya-type reinforcement, we show that the fraction
of white balls in the urns at vertices with non-zero in-degree converges to a deterministic limit
almost surely. Furthermore, under certain conditions on the graph and the initial configuration
of the urns we observe synchronisation; that is, the almost sure limit is the same across all urns
at vertices with non-zero in-degree. We also obtain fluctuation theorems around the limiting
vector.

For Pólya-type reinforcement and the case when α = β = 0, we obtain results depending
on the presence of the vertices with zero in-degree in the graph. When there are vertices with
zero in-degree such that every vertex with non-zero in-degree in the graph can be reached from
at least one vertex with zero in-degree, we show that the fraction of white balls in every urn
converges to a deterministic limit almost surely. When there are no vertices with zero in-degree,
we limit our discussion of Pólya-type reinforcement to a regular directed graph, that is, when
the in-degree and the out-degree of every vertex equal a constant d. In this case we show that
the fraction of balls of white colour in every urn converges to the same random limit almost
surely, and we also obtain L2-rates of synchronisation. However, the limiting distribution in
this case is not known. On this note, we remark that while the reinforcement matrix is of Pólya
type, at any given time-step an urn may be reinforced with balls of both colours, depending
upon the balls drawn at that time from its in-neighbours. Thus, in our model the random process
of a single urn is nowhere similar to the classical Pólya process, and we expect the problem of
finding the limiting distribution to be fairly challenging.

We use the stochastic approximation method and the martingale method to study the inter-
acting urn model proposed in this paper. The stochastic approximation method has been
used before (see [15, 8]) to obtain several interesting results for random processes with self-
reinforcement or interactive reinforcement. We refer the reader to [3] for details on stochastic
approximation theory. For a more extensive discussion on various techniques used to study
random processes with reinforcement (including urn models), we refer the reader to [11].

1.3. Outline of the paper

The rest of the paper is organised as follows: in Sections 2 and 3, respectively, we describe
in detail the model and the corresponding stochastic approximation scheme. In Section 4, we
state the main results. In Section 5, we present the proofs of all the results stated in Section 4.
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In Section 6 we discuss an application of our results to the study of an opinion dynamics
model on finite directed networks.

1.4. Notation

Throughout the paper, we use the following notation: for a sequence of random variables

{Xt}t≥0 and a random variable X, Xt
d−→ X means that Xt converges to X in distribution, as

t → ∞, and Xt
a.s.−→ X means that Xt converges to X almost surely, as t → ∞. N(μ, �) denotes

a normal random vector with mean vector μ and variance–covariance matrix �. For a complex-
valued sequence {at}t≥0 and a real-valued sequence {bt}t≥0, we write at =O(bt) if there exists
a positive constant C such that |at| ≤ Cbt for sufficiently large values of t. The symbol ‖ · ‖
denotes the standard L2 norm, and as defined before, [N] denotes the set {1, . . . , N}. For a
matrix M, λmin(M) and λmax(M) denote the minimum and the maximum, respectively, of the
real parts of the eigenvalues of M. For an eigenvalue λ, 
(λ) denotes the real part of λ.

2. Model dynamics

Let G = (V, E) be a simple directed graph with V = [N], E ⊆ V × V . For every vertex i ∈ V ,
let V(i) := {j ∈ V : (j, i) ∈ E} denote the in-neighbourhood of i, and define din

i := |{j ∈ V : (j, i) ∈
E}| = |V(i)| and dout

i := |{j ∈ V : (i, j) ∈ E}| respectively to be the in-degree and out-degree of
i. We write i → j if there is a directed edge from i to j and i� j if there exists a path i =
i0 → i1 → · · · → ik−1 → ik = j from i to j, for some i1, . . . , ik−1 ∈ V . The (i, j)th entry of the
adjacency matrix A of G is equal to Ii→j. Throughout this paper we use the term d-regular
graph for a directed graph if din

i = dout
i = d for every i ∈ V .

Suppose there is an urn at every vertex of G and that each urn contains balls of two colours,
white and black. Let (Wt

i , Bt
i) be the configuration of the urn at vertex i, where Wt

i and Bt
i

denote the number of white balls and black balls respectively, at time t ≥ 0. Let m ∈Z
+ and

α, β ∈ {0, 1, . . . , m} be fixed; then given {(Wt
i , Bt

i)}i∈V , we update the configuration of each
urn at time t + 1 as follows:

A ball is selected uniformly at random from every urn simultaneously and indepen-
dently of every other urn. The colours of these balls are noted and they are replaced in
their respective urns. For every i ∈ V , if the colour of the ball selected from the ith urn
is white, then α white and (m − α) black balls are added to each urn j such that i → j;
and if the colour of the ball selected from the ith urn is black, then (m − β) white balls
and β black balls are added to each urn j such that i → j.

That is, each urn i reinforces urn j such that i → j, according to the following reinforcement
matrix:

R =
(

α m − α

m − β β

)
. (1)

Throughout this paper, we consider only graphs with no isolated vertices (an isolated vertex
is any vertex i such that din

i = dout
i = 0) and no vertices with only self-loops. This is because

urns at such vertices will have no interaction with any other urn in the graph. At an isolated
vertex, the urn composition would remain constant, and the other case reduces to a single-urn
process (independent of every other urn). The asymptotics of such single-urn processes have
been studied extensively; we refer the reader to [9] for details.
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170 G. KAUR AND N. SAHASRABUDHE

We call (1) a Pólya-type reinforcement if α = β = m (that is, when R = mI) and a non-
Pólya-type reinforcement when 0 < α + β < 2m. To simplify the notation, we define a := α/m
and b := β/m. Let

Zt
i := Wt

i

Wt
i + Bt

i

be the proportion of white balls in the ith urn at time t, and let Zt := (Zt
1, . . . , Zt

N). Define
the σ -field Ft := σ

(
Z0, Z1, . . . , Zt

)
, and let Yt

i denote the indicator of the event that a white
ball is drawn from the ith urn at time t. Then the distribution of Yt

i , conditioned on Ft−1, is
given by

Yt
i =
⎧⎨
⎩

1 with probability Zt−1
i ,

0 with probability 1 − Zt−1
i ,

for t ≥ 1.

Note that conditioned on Ft−1, {Yt
i }i∈V are independent random variables. The proposed model

is a general two-colour interacting urn model, as defined in Section 1.1, where the dependency
set of the ith urn is V(i) such that, given Ft−1,

(It
i,W , It

i,B) =
∑

j∈V(i)

(α, m − α)Yt
j + (m − β, β)(1 − Yt

j ),

for t ≥ 1.
We divide the vertex set of the graph into two disjoint sets, say V = S ∪ F, where S = {i ∈

V : din
i = 0} and F = {i ∈ V : din

i > 0}. We call the vertices in S stubborn vertices, as the urns
at these vertices are not reinforced by any other urn, i.e. V(i) = ∅; we call F the set of flexible
vertices. Clearly, for every i ∈ S

Wt
i = W0

i and Bt
i = B0

i , ∀ t > 0,

whereas for every i ∈ F, we have

Wt+1
i = Wt

i + α
∑

j∈V(i)

Yt+1
j + (m − β)

∑
j∈V(i)

(1 − Yt+1
j )

= Wt
i + m

∑
j∈V(i)

(
1 − b + (a + b − 1)Yt+1

j

)

= Wt
i + m(1 − b)din

i + m(a + b − 1)
∑

j∈V(i)

Yt+1
j , ∀ t > 0, (2)

and
Bt+1

i = Bt
i + mbdin

i − m(a + b − 1)
∑

j∈V(i)

Yt+1
j , ∀ t > 0.

Let Tt
i = Wt

i + Bt
i be the total number of balls in the ith urn at time t. Then, for every i ∈ V ,

Tt
i = Tt−1

i + m din
i = T0

i + tm din
i . (3)

Thus, the total number of balls in every urn at a flexible vertex is deterministic and increases
linearly with time. In the next section, we briefly discuss stochastic approximation theory, a
technique which is used in the later sections to obtain the asymptotic results for Zt.
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3. Stochastic approximation scheme

A stochastic approximation scheme refers to a k-dimensional recursion of following type:

xt+1 = xt + γt+1(h(xt) + 	Mt+1 + εt+1) , ∀t ≥ 0, (4)

where h : Rk →R
k is a Lipschitz function, {	Mt}t≥1 is a bounded square-integrable martingale

difference sequence, and {γt}t≥1 are positive step sizes satisfying conditions that ensure that∑
t≥1 γt diverges, but slowly. More precisely, we assume the following:

(i)
∑

t≥1 γt = ∞ and
∑

t≥1 γ 2
t < ∞;

(ii) there exists C > 0 such that E
[‖	Mt+1‖2|Gt

]≤ C almost surely ∀t ≥ 0, where Gt =
σ (x0, M1, . . . , Mt);

(iii) supt≥0 ‖xt‖ < ∞, almost surely;

(iv) {εt}t≥1 is a bounded sequence such that εt → 0, almost surely as t → ∞.

Then the theory of stochastic approximation says that the iterates of (4) converge almost
surely to the stable limit points of the solutions of the ordinary differential equation given by
ẋt = h(xt). For explicit results and details on a standard stochastic approximation scheme (with
εt = 0 ∀t ≥ 0), we refer the reader to Lemma 1 and Theorem 2 from Chapter 2 of [3]. Also
in Chapter 2, the author discusses various extensions of the standard stochastic approximation
scheme, including the stochastic approximation scheme of the form (4). In this section, we use
stochastic approximation theory to study the limiting behaviour of Zt and write a stochastic
approximation scheme of the form (4) for Zt. We first establish some notation.

Without loss of generality, we take F = {1, . . . , |F|} and S = {|F| + 1, . . . , N}. For a vector
g ∈R

N and B ⊆ [N], let gB denote the |B|-dimensional vector obtained by restricting g to B.
Similarly, for a matrix M ∈R

N×N and B ⊆ [N], let MB denote the |B| × |B| matrix obtained by
restricting M to the index set B × B. By 1 and 0 we denote matrices of appropriate dimension
with all entries equal to 1 and to 0, respectively. We write Zt = (Zt

1, . . . , Zt
N) = (Zt

F, Z0
S ) as a

row vector and define N × N matrices

Tt :=

⎛
⎜⎜⎜⎜⎜⎝

Tt
1 0 · · · 0

0 Tt
2 · · · 0

... · · · . . .
...

0 0 · · · Tt
N

⎞
⎟⎟⎟⎟⎟⎠ and D :=

⎛
⎜⎜⎜⎜⎜⎝

din
1 0 · · · 0

0 din
2 · · · 0

0 · · · . . .
...

0 0 · · · din
N

⎞
⎟⎟⎟⎟⎟⎠ .

Then

Tt =
(

Tt
F 0

0 T0
S

)
and D =

(
DF 0

0 0

)
,

where Tt
F and DF are both |F| × |F| matrices. Note that for i ∈ S there is no j ∈ V such that

j → i; therefore we can decompose the adjacency matrix A of the graph as follows:

A =
(

AF 0

AS,F 0

)
,
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where AF is a |F| × |F| matrix and AS,F is an |S| × |F| matrix. We define the scaled adjacency
matrix

Ã := A

(
D−1

F 0

0 0

)
=
(

ÃF 0

ÃS,F 0

)
,

where the (i, j)th entry of Ã is equal to

1

din
j

Ii→j

whenever din
j > 0, and is equal to 0 otherwise. We now write the evolution of Zt

i , for i ∈ F, as a
stochastic approximation scheme. From (2) and (3) we get

Zt+1
i = 1

Tt+1
i

Wt+1
i

= Tt
i

Tt+1
i

Zt
i + m(1 − b)din

i

Tt+1
i

+ m(a + b − 1)

Tt+1
i

∑
j∈V(i)

Yt+1
j

=
(

1 − mdin
i

Tt+1
i

)
Zt

i + m(1 − b)din
i

Tt+1
i

+ m(a + b − 1)

Tt+1
i

∑
j∈V(i)

Yt+1
j .

Define 	Mt+1
i := (a + b − 1)

(
Yt+1

i −E

[
Yt+1

i |Ft

])
; then we can write

Zt+1
i =

(
1 − mdin

i

Tt+1
i

)
Zt

i + m(1 − b)din
i

Tt+1
i

+ m(a + b − 1)

Tt+1
i

∑
j∈V(i)

E

[
Yt+1

j |Ft

]

+ m

Tt+1
i

∑
j∈V(i)

	Mt+1
j

= Zt
i + m

Tt+1
i

(
(− Zt

i + 1 − b)din
i + (a + b − 1)

∑
j∈V(i)

Zt
j +
∑

j∈V(i)

	Mt+1
j

)
. (5)

Let 	Mt := (	Mt
1, . . . , 	Mt

N) be the martingale difference vector in R
N . We can write the

recursion from (5) in vector form as follows:

Zt+1
F

= Zt
F + m

((− Zt
F + (1 − b)1

)
DF + (a + b − 1)(ZtA)F + (	Mt+1A)F

)
(Tt+1

F )−1

= Zt
F + m

(
−Zt

F + (1 − b)1 + (a + b − 1)(ZtÃ)F + (	Mt+1Ã)F

)
DF(Tt+1

F )−1

= Zt
F +
(

h(Zt
F) + (	Mt+1Ã)F

)
(mDF)(Tt+1

F )−1,

where h : [0, 1]|F| →R
|F| is such that

h(z) = −z + (1 − b)1 + (a + b − 1)
(

(z, Z0
S)Ã
)

F
. (6)

Here
(

(z, Z0
S )Ã
)

F
= zÃF + Z0

SÃS,F , for z ∈ [0, 1]|F|. The above recursion can be written as

Zt+1
F = Zt

F + 1

t + 1

(
h(Zt

F) +
(
	Mt+1Ã

)
F

)
+ 1

t + 1
εt+1,
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where

εt+1 =
(

h(Zt
F) +

(
	Mt+1Ã

)
F

) (
m(t + 1)DF

(
Tt+1

F

)−1 − I

)
.

Thus, we get a recursion of the form (4) given by

Zt+1
F = Zt

F + γt+1h(Zt
F) + γt+1(	Mt+1Ã)F + γt+1εt+1, (7)

where γt = 1

t
and (	Mt+1Ã)F is a bounded martingale difference sequence. Using (3), it can

easily be verified that εt → 0 as t → ∞ and h is a Lipschitz function. Thus, the recursion in
(7) satisfies the required assumptions (i)–(iv). Now, from stochastic approximation theory, we
know that the limit points of the recursion in (7) almost surely coincide with the asymptotically
stable equilibria of the ordinary differential equation given by

ż = h(z). (8)

Therefore, one can analyse the limiting behaviour of the interacting urn process by analysing
the zeroes of the h function and the eigenvalues of its Jacobian. Furthermore, we use stochastic
approximation results from [15] to establish central limit theorems for Zt

F .

4. Main results

In this section we state our main results. In Section 4.1 we state an almost sure convergence
theorem for Zt

F and show that synchronisation occurs under certain conditions on the initial
configuration of the urns and on the structure of the underlying graph. Recall that by synchro-
nisation we mean that the proportion of white balls converges to the same limit for every urn.
Furthermore, in Section 4.2 we state the central limit theorems for Zt

F for a non-Pólya-type
reinforcement. In Section 4.3, we consider a special case, namely Pólya-type reinforcement on
a regular graph, and show that Zt

F converges to a random vector almost surely. In addition, the
urns synchronise in the sense that Zt

i converges to the same random variable for every i ∈ F.

4.1. Convergence and synchronisation results

Theorem 4.1. Suppose that either of the following conditions holds:

(i) The reinforcement is of non-Pólya type, that is, R �= mI and a + b > 0.

(ii) S �= ∅ is such that for every f ∈ F there exists s ∈ S such that s� f .

Then I − (a + b − 1)ÃF is invertible and Zt
F −→ z∗ almost surely as t → ∞, where

z∗ =
(

(1 − b)1 + (a + b − 1)Z0
SÃS,F

) (
I − (a + b − 1)ÃF

)−1
.

Remark 4.1. Theorem 4.1 does not address the case when S = ∅ and |a + b − 1| = 1; in this
case the corresponding stochastic approximation scheme as in (7) holds with

h(z) = −z(I − (a + b − 1)ÃF) + (1 − b)1.

Clearly, h(z) = 0 has a unique solution whenever I − (a + b − 1)ÃF is invertible. In fact, when
I − (a + b − 1)ÃF is not invertible, Zt

F need not admit a deterministic limit. However, even
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in such cases we expect that on a strongly connected graph, Zt converges almost surely to a
random limit.

One straightforward conclusion from the above theorem is that Zt → (z∗, Z0
S ) almost surely,

as t → ∞. Furthermore, for synchronisation to occur among the set of flexible vertices F, we
expect the reinforcement at any two flexible vertices to be similar. This manifests itself as a
condition that Z0

SÃS is a constant vector and that for i, j ∈ F, i �= j,

|V(i) ∩ F|
din

i

= |V(j) ∩ F|
din

j

.

More precisely, we have the following result.

Corollary 4.1. (Synchronisation.) Suppose Z0
SÃS,F = c11 and 1ÃF = c21, for some constants

c1, c2 ∈ [0, 1]; then under the condition (i) or (ii) of Theorem 4.1,

Zt
F

a.s.−→ (1 − b) + (a + b − 1)c1

1 − (a + b − 1)c2
1.

In particular, if reinforcement is of non-Pólya type and S = ∅, then as t → ∞
Zt

F
a.s.−→ 1 − b

2 − a − b
1.

4.2. Fluctuation results

We now state the fluctuation theorems for Zt
F around the almost sure limit z∗. Define

H := − ∂h

∂z
= I − (a + b − 1)ÃF and ρ := λmin(H), (9)

where I is an |F| × |F| identity matrix. As we will see in the results below, the scaling for
fluctuation theorems depends on ρ. In the case when 0 < ρ < 1/2, there exist finitely many
complex random vectors ξ1, . . . , ξl such that (Zt

F − z∗) scaled appropriately can be almost
surely approximated by a weighted sum of ξ1, . . . , ξl. The scaling in this case depends explic-
itly on ρ. For details we refer the reader to Theorem 2.2 of [15]. In this paper, we only discuss
the cases ρ > 1/2 and ρ = 1/2 and obtain Gaussian limits with appropriate scaling.

Theorem 4.2. Suppose Zt
F −→ z∗ almost surely as t → ∞ and ρ > 1/2; then

√
t
(
Zt

F − z∗) d−→ N (0, �) as t → ∞, (10)

with

� =
∫ ∞

0

(
e
−
(

H− 1
2 I
)

u
)�

(Ã��Ã)Fe
−
(

H− 1
2 I
)

u
du,

where H is as defined in (9) and � is an N × N diagonal matrix such that

�i,i =
⎧⎨
⎩

(a + b − 1)2z∗
i (1 − z∗

i ) for i ∈ F,

(a + b − 1)2Z0
i (1 − Z0

i ) for i ∈ S.

Corollary 4.2. Suppose the reinforcement is of non-Pólya type and Ã = Ã�. Then for ρ > 1/2,
Theorem 4.2 holds with

� = C(a, b) Ã2
F

(
I − 2(a + b − 1)ÃF

)−1
,
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where

C(a, b) := (a + b − 1)2(1 − a)(1 − b)

(2 − a − b)2
.

Theorem 4.3. Suppose Zt
F −→ z∗ almost surely as t → ∞ and ρ = 1/2; then

√
t

log(t)

(
Zt

F − z∗) d−→ N
(

0, �̃
)

as t → ∞, (11)

with

�̃ = lim
t→∞

1

log t

∫ log t

0

(
e−(H−1/2I)u

)�
(Ã��Ã)F

(
e−(H−1/2I)u

)
du,

for H as defined in (9) and � as defined in Theorem 4.2.

Corollary 4.3. Suppose the reinforcement is of non-Pólya type and Ã = Ã�. Then for ρ = 1/2,
Theorem 4.3 holds with

�̃ = C(a, b)

N
J,

where J is an |F| × |F| matrix with all elements equal to 1 and C(a, b) is as defined in
Corollary 4.2.

Remark 4.2. (Friedman-type reinforcement.) As an immediate consequence of Corollary 4.1,
we get that with S = ∅ for the Friedman-type reinforcement, that is, when a = b ∈ (0, 1),
Zt

F −→ 1
2 1 almost surely. Furthermore, in this case C(a, b) simplifies and Corollary 4.2 and

Corollary 4.3 hold with C(a, b) =
(

a − 1
2

)2
.

4.3. Convergence results for Pólya-type reinforcement

In this section, we consider the Pólya-type reinforcement with the following assumptions:

(A1) G is connected and d-regular, and the scaled adjacency matrix Ã = 1
d A is diagonalisable

over C. More precisely, there exists an invertible matrix P such that Ã = P�P−1 for a
diagonal matrix �.

(A2) The initial number of balls in each urn is the same; that is, T0 = T0I, for some T0 ≥ 1.

Note that for a d-regular graph we have S = ∅ and F = V; therefore, to simplify the nota-
tion, we remove the subscript F throughout this section. In this case, the associated ordinary
differential equation obtained from (8) reduces to ż = h(z) = −z(I − Ã). The equilibrium points
of this ordinary differential equation are the left eigenvectors of Ã corresponding to the eigen-
value 1. Observe that these equilibrium points are not stable, as one of the eigenvalues of ∂h

∂z
is 0. Therefore this case requires a different approach. Specifically, we use martingale theory
to obtain convergence results.

Under the assumptions (A1) and (A2)

Tt = (T0 + tmd)I =: TtI. (12)

We define

Z̄t :=
∑N

j=1 Wt
j∑N

j=1 Tt
j

=
∑N

i=1 Wt
i

NTt
= 1

N

N∑
i=1

Zt
i = 1

N
Zt1�.
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Theorem 4.4. Suppose the reinforcement scheme is of Pólya type, that is, R = mI, and the
assumptions (A1) and (A2) hold. Then

Zt − Z̄t1
a.s.−→ 0 and in L2, as t → ∞.

Corollary 4.4. Let Ẑt = ZtÃ be the vector of neighbourhood averages of the proportion of
white balls in the urns. Then in the setting of Theorem 4.4, Var(Ẑt − Z̄t1) −→ 0N×N, as t → ∞.

The following theorem establishes that for every i ∈ V , Zt
i converges almost surely to the

same limiting random variable.

Theorem 4.5. (Synchronisation.) Suppose the reinforcement scheme is of Pólya type, that is,
R = mI, and the assumptions (A1) and (A2) hold. Then there exists a finite random variable
Z∞ such that as t → ∞,

Zt a.s.−→ Z∞1. (13)

5. Proofs of the main results

In this section, we prove all the results from Section 4. To prove the results from Section 4.1,
we use stochastic approximation theory, which was discussed in Section 3. We start with the
following lemma.

Lemma 5.1. Let M be an n × n real non-negative matrix such that each column sum of M is
less than or equal to 1. Then rM − I is invertible for all r ∈R whenever |r| < 1.

The above lemma follows from the Perron–Frobenius theorem; however, for the sake of
completeness we include a proof here.

Proof of Lemma 5.1. Note that the case r = 0 is trivial. For r �= 0, suppose the matrix
(rM − I) is not invertible. Then there exists a vector w = (w1, . . . , wn) ∈C

n such that w(rM −
I) = 0, that is, wM = 1

r w, which implies that for every j ∈ {1, . . . , n},

1

|r| |wj| =
∣∣ n∑

k=1

wkMk,j
∣∣≤ (max

k
|wk|)

n∑
k=1

Mk,j ≤ max
k

|wk|. (14)

The last step follows since each column sum of M is less than or equal to 1. Now if j =
argmax{|wk|; k = 1, . . . , n}, then from (14) we must have 1/|r| ≤ 1, which contradicts our
assumption of |r| < 1. �

Proof of Theorem 4.1. As discussed in Section 3, it is enough to study the corresponding
ordinary differential equation in (8), of the stochastic approximation scheme for Zt

F obtained
in (7). We know that a point z∗ ∈ [0, 1]|F| is an equilibrium point of the associated ordinary
differential equation ż = h(z) if h(z∗) = 0. For the h function given in Equation (6), we have
h(z∗) = 0, if and only if

z∗ − (a + b − 1)(z∗ÃF + Z0
SÃS,F) = (1 − b)1. (15)

Thus the unique equilibrium point is given by

z∗ =
(

(1 − b)1 + (a + b − 1)Z0
SÃS,F

) (
I − (a + b − 1)ÃF

)−1
,
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whenever the matrix I − (a + b − 1)ÃF is invertible. We now show that under the assump-
tions of the theorem, this is indeed true.

(i) When R �= mI and a + b > 0 we have |a + b − 1| < 1. Furthermore, since each column
sum of ÃF is less than or equal to 1, the invertibility of the matrix I − (a + b − 1)ÃF

follows from Lemma 5.1.

(ii) We now show that if for every f ∈ F there exists s ∈ S such that s� f , then I − (a +
b − 1)ÃF is invertible. Observe that the graph G restricted to the set of flexible vertices
F can be partitioned into strongly connected components F1, . . . , Fk. Then the scaled
adjacency matrix can be written as an upper block-triangular matrix as follows:

ÃF =

⎛
⎜⎜⎜⎜⎜⎝

AF1 AF1,F2 . . . AF1,Fk

0 AF2 . . . AF2,Fk

...
...

. . .
...

0 . . . 0 AFk

⎞
⎟⎟⎟⎟⎟⎠D−1

F =:

⎛
⎜⎜⎜⎜⎜⎜⎝

ÃF1 ÃF1,F2 . . . ÃF1,Fk

0 ÃF2 . . . ÃF2,Fk

...
...

. . .
...

0 0 . . . ÃFk

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where ÃFi,Fj is an |Fi| × |Fj| matrix and ÃFi = ÃFi,Fi . Since each F1, . . . , Fk is

strongly connected, ÃFi is an irreducible matrix for every 1 ≤ i ≤ k and the matrix
I − (a + b − 1)ÃF is of the form⎛

⎜⎜⎜⎜⎜⎜⎝

I1 − (a + b − 1)ÃF1 −(a + b − 1)ÃF1,F2 . . . −(a + b − 1)ÃF1,Fk

0 I2 − (a + b − 1)ÃF2 . . . −(a + b − 1)ÃF2,Fk

...
...

. . .
...

0 0 . . . Ik − (a + b − 1)ÃFk

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Ij is the |Fj| × |Fj| identity matrix. By Schur’s complement, we
know that I − (a + b − 1)ÃF is invertible whenever each block matrix
I1 − (a + b − 1)ÃF1 , . . . , Ik − (a + b − 1)ÃFk is invertible. Since every ÃFj is an
irreducible and sub-stochastic matrix (sub-stochasticity follows from the hypothesis
in Part (ii) of the theorem), we have that −1 < λmin(ÃFj ) ≤ λmax(ÃFj) < 1 for every j.

Hence Ij − (a + b − 1)ÃFj is invertible for every 1 ≤ j ≤ k.

Finally, using the above arguments we can also conclude that all the eigenvalues of the
Jacobian matrix ∂h

∂z = (a + b − 1)ÃF − I have negative real parts in both the cases. Therefore
z∗ is uniformly stable, and this concludes the proof. �

Proof of Corollary 4.1. Under the assumptions, the unique solution of (15) is z∗ = c1, for

c = (1 − b) + (a + b − 1)c1

1 − (a + b − 1)c2
.

For non-Pólya-type reinforcement we have 0 < a + b �= 2, and for S = ∅ we get c1 = 0 and
c2 = 1. Thus the unique equilibrium point z∗ simplifies to

z∗ = 1 − b

2 − a − b
1. �
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We now prove the scaling limit theorems using tools and results from [15]. Observe that for
ρ > 0 (where ρ is as defined in (9)), the assumptions 2.2 and 2.3 made in [15] are satisfied.
That is, for some δ > 0,

h(z) = h(z∗) + (z − z∗)Dh(z∗) + o
(
‖z − z∗‖1+δ

)
,

and for every ε > 0,

1

t

t∑
s=1

E

[
‖(	MsÃ)F‖2

I{‖(	MsÃ)F‖ ≥ ε
√

t}|Fs−1

]
a.s.−→ 0.

Furthermore, as we shall see in the proofs below,

lim
t→∞ E

[(
(	Mt+1Ã)F

)�((	Mt+1Ã)F
)∣∣∣Ft

]
exists.

As mentioned before, the scaling for the limit theorems is given by the regimes of ρ, where
ρ is as defined in (9). We remark that ρ depends on the eigenvalues of ÃF as well as on
a + b − 1, which is in fact the non-principal eigenvalue of the scaled reinforcement matrix
1
m R. In particular, we have the following two cases:

1. When a + b − 1 > 0, we get ρ = 1 − (a + b − 1)λmax(ÃF). Therefore

ρ > 1/2 ⇐⇒ λmax(ÃF) ∈
[
−1,

1

2(a + b − 1)

)

and ρ = 1/2 ⇐⇒ λmax(ÃF) = 1

2(a + b − 1)
.

2. When a + b − 1 < 0, we get ρ = 1 − (a + b − 1)λmin(ÃF). Therefore

ρ > 1/2 ⇐⇒ λmin(ÃF) ∈
(

1

2(a + b − 1)
, 1

]

and ρ = 1/2 ⇐⇒ λmin(ÃF) = 1

2(a + b − 1)
.

We now give the proofs of the limit theorems.

Proof of Theorem 4.2. The limit theorem in the case of ρ > 1/2 holds with scaling
√

t (see
Theorem 2.3 in [15]), with the limiting variance matrix given by

� =
∫ ∞

0

(
e−(H−1/2I)u

)�
� e−(H−1/2I)udu,

where
� = lim

t→∞ E

[
(	Mt+1Ã)�F

(
(	Mt+1Ã)F

)
|Ft

]
.

Note that (
(	Mt+1Ã)F

)� (
(	Mt+1Ã)F

)
=
(

Ã� (	Mt+1
)�

	Mt+1Ã

)
F

.
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Now using the fact that for i �= j, Yt
i and Yt

j are conditionally independent, we get

� = (a + b − 1)2
(

Ã� lim
t→∞ E

[
(Yt+1 − Zt)�(Yt+1 − Zt)|Ft

]
Ã
)

F
= (Ã��Ã)F,

where � is a diagonal matrix given by

�i,i =
⎧⎨
⎩

(a + b − 1)2z∗
i (1 − z∗

i ) for i ∈ F,

(a + b − 1)2Z0
i (1 − Z0

i ) for i ∈ S.

Therefore we get

� =
∫ ∞

0

(
e
−
(

H− 1
2 I
)

u
)�

(Ã��Ã)F e
−
(

H− 1
2 I
)

u
du. �

Proof of Corollary 4.2. For Ã = Ã�, we have S = ∅ and ÃF = Ã. Therefore, for non-Pólya-
type reinforcement, by Corollary 4.1,

z∗ = 1 − b

2 − a − b
1

and � = C(a, b)I. Then

� = C(a, b)
∫ ∞

0

(
e
−
(

H− 1
2 I
)

u
)�

Ã�Ã e
−
(

H− 1
2 I
)

u
du,

where

C(a, b) = (a + b − 1)2(1 − a)(1 − b)

(2 − a − b)2
.

Furthermore, Ã has a spectral decomposition

Ã = P�P−1 with � =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 λ1 · · · 0

...
...

. . .
...

0 0 · · · λN−1

⎞
⎟⎟⎟⎟⎟⎠ , (16)

where P is an N × N real orthogonal matrix and 1, λ1, . . . , λN−1 are eigenvalues of Ã. Since
H commutes with Ã, the limiting variance matrix is given by

� = C(a, b) Ã2
∫ ∞

0
e−(2H−I)udu

= C(a, b) Ã2
∫ ∞

0
e
−
(

I−2(a+b−1)Ã
)

u
du

= C(a, b) Ã2P

(∫ ∞

0
e−(I−2(a+b−1)�)udu

)
P−1

= C(a, b) Ã2
(

I − 2(a + b − 1)Ã
)−1

.

This completes the proof. �
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Proof of Theorem 4.3. In the case when ρ = 1/2, the asymptotic normality holds with

scaling
√

t

log t
(see Theorem 2.1 in [15]) and the limiting variance matrix given by

�̃ = lim
t→∞

1

log t

∫ log t

0

(
e−(H−1/2I)u

)�
�e−(H−1/2I)udu,

where � = (Ã��Ã)F. �

Proof of Corollary 4.3. For Ã = Ã�, as in the proof of Corollary 4.2, we get that
� = C(a, b)I and ÃF = Ã is a symmetric matrix. Therefore, in the case of ρ = 1/2, using the
spectral decomposition as in (16), the limiting variance matrix is given by

�̃ = C(a, b) Ã2 lim
t→∞

1

log t

∫ log t

0
e−(2H−I)udu

= C(a, b) Ã2 lim
t→∞

1

log t

∫ log t

0
e
−
(

I−2(a+b−1)Ã
)

u
du

= C(a, b) Ã2P lim
t→∞

1

log t

(∫ log t

0
e−(I−2(a+b−1)�)udu

)
P−1,

where

e−(I−2(a+b−1)�)u =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0
0 e−(1−2(a+b−1)λ1)u · · · 0
...

...
. . .

...

0 0 · · · e−(1−2(a+b−1)λN−1)u

⎞
⎟⎟⎟⎟⎠ .

Since for ρ = 1/2, 1 − 2(a + b − 1)λi > 0 for every i = 1, . . . , N − 1, we get∫ log t

0
e−(1−2(a+b−1)λi)udu = 1 − t−1+2(a+b−1)λi

1 − 2(a + b − 1)λi
.

Thus,

lim
t→∞

1

log t

∫ log t

0
e−(I−2(a+b−1)�)udu =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

and we get

�̃ = C(a, b) Ã2P

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ P−1.

Since the normalised eigenvector corresponding to the maximal eigenvalue 1 of Ã is 1√
N

1,
we get

�̃ = C(a, b) Ã2
(

1

N
J

)
= C(a, b)

N
J,

where J = 1�1 is an N × N matrix with all elements equal to 1. �
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We now prove the results for Pólya-type reinforcement stated in Section 4.3. Our main aim
(as stated in Theorem 4.5) is to show that the process {Zt

i }t≥0 converges almost surely to a
finite random variable Z∞ for every i ∈ [N]. In order to show this, we first prove that Zt − Z̄t1
converges almost surely to 0, using the convergence result for almost supermartingales [12].
Then in Lemma 5.2 and Theorem 4.5, we show that both Zt and Z̄t admit an almost sure limit,
using convergence theorems for quasi-martingales [10] and martingales respectively.

Proof of Theorem 4.4. Recall that under the assumption (A2) of the theorem, Tt = (T0 +
tmd)I = TtI. Define �t

i = Zt
i − Z̄t; then in the vector notation we have

�t = Zt − Zt 1

N
J =: ZtK, (17)

where �t = (�t
1, . . . , �t

N

)
, K = I − 1

N
J, and J is the N × N matrix with all entries equal to 1.

We want to show that each element of Var(�t) = Var(Zt − Z̄t1) → 0 and �t a.s.−→ 0. To this end,
we write a recursion for Var

(
�t+1

)
using the law of total variance given by

Var
(
�t+1

)
= Var

(
E

[
�t+1

∣∣∣Ft

])
+E

[
Var
(
�t+1

∣∣∣Ft

)]
. (18)

From Equation (2) we get

E

[
Zt+1
∣∣∣Ft

]
= 1

Tt+1
E

[
Wt+1

∣∣∣Ft

]
= 1

Tt+1

(
Wt + mZtA

) =: ZtUt, (19)

where Ut = 1

Tt+1
(TtI + mA). This gives

E

[
�t+1

∣∣∣Ft

]
= ZtUtK = �tUt, (20)

and
Var
(

E
[
�t+1

∣∣∣Ft

])
= U�

t Var(�t)Ut. (21)

For the second term of the expression for Var
(
�t+1

)
in Equation (18), we have

Var
(
�t+1

∣∣∣Ft

)
= K Var

(
Zt+1
∣∣∣Ft

)
K

= m2

(Tt+1)2
KA� Var

(
Yt+1

∣∣∣Ft

)
AK

= m2

(Tt+1)2
KA� Diag

(
Zt

i (1 − Zt
i )
)

1≤i≤N AK,

where Diag(xi)1≤i≤N denotes the N × N diagonal matrix with ith diagonal element equal to xi.
Thus

E

[
Var
(
�t+1

∣∣∣Ft

)]
= m2

(Tt+1)2
KA�Vt

zAK, (22)

where Vt
z = Diag

(
E[Zt

i (1 − Zt
i )]
)

1≤i≤N . Substituting the quantities from equations (21) and
(22) in Equation (18), we get

Var
(
�t+1

)
= U�

t Var(�t)Ut + m2

(Tt+1)2
KA�Vt

zAK.
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Iterating this we get

Var
(
�t+1

)
=
( t−1∏

k=0

U�
t−k

)
Var(�1)

( t∏
k=1

Uk

)

+
t∑

j=1

m2

(Tj+1)2

( t−j−1∏
k=0

U�
t−k

)
KA�Vj

zAK

( t∏
k=j+1

Uk

)

=
t∑

j=0

m2

(Tj+1)2

( t−j−1∏
k=0

U�
t−k

)
KA�Vj

zAK

( t∏
k=j+1

Uk

)
, (23)

where the last equality follows from the fact that

Var
(
�1
)

= m2

(T1)2
KA�V0

z AK.

We can write

Ut = I + md

Tt+1

(
Ã − I

)
,

where Ã = 1
d A is the scaled adjacency matrix. Using the assumption (A1), we get that there

exists a matrix P such that

Ã = P

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 λ1 · · · 0

...
...

. . .
...

0 0 · · · λN−1

⎞
⎟⎟⎟⎟⎟⎟⎠

P−1 and K = PLP−1 = P

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ P−1,

where 1, λ1, · · · , λN−1 are the N eigenvalues of Ã. Since Ã is irreducible with column sums
equal to 1, by Perron–Frobenius, we must have 
(λi) < 1 for all i = 1, . . . , N − 1. Thus for
j ≥ 0.

K

( t∏
k=j+1

Uk

)
= PL

t∏
k=j+1

(
I + md

T0 + md(k + 1)
(� − I)

)
P−1. (24)

Let Sj := LP�A�Vj
zAPL; then from (23) and (24) we get that Var(�t+1) = (P−1)��tP−1,

where �t equals

t∑
j=0

m2

(Tj+1)2

t∏
k=j+1

(
I + md

T0 + md(k + 1)
(� − I)

)
Sj

t∏
k=j+1

(
I + md

T0 + md(k + 1)
(� − I)

)
.

The (l, n)th element of �t is

�t
l,n =

⎧⎪⎪⎨
⎪⎪⎩

t∑
j=0

m2

(Tj+1)2 Sj
l,n

t∏
k=j+1

(
1 + λl−1−1

(T0/md)+k+1

) (
1 + λn−1−1

(T0/md)+k+1

)
if 2 ≤ l, n ≤ N,

0 otherwise.
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Using Euler’s approximation, for every l = 2, . . . , N we get

t∏
k=j+1

(
1 + λl−1 − 1

(T0/md) + k + 1

)
=O

(
(t/j)
(λl−1)−1

)
.

Since the elements of the matrix Sj are bounded, for the non-zero elements of �t we have

�t
l,n =O

⎛
⎝t
(λl−1+λn−1)−2

t∑
j=1

1

j
(λl−1+λn−1)

⎞
⎠ , 2 ≤ l, n ≤ N. (25)

Let λl,n = 
(λl−1) + 
(λn−1). When λl,n < 1, we use the approximation

t∑
j=1

j−λl,n =O
(

t−λl,n+1
)

.

If λl,n = 1, then
t∑

j=1

j−λl,n =O(log(t)) .

Finally, if λl,n > 1, then
∑t

j=1 j−λl,n < ∞; therefore,

�t
l,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O(1/t) if λl,n < 1,

O( log(t)/t) if λl,n = 1,

O(tλl,n−2) if λl,n > 1,

2 ≤ l, n ≤ N. (26)

Since λl,n < 2 and P and P−1 have bounded elements, Var(Zt − Z̄t1) → 0N×N as t → ∞. Now
from Equation (20) we get

E[�t] = �0
t∏

j=0

Uj

= Z0P

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0

0 O (t
(λ1)−1
) · · · 0

...
...

. . .
...

0 0 · · · O (t
(λN−1)−1
)

⎞
⎟⎟⎟⎟⎟⎠ P−1 → 0, as t → ∞.

Hence �t = Zt − Z̄t1 → 0 as t → ∞ in L2.
Since 0 ≤E((�t

i)
2) ≤E(�t

i) → 0, we get E[‖�t‖2] → 0. Therefore, to show that �t con-
verges almost surely to 0, it is enough to show that ‖�t‖2 admits an almost sure limit:

�t+1 =E

[
�t+1

∣∣∣Ft

]
+ �t+1 −E

[
�t+1

∣∣∣Ft

]
=E

[
�t+1

∣∣∣Ft

]
+ 1

Tt+1
	Mt+1

� ,
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where 	Mt+1
� = m

(
Yt+1 −E

[
Yt+1

∣∣∣Ft

])
AK is a martingale difference sequence. Therefore

we have

E

[
‖�t+1‖2

∣∣∣Ft

]
=E

[
�t+1(�t+1)�

∣∣∣Ft

]
=E

[
�t+1

∣∣∣Ft

]
E

[
�t+1

∣∣∣Ft

]� + 1

(Tt+1)2
E

[
	Mt+1

� (	Mt+1
� )�

∣∣∣Ft

]

= �tUtU
�
t (�t)� + 1

(Tt+1)2
E

[
	Mt+1

� (	Mt+1
� )�

∣∣∣Ft

]

= �t
(

I − md

Tt+1

(
I − Ã

)) (
I − md

Tt+1

(
I − Ã�)) (�t)�

+ 1

(Tt+1)2
E

[
	Mt+1

� (	Mt+1
� )�

∣∣∣Ft

]

= ‖�t‖2 − md

Tt+1
�t(2I − Ã − Ã�)(�t)� + m2d2

(Tt+1)2
�t(I − Ã)(I − Ã�)(�t)�

+ 1

(Tt+1)2
E

[
	Mt+1

� (	Mt+1
� )�

∣∣∣Ft

]
≤ ‖�t‖2 + ηt

(Tt+1)2
, (27)

where
ηt = m2d2�t(I − Ã)(I − Ã�)(�t)� +E

[
	Mt+1

� (	Mt+1
� )�

∣∣∣Ft

]
and the last inequality follows from the fact that 2I − Ã − Ã� is a positive semidefinite matrix.
Since ηt is a bounded random variable, from Equation (27) we get that ‖�t‖2 is an almost
supermartingale; therefore ‖�t‖2 converges almost surely (see Theorem 1 in [12]). This
concludes the proof of the theorem. �

Proof of Corollary 4.4. Let � t = Zt
(

Ã − 1
N J
)

= ZtK′, where

K′ =
(

Ã − 1

N
J

)
= PL′P−1

with L′ = diag(0, λ1, . . . , λN−1). The proof follows from the same argument as in the proof of
Theorem 4.4, with K′ and L′ taking the place of K and L respectively. �

Recall that Theorem 4.5 says that for every i ∈ V , Zt
i converges to the same random limit.

To prove this, we use the fact that Zt
i − Z̄t converges to 0 almost surely (Theorem 4.4 proved

above), and we show that both Zt and Z̄t admit an almost sure limit. From Equation (19), we
have

E[Zt+1|Ft] = Zt
(

TtI + mdÃ

Tt+1

)
= Zt
(

I + md(Ã − I)

Tt+1

)
.

Therefore, the N-dimensional process {Zt}t≥0 is a martingale if and only if Ã = I, that is, when
each node is isolated and has a self-loop. While {Zt}t≥0 is not a martingale in general, in the
next lemma we show that Zt admits an almost sure limit.

Lemma 5.2. Under the assumptions (A1) and (A2), Zt admits an almost sure limit.
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Proof. Using Theorem 11.7 in [10], it is enough to show that process (Zt)t≥0 satisfies the
following two conditions:

(i)
∑∞

t=0 E
[‖E[Zt+1|Ft] − Zt‖

]
< ∞;

(ii) supt≥0 E[‖Zt‖] < ∞.

Note that Zt satisfies (ii) trivially. Let �t and �t be as defined in the proofs of Theorem 4.4
and Corollary 4.4 respectively. Now,

∞∑
t=0

E

[
‖E[Zt+1|Ft] − Zt‖

]

=
∞∑

t=0

md

Tt+1
E

[
‖Zt(Ã − I)‖

]

=
∞∑

t=0

md

Tt+1
E

[∥∥Zt
(

Ã − 1

N
J

)
+ Zt

(
1

N
J − I

) ∥∥]

=
∞∑

t=0

md

Tt+1
E
[‖� t − �t‖]

≤
∞∑

t=0

md

Tt+1

(
E
[‖� t −E[� t]‖]+E

[‖�t −E[�t]‖]+ ‖E[� t − �t]‖
)

≤
∞∑

t=0

md

Tt+1

⎛
⎝
√√√√ N∑

i=1

Var(� t
i ) +
√√√√ N∑

i=1

Var(�t
i) + ‖E[� t − �t]‖

⎞
⎠ , (28)

where the last inequality follows by Jensen’s inequality. The fact that the first two terms of (28)
are finite follows from Theorem 4.4 and Corollary 4.4. We will now show that the last term in
(28) is also finite. We have

E[�t+1] = �0
t+1∏
j=1

(
I + m

Tj
(A − dI)

)
and E[� t+1] = �0

t+1∏
j=1

(
I + m

Tj
(A − dI)

)
.

Using the assumptions (A1) and (A2) we get

E[� t − �t] = (�0 − �0)
t∏

j=1

(
I + m

Tj
(A − dI)

)

= Z0(Ã − I)
t∏

j=1

(
I + md

Tj
(Ã − I)

)

= Z0P(� − I)
t∏

j=1

(
I + md

Tj
(� − I)

)
P−1

= Z0PQtP−1,
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where Qt is an N × N diagonal matrix with

Qt(i, i) = (λi − 1)
t∏

j=1

(
1 + md(λi − 1)

Tj

)
=O(t
(λi)−1)

and Qt(1, 1) = 0. This implies ‖E[� t − �t]‖ =O (t
(λ(2))−1
)
. Thus the sum in (28) is finite.

This completes the proof. �

Proof of Theorem 4.5. From Equation (19) we have

E[Z̄t+1|Ft] = 1

N
E

[
Zt+11�

∣∣∣Ft

]
= 1

N
Zt
(

I + md

Tt+1
(Ã − I)

)
1�

= 1

N
Zt1� = Z̄t,

since Ã1� = 1� for a regular graph. Thus, Z̄t is a bounded martingale; therefore by the martin-
gale convergence theorem, there exists a finite random variable Z∞ such that Z̄t → Z∞ almost
surely. Using Theorem 4.4 and Lemma 5.2 we conclude that Zt → Z∞1 almost surely. �

Observe that for Pólya-type reinforcement, convergence and synchronisation results are
obtained only for regular graphs. This restriction was needed to obtain explicit expressions by
using the symmetry and hence the spectral decomposition of the adjacency matrix. We believe
that the above results can be extended to more general graphs using similar ideas.

6. Application to opinion dynamics on networks

In this section, we briefly demonstrate how these models can be used for modelling opinion
dynamics on networks. We consider urns at vertices of a directed graph and assume that urns
represent individuals, with the proportion of white balls (respectively, black balls) in an urn
quantifying the positive (respectively, negative) inclination of that individual on a fixed subject.
The graph structure determines the interactions between the individuals. That is, if there is an
edge from node i to node j, the individual/urn at node i can influence the individual/urn at
j via a chosen (but fixed) reinforcement matrix. We define the opinion of an individual i at
time t by Ot

i = Sign(Zt
i − 1/2), where for convenience we assume Sign(0) = 1. The asymptotic

results for the urn process obtained in this paper can be used to study the evolution of opinions
defined this way. Note that this process of evolution of opinions is very different from the
traditional voter model or its extensions. In our model, the opinion of an individual does not
flip frequently; rather, it evolves slowly, as inclinations change depending on neighbourhood
interactions. For instance, at time t consider an individual i with opinion 0 (and Zt

i << 1
2 ) such

that all of her in-neighbours have opinion 1. After the reinforcement at time t + 1, it is quite
probable that the positive inclination Zt+1

i of the individual at i gets closer to 1
2 but the opinion

Ot+1
i may still remain 0. Thus, the opinion evolution model based on the interacting urn process

on a network discussed in this paper models more realistic human behaviour.
The convergence results for the urn process could be used to answer some interesting ques-

tions about opinion evolution on a network. Given the reinforcement matrix, we can determine
whether the limiting opinion of the majority is 1 or 0. Put differently, we can find conditions on
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the reinforcement matrix such that the limiting opinion of the majority is 1 or 0. To illustrate
this we consider the following example.

Example 6.1. Consider a directed star graph G = (V, E) on N vertices such that the center
vertex is labelled 1 and the rest of the vertices are labelled {2, 3, . . . , N}. Then 1 is the only
flexible vertex, with in-degree N − 1 and S = {2, 3, . . . , N}. Suppose the reinforcement matrix

is R =
(

α m − α

m − β β

)
for α, β ∈ {0, 1, . . . , m}. Then from Theorem 4.1 we get that as

t → ∞
Zt

1
a.s.−→ z∗ = (1 − b) + (a + b − 1)Z̄0

S ,

where

Z̄0
S = 1

N − 1

N∑
j=2

Z0
j .

Thus the asymptotic opinion of vertex 1, that is, Sign
(

z∗ − 1
2

)
, depends on a, b and the average

initial inclinations of stubborn individuals.
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