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Abstract

We propose a new Kalikow decomposition for continuous-time multivariate counting
processes, on potentially infinite networks. We prove the existence of such a decomposi-
tion in various cases. This decomposition allows us to derive simulation algorithms that
hold either for stationary processes with potentially infinite network but bounded intensi-
ties, or for processes with unbounded intensities in a finite network and with empty past
before zero. The Kalikow decomposition is not unique, and we discuss the choice of the
decomposition in terms of algorithmic efficiency in certain cases. We apply these meth-
ods to several examples: the linear Hawkes process, the age-dependent Hawkes process,
the exponential Hawkes process, and the Galves–Löcherbach process.
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1. Introduction

Multivariate point (or counting) processes on networks have been used to model a large
variety of situations, e.g. social networks [16], financial prices [2], and genomics [31]. One of
the most complex network models comes from neuroscience, where the number of nodes can
be as large as billions [24, 28, 32]. Several counting process models have been used to model
such large networks, e.g. Hawkes processes [17, 18] and Galves–Löcherbach models [13].
The simulation of such large and potentially infinite networks is of fundamental importance in
computational neuroscience [24, 28]. From a more mathematical point of view, the existence
of such processes in a stationary regime and within a potentially infinite network has also
attracted considerable interest (see [13], [19], and [27] in discrete or continuous time).

Kalikow decompositions [22] have been introduced and used mainly in discrete time. Such
a decomposition provides a decomposition of the transition probabilities into a mixture of
more elementary transitions. The whole idea is that even if the process is complex (infinite
memory, infinite network), the elementary transitions look only at what happens in a finite
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neighborhood in time and space. Once the decomposition is proved for a given process, this
can be used to write algorithms to simulate the process. Indeed, by the Kalikow decomposition,
the process can be decomposed into random elementary transitions that do not need access to
the whole information to move forward in time. This is useful in two ways. First one can
simulate the points appearing for a given node in the network, without needing the whole
past history or even the whole network. This leads to perfect simulation algorithms [13, 19,
27]. Here the word ‘perfect’ refers to the fact that it is possible in finite time to simulate
what happens on one or a finite number of the nodes of the potentially infinite network in
a stationary regime. Second, this decomposition can drastically reduce the time complexity
of the simulation algorithms, because we do not need to store or compute at each step what
happens in the whole network to proceed. To our knowledge, all existing papers referring to
Kalikow decomposition are theoretical and focus on the first aim: indeed, if one can prove that
such a perfect simulation algorithm ends after a finite number of steps, it means at the same
time that the process exists in a stationary regime. This is of tremendous theoretical importance
when dealing with infinite networks [13, 19].

In the present paper we propose going from discrete to continuous time. Therefore we
decompose conditional intensities rather than transition probabilities. This leads to serious dif-
ficulties that usually prevent a more practical application of the simulation algorithms. Indeed,
to our knowledge, only a few papers deal with continuous-time counting processes. Dassios
and Zhao [10] deal with Hawkes processes having a finite number of interacting components
in the case of exponential memory kernels, and rely heavily on the underlying Markovian
structure of the intensity. Their approach does not work for an infinite number of interacting
components or for more general memory kernels. Hodara and Löcherbach [19] work with an
infinite number of interacting components, for general non-linear Hawkes processes. But their
decomposition is constructed under the assumption that there is a dominating Poisson process
on each of the nodes, from which the points of the processes of interest can be thinned by
rejection sampling (see also [26] for another use of thinning in the simulation of counting pro-
cesses). To prove the existence of a Kalikow decomposition and go back to a more classical
discrete-time setting, the authors need to freeze the dominating Poisson process, leading to
a mixture, in the Kalikow decomposition, that depends on the realization of the dominating
Poisson process. Such a mixture is not accessible in practice, and this prevents the use of their
perfect simulation algorithm for more concrete purposes than mere existence.

More recently, in a previous computational article [28], we used another type of Kalikow
decomposition, which does not depend on the dominating Poisson process. This leads to a
perfect simulation algorithm, which can be used as a concrete way for computational neu-
roscience to simulate neuronal networks as an open physical system, where we do not need
to simulate the whole network to simulate what happens in a small part of it [28]. However,
this approach was mainly done in the direction of computer science, and the definition of the
Kalikow decomposition was not sufficiently broad to encompass the classical counting process
examples such as classical linear Hawkes processes.

In the present work we want to go further, by proposing a Kalikow decomposition for gen-
eral continuous-time counting processes, under appropriate conditions on its intensity, without
assuming the existence of a dominating Poisson process at all. We also prove (and this is not
done in [28]) that such a decomposition exists for various interesting examples, even if it is not
unique. More precisely, we show that processes having an intensity which is either continuous
or can be approximated by a series of compactly supported intensities allows for such a decom-
position. Finally we propose two algorithms. The first is essentially the one proposed in [28],
except that it is now proved to work for the more general definition of the Kalikow decompo-
sition that we have introduced here. This is a perfect simulation algorithm in the sense that it
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can simulate the point process of a given node in a potentially infinite network in a stationary
regime (it moves backwards to create the past that is needed to obtain a stationary process). To
do so, we need to assume the existence of a dominating Poisson measure. The second algo-
rithm only moves forwards from an empty past (meaning no points before zero) in a finite
network and therefore simulates outside the stationary regime. In this case the intensity does
not need to be bounded, as in the more classical Ogata’s algorithm [26].

The paper is organized as follows. In Section 2 we introduce the basic notation and give
the precise definition of a Kalikow decomposition. In Section 3 we present a very general
method to obtain a Kalikow decomposition for a counting process having stochastic intensity.
We exhibit this method on various examples including the linear Hawkes process [17, 18],
the age-dependent Hawkes process [29], more general non-linear Hawkes processes with ana-
lytic rate function, and Galves–Löcherbach models [13]. Finally, in Section 4 we present the
two algorithms based on the Kalikow decomposition given in Section 3, and we discuss the
efficiency of the perfect simulation algorithm with respect to the Kalikow decomposition.

2. Notation and Kalikow decomposition

2.1. Notation and definition

We start this section by recalling the definition of simple locally finite counting processes
and stochastic intensities. We refer the reader to [3] and [9] for more complete statements.

Let I be a countable index set. We start by introducing a canonical path space for the
sequence of points of a counting process having interacting components indexed by i ∈ I. This
space is given by

X∞ =
{

({tin}n∈Z)i∈I : for all i �= j ∈ I, n,m ∈Z,
tin ∈ [−∞,∞], lim

n→±∞ tin =±∞, tin < tin+1 and tin �= tjm if they are not infinite
}

.

Notice that we allow for the choices tin =±∞ such that elements of X∞ may have only a finite
number of (finite) points before time 0 or only a finite number of (finite) points after time 0, or
both. Henceforth, whenever we speak of the points of a counting process, we implicitly mean
finite points.

We then introduce, for any t ∈R, i ∈ I and x= ({tin}n∈Z)i∈I,⎧⎪⎪⎨
⎪⎪⎩

Zi
t (x)=

∑
n≥1

1tin≤t, if t≥ 0,

Zi
t (x)=−

∑
n≤0

1t<tin
, if t≤ 0,

and for brevity we write Z = (Zi)i∈I for the associated collection of counting processes, indexed
by i ∈ I. Note that Z ∈D(R,Z)I, where D(R,Z) is the space of non-decreasing càdlàg piece-
wise constant functions; see [21]. We let Xt denote the canonical path space of points of Z
before time t, given by

Xt =X∞ ∩ (−∞, t)I,

and we identify (Zs)s<t with the past configuration Xt ∈Xt defined by

Xt(x)= ({tin}tin<t)i∈I.
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We consider (Ft)t∈R, the past filtration of the process Z = (Zi)i∈I, defined by

Ft = σ (Zi
s, i ∈ I, s≤ t).

Moreover, for any x= ({tin}n∈Z−)i∈I ∈X and any i ∈ I, we denote the point measure associated
to index i by

dxi
s =

∑
m∈Z−

δtim
(ds),

which is an element of the space N of locally finite point measures on R−, endowed with
the topology of vague convergence, and we endow X with the metric induced by the product
metric on N I. Finally, throughout this article and without further mention, the integral

∫ b
a

stands for
∫

[a,b) with a, b ∈R, and Zi([a, b)) (resp. Zi((a, b])) stands for the number of points
in the configuration with index i in [a, b) (resp. in (a, b]).

In the present article we are only interested in time-homogeneous counting processes, that
is, informally, processes that at each time t depend in the same way on the past configuration
xt. To be more rigorous, let us define, for each xt = ({tin}tin<t)i∈I ∈Xt,

x←t
t := ({tin − t}n)i,

which is the shifted configuration at time 0. The generic space for such a past configuration
x←t

t that is rooted at time 0 is denoted by X :=X0.
Under suitable assumptions, the evolution of the counting process Z = (Zi)i∈I with respect

to (Ft)t∈R is fully characterized by its stochastic intensity, which depends on the past config-
uration; see Proposition 7.2.IV of [9]. Hence, in this paper, for any xt ∈Xt, given that the past
before time t is xt, we let φi

t(xt) denote the corresponding stochastic intensity of the process Zi

at time t for any i ∈ I. More precisely, for any xt ∈Xt, we have

P(Zi has a jump in [t, t+ dt) | past before time t= xt)= φi
t(xt) dt.

Definition 2.1. For a given i ∈ I, a counting process Zi with stochastic intensity (φi
t(xt))t∈R is

said to be time-homogeneous if there exists a measurable function φi : X →R+, called the
generic intensity, such that

φi
t(xt)= φi(x←t

t )

for all t ∈R and xt ∈Xt.

Note that a counting process that is time-homogeneous is not necessarily stationary. For
instance, exponential Hawkes processes [5] (see Section 3.3 below for more details, in particu-
lar (3.9) for the precise form of the intensity) starting with empty past before time 0 (i.e. empty
past history before time 0, or in other words, no points before 0) may explode in finite time,
but they are still time-homogeneous in the sense of the above definition. One can also think
of simple linear Hawkes processes (see (3.4) below for the precise form of the intensity) with
empty past before time 0 in the supercritical regime, that is, for which the interaction function
has L1-norm larger than 1 and thus produces an exponentially growing number of points as
time increases [2]. Therefore, if the process of interest is stationary, one can think of X as X0,
the set of configurations at time 0. However, if this is not the case, X has to be thought of as
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just a generic space whose configurations are cut at time 0 (i.e. no points exist after 0) and
which is the set on which φi is defined.

To define the Kalikow decomposition, we need to define neighborhoods and cylindrical
functions on neighborhoods. A neighborhood v is a Borel subset of I× (−∞, 0). This neigh-
borhood is said to be finite if there exists a finite subset J ⊂ I and a finite interval [a, b] such
that

v⊂ J × [a, b].

Definition 2.2. For any neighborhood v and x, y ∈X , we say that x
v= y whenever x= y in v.

This means that, for all i ∈ I, n ∈Z, such that tin ∈ x and (i, tin) ∈ v, we have tin ∈ y and vice
versa.

A real-valued function f is said to be cylindrical in v if f (x)= f (y) for any x
v= y, and we

usually stress the dependence on v by writing fv(x).

A family of neighborhoods V is a countable collection of finite neighborhoods v. It usually
includes the empty set ∅. One might have a different family of neighborhoods for each i, even
if in several examples the same family works for all i.

Definition 2.3. A time-homogeneous counting process (Zi)i∈I of generic intensity φi admits
the Kalikow decomposition with respect to the collection of neighborhood families (Vi)i∈I and
a given subspace Y of X if, for any i ∈ I and any v ∈Vi, there exists a cylindrical function
φi

v( · ) on v taking values in R+ and a probability λi( · ) on Vi such that

φi(x)=
∑
v∈Vi

λi(v)φi
v(x) for all x ∈X ∩Y .

Remark 2.1. Note that the probability λi( · ) in Definition 2.3 is a deterministic function, which
is why this decomposition is unconditional, whereas in [19], λi( · ) depends on the dominating
Poisson processes (see the discussion in the Introduction). Second, we do not restrict ourselves
to a bounded intensity, and we do not force all the φi

v to be bounded with the same bound,
which is a notable improvement compared to [28].

2.2. On the subspace Y
A Kalikow decomposition does not exist for all intensities and all subspaces Y , and we

stress the fact that it depends on the choice of Y . The role of Y is to make the Kalikow decom-
position achievable. There are many possible choices for such a subspace, depending on the
model under consideration and the precise form of the intensity. In this paper we will discuss
two main examples. The first example is the choice Y =X>δ , which is the subspace of X
where the distance between any two consecutive possible points is greater than δ, that is,

X>δ = {x= ({tin}n∈Z−)i∈I ∈X : for all n, i, tin+1 − tin > δ
}
. (2.1)

Such a choice is convenient for counting processes with a hard exclusion role where, by defi-
nition of the intensity, any two consecutive points need to be at a distance at least equal to δ;
see Section 3.2 below, where we discuss the example of age-dependent Hawkes processes with
hard refractory period.

In the case when φi is continuous for each i and we want to simulate the process starting
from the empty past before time 0, during some finite time interval [0, T] and up to some
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activity level K > 0, another possible choice of a subspace Y that we consider is

Y =X T,K = {x ∈X : for all i ∈ I, Zi
T (x)≤K}.

By continuity of φi, it is clear that the intensities are bounded on X T,K . In this case we will
be able to simulate the process, using the Kalikow decomposition, up to the first exit time of
X T,K ; see Section 4.1 below.

2.3. Representation, thinning, and simulation

Locally finite simple counting processes with intensity φi
t(xt) can always be represented as

thinning of a bivariate Poisson measure. More precisely, if (π i)i∈I are independent Poisson
random measures on R×R+ with intensity 1, the point measures defined by

dXi
t =

∫
u≥0

1u≤φi
t (Xt)π

i(dt, du)

define points of counting processes (Zi)i∈I having intensity φi
t(xt) at time t, given that the past

before time t is xt; see e.g. Lemma 3 and 4 of [4] and Chapter 14 of [20].
This representation has been used for a long time to simulate processes forwards in time;

see e.g. [23] and [26]. More precisely, consider for the moment the easy case where we have
empty past before time 0 and intensities that are bounded for any i by a fixed constant �i > 0.
The simulation of the Poisson random measure π i then consists in a homogeneous Poisson
process, Ni, in time, having intensity �i (which can also be built by a succession of indepen-
dent exponential jumps of parameter �i), and then to attach to each point T of this process,
independently of anything else, independent marks UT which are uniformly distributed on
[0, �i]. The pair (T,UT ) for T ∈Ni forms a bivariate Poisson random measure π i in the band of
height �i.

The classical thinning algorithm – for intensities bounded by �i – then consists in saying
that the points of Ni are accepted if UT ≤ φi

T (XT ) and that these accepted points correspond
to a counting process of intensity φi

t(Xt). Equivalently, one can attach independent uniform
marks UT on [0,1] and say that we accept T if UT ≤ φi

T (XT )/�i, or one can even just say that
we accept a point T in Ni with probability φi

T (XT )/�i.
The Kalikow decomposition allows us to go one step further thanks to the following result.

Proposition 2.1. Let (Vi)i∈I be a collection of families of finite neighborhoods, and for any
i ∈ I, let (λi(v))v∈Vi be probabilities on Vi and let φi

v be cylindrical functions on v for each
v ∈Vi. Moreover, let (�i)i∈I be independent Poisson measures on R×R+ ×Vi with intensity
measure dt du λi(dv).

Then, for every i ∈ I,

dZi
t =

∫
u≥0,v∈Vi

1u≤φi
v(X←t

t )�
i(dt, du, dv)

defines a time-homogeneous counting process Zi having generic intensity given by

φi =
∑
v∈Vi

λi(v)φi
v. (2.2)

From a more algorithmic point of view, the construction of �i is equivalent to attaching to
each atom (T,UT ) of π i (the bivariate Poisson random measure) a mark VT , independently of
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everything else and distributed according to λi. The above theoretical result can be interpreted
in the following way. It is sufficient to draw the neighborhood VT at random for each point
T according to λi, and to do so as if the intensity were just φi

VT
(X←t

t ) instead of having to
compute the full sum in (2.2).

From a computational point of view, the main interest of this is to diminish drastically
the number of computations to be done, replacing the summation with a random selection.
From a theoretical point of view, the above representation enables us to define reset events at
which the process forgets its past, at least in a local way. These resets take place whenever, for
instance, the empty set is picked as a neighborhood, which happens with probability λi(∅), for
a given i ∈ I. Indeed, this means that at this time t, the history of the ith component is reset
and becomes independent of the past. In a nutshell, the whole theoretical interest of using the
Kalikow decomposition for perfect simulation is therefore to prove that such resets happen
often enough and for sufficiently many coordinates i, and that one can simulate the distribution
between resets without needing to simulate outside this zone. The interest of this strategy is
twofold. First of all, if this procedure works, it shows that the stationary distribution exists and
is unique (see Theorem 4.1 below). Moreover, it also allows us to perfectly simulate from this
stationary distribution.

The above representation needs a three-dimensional Poisson random measure. As we have
seen above, if it is easy to simulate such a measure within a band, we cannot simulate it
without having an upper bound on the intensity. That is why we distinguish two cases for
the algorithms. Here is a brief informal overview.

• If we are looking for a stationary distribution, we need to ‘propose’ a first point before
thinning it in a ‘Kalikow’ way. To do so, we need a fixed upper bound, say �i, that
holds for all times, for a given coordinate i. Then we will be able to go back in time
recursively as follows: (i) pick the random neighborhood, (ii) simulate the points in the
neighborhood according to a Poisson process of intensity �j if the neighborhood is on
node j, and (iii) search again for the neighborhoods of the points that we just simulated
and go on. In this backward step, we create a clan of ancestors for the first point. Under
some conditions, this recursion ends in finite time, because either the empty neighbor-
hood is picked or because the simulation of the Poisson process inside the neighborhood
is empty. Hence the status of the first point, even inside the stationary distribution, only
depends on a finite set of points that we have been able to create. It remains to accept
or reject, in a forward movement, all these points according to the rule UT ≤ φi

VT
(x←T

T ).
See Section 4.2 below.

• If there is no bound, which is typically the case for the linear or exponential Hawkes
process, one cannot ‘propose’ a first point in a stationary manner. However, if we start
with an empty past before 0, the intensity at time 0 is usually bounded and we can
‘propose’ a first point. The main strategy is now to update this upper bound as time
goes by and to change the size of the steps we are making, one point after another. This
algorithm can only move in forward time and we need to know all the network to make
it move forwards. Hence this approach only works for finite networks with known past
(typically, empty past before time 0). See Section 4.1 below.

Note that in particular for linear (multivariate) Hawkes processes, there is another way to
do perfect simulation, relying on the cluster representation of these processes; see [6], [7], and
[25]. However, the approach we propose here is much more general, because we do not need
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this cluster representation, but rely on the Kalikow decomposition which exists for a broader
class of processes (e.g. non-linear Hawkes processes with hard refractory period and Lipschitz
rate function; see Section 3.2 below).

The above proposition of course holds as long as
∑

v∈Vi λi(v)φi
v exists, and it furnishes a

way to simulate a process with intensity φi. Below, we will see how we combine it with a
proper definition of Y to make the simulation algorithms work in practice.

Proof of Proposition 2.1. To avoid confusion, we consider two filtrations. We write (Ft)t∈R
for the canonical filtration of (�i)i∈I, containing the filtration (FZ

t )t∈R which corresponds to
the one given by the counting processes (Zi)i∈I.

To prove that (Zi)i∈I has the correct intensity, let us look at E(Zi((a, b]) |FZ
a ) for any a< b.

We have

E
(
Zi((a, b]) |FZ

a

)=E

(∫
s∈(a,b],u≥0,v∈Vi

1u≤φi
v(X←s

s )�
i(ds, du, dv) |FZ

a

)
.

The integral in v is independent of the rest, so we can integrate it and replace it with its
corresponding intensity measure, which leads to

E
(
Zi((a, b]) |FZ

a

)=E

(∑
v∈Vi

λi(v)
∫

s∈(a,b],u≥0
1u≤φi

v(X←s
s )π

i(ds, du) |FZ
a

)
,

where π i is the bivariate Poisson random measure of rate 1. Therefore we get

E
(
Zi((a, b]) |FZ

a

)=∑
v∈Vi

λi(v)E

(∫
s∈(a,b]

φi
v(X←s

s ) ds |FZ
a

)
,

that is,

E
(
Zi((a, b]) |FZ

a

)=E

(∫
s∈(a,b]

φi
s(Xs) ds |FZ

a

)
,

which concludes the proof. �

3. How to compute the Kalikow decomposition in various cases

To obtain the Kalikow decomposition, we try to rewrite the intensity as a convergent sum
of cylindrical functions over a suitable family of neighborhoods. To define such a family of
neighborhoods properly, let us start by introducing the minimal information that is needed to
compute the intensity.

Let us consider a time-homogeneous counting process Zi having intensity φi
t (xt)= φi(x←t

t ).
Let V i ⊂ I× (−∞, 0) be minimal such that φi is cylindrical on V i. We interpret V i as the
support of dependence for φi.

Definition 3.1. A coherent family of finite neighborhoods Vi for Zi is such that

V i ⊂
⋃
v∈Vi

v.

Proposition 3.1. Let Z = (Zi)i∈I be a time-homogeneous counting process having intensity
φi

t (xt)= φi(x←t
t ) at time t, let Vi be an associated coherent family of neighborhoods, and let
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Y ⊂X be a subspace of X . If there exists a family of non-negative functions 	i
v(x) that are

cylindrical on v for each v ∈Vi and i ∈ I such that∑
v∈Vi

	i
v(x) is convergent and φi(x)=

∑
v∈Vi

	i
v(x) for all x ∈X ∩Y , (3.1)

then we have the following.

(i) For any choice of probabilities λi on Vi such that

λi(v)= 0 only if sup
x∈X∩Y

	i
v(x)= 0,

then (Zi)i∈I admits the Kalikow decomposition with respect to the collection of neigh-
borhood families (Vi)i∈I and the subspace Y , with weights given by λi(v) and cylindrical
functions φi

v, where

φi
v(x)=	i

v(x)/λi(v),

with the convention 0/0= 0.

(ii) If, for all i ∈ I and v ∈Vi, there exist non-negative deterministic constants �i
v such that

sup
x∈X∩Y

	i
v(x)≤ �i

v <∞

and �i =∑v∈Vi �i
v �= 0 is finite, then one can in particular choose

λi(v)= �
i
v

�i
and φi

v(x)= �
i

�i
v
	i

v(x) for all i ∈ I, v ∈Vi. (3.2)

In this case, all functions φi
v and φi are upper-bounded by �i.

Proof. The first point is obvious. Note that for the second one, since
∑

v∈Vi �i
v = �i, the

choice λi(v)= �i
v/�

i defines a probability. �

The weights λi(v) in the Kalikow decomposition are not unique, and this is so even in the
bounded case. Indeed, �i

v can always be chosen much bigger than supx∈X∩Y 	i
v(x). If we

order the neighborhoods from the most simple (the empty set) to the most complex (by size,
or by distance to (i, 0)), this means that it is always possible to choose large weights λi(v)
on complex neighborhoods, but not that easy to choose small weights on them. However, we
would like the backward steps of the perfect simulation algorithm to end after a small finite
number of iterations. Hence we typically need larger weights on the empty set and on the less
complex neighborhoods such that fewer computations are done or less memory is stored in our
algorithms. This means that one can try to optimize the weights to minimize the complexity of
the algorithms that we develop (see Section 4.2.6).

Note also that the above result leads directly to a very general statement for continuous
generic intensities.

Corollary 3.1. Let Z = (Zi)i∈I be a time-homogeneous counting process with generic intensity
φi, let Vi = {vi

k, k ∈N} be an associated coherent family of neighborhoods which is increasing,
i.e. vi

k ⊂ vi
k+1 for all k, and let Y be a subspace of X , such that for any i ∈ I, φi is strongly
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continuous on Y , that is,

sup
i∈I

sup

x,y∈Y : x
vi
k=y

|φi(x)− φi(y)|→ 0 (3.3)

as k→∞.

Then item (i) of Proposition 3.1 holds with the choice⎧⎪⎪⎨
⎪⎪⎩
	i

vi
0
(x)= inf

{
φi(y) : y ∈Y, y

vi
0= x
}
,

	i
vi

k
(x)= inf

{
φi(y) : y ∈Y, y

vi
k= x
}
− inf

{
φi(y) : y ∈Y, y

vi
k−1= x

}
for k> 0.

Let us briefly resume the above discussion. All processes having a generic intensity which
is strongly continuous in the sense of (3.3) admit a Kalikow decomposition. If, moreover, we
impose a sufficiently rapid decay of the modulus of continuity of the rate function, as the
neighborhoods approach the whole space, it is possible in this case to perform the perfect
simulation algorithm of Section 4.2. The processes discussed below in Sections 3.2 and 3.4
belong to this class of processes.

Moreover, all processes having a generic intensity that can be approximated by a series of
local intensities having compact interaction support (in both time and space) admit a Kalikow
decomposition. In general, in this case we will only be able to simulate the process outside the
stationary regime. The processes discussed below in Sections 3.1 and 3.3 belong to this class
of processes.

In what follows we discuss how this method can be implemented for various specific
examples of processes and for various examples of neighborhood families. The choice of the
neighborhood family depends heavily on the dynamic considered, and has to be ‘guessed’ for
each concrete example.

3.1. Linear Hawkes process

In the following, we consider a linear Hawkes process [17, 18] for a finite number of
interacting components, that is, I is finite. In this framework, for any x ∈X , we have

φi(x)=μi +
∑
j∈I

∫ 0

−∞
hi

j(− s) dxj
s, (3.4)

where the non-negative interaction functions hi
j( · ) measure the local dependence of process

Zi on Zj and the non-negative parameters μi refer to the spontaneous rate of process Zi. The
classical assumption to ensure a stationary Hawkes process is to assume that the spectral radius
of
(∫∞

0 hi
j(s) ds

)
i,j∈I is strictly smaller than 1. We do not need to make this assumption here:

we just assume that for any i, j, hi
j ∈ L1

loc. In this case we have

V i =
⋃

j∈I : hi
j �=0

{j} × Supp (hi
j). (3.5)

Cutting the support of hi
j into small pieces of length ε, for some fixed ε > 0, we are led to

consider atomic neighborhoods of the type

wj,n = {j} × [− nε,−(n− 1)ε), (3.6)
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which are supported by one single neuron within a small interval of length ε. The most generic
family of neighborhoods that we can consider in this sense is

Vatom = {∅} ∪ {wj,n : j ∈ I, n ∈N∗},
which we choose for all i. For this family one can prove the following result as a straightfor-
ward corollary of Proposition 3.1.

Corollary 3.2. The multivariate linear Hawkes process defined by (3.4) admits the Kalikow
decomposition given by Proposition 3.1(i), with respect to the collection of neighborhood
families (Vi)i∈I, where for all i, Vi =Vatom, and with respect to the subspace

Y =
{

x ∈X :
∑
i∈I

φi(x)<∞
}
,

with ⎧⎨
⎩	

i
wj,n

(x) :=
∫ −nε+ε

−nε
hi

j(− s) dxj
s, if v=wj,n,

	i
∅ =μi, if v=∅.

Note in particular that the linear Hawkes process has an intensity which is not bounded by
a fixed constant, so we cannot use Proposition 3.1(ii). In particular, we stress that we will not
be able to use the above decomposition for the purpose of perfect simulation of the stationary
version of the linear Hawkes process (which does not necessarily exist under our minimal
assumptions). However, we will be able to use the decomposition for an efficient sampling
algorithm of the process in its non-stationary regime, starting from the empty past before time
0; see Section 4.1 below.

Remark 3.1. The choice of Y = {x ∈X :
∑

i∈I φ
i(x)<∞} is the minimal choice to ensure

that (3.1) holds, by monotone convergence. By classical results on linear Hawkes processes, it
is well known that, starting from the empty past at time 0, Zt = (Zi

t)i∈I stays within Y almost
surely, for any t≥ 0; see e.g. [11].

3.2. Age-dependent Hawkes process with hard refractory period

In this section we are interested in writing a Kalikow decomposition for age-dependent
Hawkes processes with a hard refractory period, for the purpose of perfect simulation of its
stationary version. This process was first introduced in [8], and no Kalikow decomposition
has been established for this process, even in a conditional framework. In our setting, the
stochastic intensity of an age-dependent Hawkes process with hard refractory of length δ > 0
can be written as follows. For any i ∈ I and x ∈X ,

φi(x)=ψ i

(∑
j∈I

∫ 0

−∞
hi

j(− s) dxj
s

)
1ai(x)>δ . (3.7)

In the above formula, the age of the process is defined by

ai(x)=− sup{tik ∈ x : tik < 0},
that is, the delay since the last point. If there is no such last point, we simply put ai(x)=
+∞. The function ψ i is called the rate function; it is assumed to be positive and at least
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locally Lipschitz-continuous. The locally integrable functions hi
j model the interactions as in

the framework of the classical Hawkes process. In this setting we allow for an infinite number
of components, that is, I might be infinite. The set V i remains defined by (3.5) but the set
Y is not the same. Indeed, by definition of the stochastic intensity (3.7), we observe that the
distance between any two consecutive jumps has to be larger than δ. This observation leads us
to consider the subspace

Y =X>δ,

which was introduced in (2.1).
We also change the family of neighborhoods. Now we envision a family of nested and

increasing neighborhoods. More specifically, from a nested family of subsets of I given
by (ωi

k)k∈N∗ , with ωi
1 = {i}, ωi

k ⊂ωi
k+1 and ∪k≥1ω

i
k = I, we can design a nested family of

neighborhoods Vi
nested by

Vi
nested = {vi

k =ωi
k × [− kδ, 0) for k ∈N∗}.

Note that this family does not include the empty set. This is due to the presence of the hard
refractory period. As we will see in Section 4, the backward steps in the perfect simulation
algorithm do not end only because of the probability of picking the empty set but also because
some neighborhoods might just be empty (in the sense that no points appear in them). This
is the main difference compared to similar perfect simulation algorithms that exist in discrete
time; see e.g. [19] or [27].

For this family, we can prove the following result as a corollary of Proposition 3.1.

Corollary 3.3. Assume that for all i, j ∈ I, hi
j( · ) is a non-negative, non-increasing L1-function

and that for every i ∑
j∈I

‖hi
j‖1 <∞ and

∑
j∈I

hi
j(0)<∞.

Then the multivariate age-dependent Hawkes process with hard refractory period defined by
(3.7) admits a Kalikow decomposition with respect to Vi =Vi

nested and Y =X>δ , under the
following conditions.

(i) If, for every i, ψ i( · ) is an increasing, non-negative continuous function, then the
Kalikow decomposition of Proposition 3.1(i) applies with

	i
1(x)=	i

vi
1
(x)=ψ i(0)1ai(x)>δ,

and for all k≥ 2,

	i
k(x)=	i

vi
k
(x)

=ψ i

(∑
j∈ωi

k

∫ 0

−kδ
hi

j(− s) dxj
s

)
1ai(x)>δ −ψ i

( ∑
j∈ωi

k−1

∫ 0

−(k−1)δ
hi

j(− s) dxj
s

)
1ai(x)>δ .

(ii) If, in addition, ψ i( · ) is L-Lipschitz, the Kalikow decomposition of Proposition 3.1(ii)
applies for the choices

�i
1 = �i

vi
1
≥ �̄i

1 :=ψ i(0),
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and for all k≥ 2,

�i
k = �i

vi
k
≥ �̄i

k := L

[ ∑
j∈ωi

k\ωi
k−1

(
hi

j(0)+ δ−1‖hi
j‖1
)+ ∑

j∈ωi
k−1

hi
j((k− 1)δ)

]
,

as long as
∑∞

k=1 �
i
k <∞.

In particular, since

∞∑
k=1

�̄i
k ≤ψ i(0)+ 2L

[∑
j∈I

hi
j(0)+ δ−1

∑
j∈I

‖hi
j‖1
]
,

we find that

�i
k = �̄i

k

is a valid choice.

Proof. For part (i) of the result, by assumption, (	i
k(x))k≥1 is well-defined, non-negative and

cylindrical on vi
k =ωi

k × [− kδ, 0), since the family of neighborhoods is nested. Let

ri
n(x) :=

n∑
k=1

	i
k(x)=ψ i

(∑
j∈ωi

n

∫ 0

−nδ
hi

j(− s) dxj
s

)
1ai(x)>δ

and let us show that ri
n(x)→ φi(x) when n→∞. Consider the inner term of the parenthesis,

∑
j∈ωi

n

∫ 0

−nδ
hi

j(− s) dxj
s =

∫
I×R−

hi
j(− s)1(j,s)∈vi

n
dxj

sdκj,

where we let dκ denote the counting measure on the discrete set I.
We note that

(
hi

j(− s)1(j,s)∈vi
n

)
n∈Z is a non-negative and non-decreasing sequence in n. In

addition, it converges to hi
j(− s)1(j,s)∈I × (−∞, 0) as n→∞. Moreover, since ψ i( · ) is a

continuous and increasing function, the monotone convergence theorem for Lebesgue Stieltjes
measures implies that ri

n(x)→ φi(x) as n→∞. As a consequence, Proposition 3.1(i) applies.
For part (ii), ψ i is L-Lipschitz. Hence we have

	k
i (x)≤ L×

[ ∑
j∈ωi

k\ωi
k−1

∫ 0

−kδ
hi

j(− s) dxj
s +

∑
j∈ωi

k−1

∫ −(k−1)δ

−kδ
hi

j(− s) dxj
s

]
. (3.8)

So let us fix 0≤ k< l, j ∈ I, x ∈X>δ and t ∈R and let us concentrate first on upper-bounding∫ t−kδ
t−lδ hi

j(t− s) dxj
s by adapting Lemma 2.4 of [29]. For any ε > 0, we have

∫
[t−lδ,t−kδ−ε]

hi
j(t− s) dxj

s =
∑

k≤m<l

∫
[t−(m+1)δ−ε,t−mδ−ε]

hi
j(t− s) dxj

s

≤
∑

k≤m<l

hi
j(mδ + ε),
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because hi
j is non-increasing and because there is at most one jump in the interval of length δ.

Therefore ∫
[t−lδ,t−kδ)

hi
j(t− s) dxj

s = lim
ε↓0

∫
[t−lδ,t−kδ−ε]

hi
j(t− s) dxj

s

≤ lim
ε↓0

∑
k≤m<l

hi
j(mδ + ε)

≤
∑

k≤m<l

hi
j(mδ),

by monotone convergence and the fact that hi
j( · ) is a decreasing function.

Going back to (3.8), we therefore have

∫ −(k−1)δ

−kδ
hi

j(− s) dxj
s ≤ hi

j((k− 1)δ))

and ∫ 0

−kδ
hi

j(− s) dxj
s ≤

∑
0≤m≤k−1

hi
j(mδ)≤ hi

j(0)+ δ−1
∫ k−1

0
hi

j(t) dt≤ hi
j(0)+ δ−1‖hi

j‖1.

This shows that if �i
k ≥ �̄i

k, we are indeed upper-bounding supx∈X>δ 	i
k(x). The last upper

bound on
∑

k �̄
i
k is done in a similar way. �

Remark 3.2. In particular, this proves that 	i
k(x)→ 0 when k→∞ for fixed x ∈X>δ , and

that this convergence is uniform on X>δ if ψ i is Lipschitz.

Remark 3.3. It is straightforward to see that

inf

z
vi
k=x

ψ i

(∑
j∈I

∫ 0

−∞
hi

j(− s) dzj
s

)
1ai(x)>δ =ψ i

(∑
j∈ωi

k

∫ 0

−kδ
hi

j(− s) dxj
s

)
1ai(x)>δ,

because of the monotonicity property of ψ i and since hi
j ≥ 0. Indeed, the minimizing con-

figuration is obtained by having no points outside vi
k. Hence, for k≥ 2, we observe that

	i
k(x)

= inf

z
vi
k=x

[
ψ i

(∑
j∈I

∫ 0

−∞
hi

j(− s) dzj
s

)
1ai(x)>δ

]
− inf

z
vi
k−1= x

[
ψ i

(∑
j∈I

∫ 0

−∞
hi

j(− s) dzj
s

)
1ai(x)>δ

]
.

The above prescription corresponds to the classical method of obtaining a Kalikow decompo-
sition in discrete time, as discussed in [13] and [19] (see also Corollary 2.1).

Remark 3.4. Notice that it is not possible to let δ tend to 0 and to recover Corollary 3.3 for
linear or even general non-linear Hawkes processes having Lipschitz-continuous rate function,
since typically the bounds in Corollary 3.3 are exploding.
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3.3. Non-linear Hawkes process with an analytic rate function

In the above examples we have shown how one can easily derive the Kalikow decomposition
if the intensity is already in the shape of a sum, as is the case for the linear Hawkes process,
with an atomic family of neighborhoods. In this case the complexity of all neighborhoods is
very small. In the case of the age-dependent Hawkes process, thanks to the refractory period
and the monotonicity and continuity properties of the underlying functions, we have been able
to derive a Kalikow decomposition as well, but with respect to a more complex family of
neighborhoods which is nested. Moreover, we have shown that under Lipschitz properties, the
intensities are bounded. In both cases the processes were non-exploding, that is, they only have
a finite number of jumps within finite time intervals, almost surely.

Now we want to reach much more erratic processes, which can even explode in finite time.
To do so, we cannot keep the refractory period, and we consider non-linear Hawkes processes
Z = (Zi)i∈I with intensity given by

φi(x)=ψ i

(∑
j∈I

∫ 0

−∞
hi

j(− s) dxj
s

)
(3.9)

for any x ∈X , where ψ i : R+→R+ are measurable functions and where hi
j : R→R+ belong

to L1.
Brémaud and Massoulié [4] proved that if ψ i is Lipschitz, then – under suitable additional

assumptions on ‖hi
j‖1 – a stationary version exists. However, in the case where ψ i is only

locally Lipschitz, the existence of a non-exploding or even a stationary solution is not guaran-
teed. For example, when choosing ψ i(x)= ex, then the process may explode in finite time with
strictly positive probability; see [5].

We will use analytical properties of ψ i to perform a Taylor expansion of ψ i. To do so, we
consider a family of neighborhoods which are iterated tensor products of Vatom. For fixed ε,
recall that an atomic neighborhood (see (3.6)) is such that wj,n = {j} × [− nε,−(n− 1)ε), for
j ∈ I and n ∈N∗. A neighborhood of order k is then a union of k atomic neighborhoods. For
α1 = (j1, n1), . . . , αk = (jk, nk), we put

vα1: k =
n⋃

k=1

wjk,nk .

The family of all possible such unions is denoted by V⊗k, with the convention that V⊗0 = {∅}.
The Taylor family of neighborhoods is then defined by

VTaylor =
∞⋃

k=0

V⊗k.

Note that if, for instance, some of the αi are equal, then the neighborhood vα1: k collapses
on a smaller union of less than k intervals and it is also possible that two neighborhoods with
different indices are in fact equal. We do not simplify the family and remove redundancies. It is
important that neighborhoods with different indices are considered different in order to define
properly the probability λi.

We are limited by the radius of convergence of the function ψ i, say K. This is why we are
working within the space

Y =X<K =
{

x ∈X : sup
i∈I

∑
j∈I

∫ 0

−∞
hi

j(− s) dxj
s <K

}
.
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Corollary 3.4. Let us assume that for any i, j ∈ I, the function hi
j( · ) is non-negative and that

for every i,

sup
t

∑
j∈I

hi
j(t)<∞.

Let us also assume that for every i ∈ I, ψ i( · ) is an analytic function on R with radius of
convergence K > 0 around 0, such that its derivative of order k, [ψ i](k)(0), is non-negative for
all k≥ 0. Then the multivariate non-linear Hawkes process defined by (3.9) admits the Kalikow
decomposition of Proposition 3.1(i) with respect to Vi =VTaylor for all i and with respect to
the subspace Y =X<K. Specifically, we have the following.

• If v=∅, 	i
v(x)=ψ i(0).

• If v= vα1: k , for α1 = (j1, n1), . . . , αk = (jk, nk), then

	i
v(x)= [ψ i](k)(0)

k! aα1 (x) · . . . · aαk (x),

where for α= (j, n),

aα(x) :=
∫ −nε

−(n+1)ε
hi

j(− s) dxj
s.

Proof. The condition ensures that the intensities are at least locally defined if, starting from
an empty past, one first point occurs. The proof of the convergence is then straightforward and
consists in using the analytic properties of ψ i. �

Note that the linear Hawkes process is a particular case of this corollary withψ i(u)=μi + u
and K =∞. But the above strategy can also be applied to the exponential Hawkes process,
ψ i(u)= exp (u), K =∞ and [ψ i](k)(0)= 1 for all k, which is only locally Lipschitz. One can
also use it for other functions, e.g. ψ i(u)= ch(u)= (eu + e−u)/2 with K =∞, for which even
derivatives [ψ i](2k)(0)= 1 and for which the other derivatives are null.

3.4. Galves–Löcherbach process with saturation thresholds

We close this section with an example which is not directly related to Hawkes processes and
for which, using the same arguments as above, we may establish a Kalikow decomposition as
well. This is the model with saturation threshold, which has already been considered in [19].
More precisely, we put

φi(x)=ψ i

(∑
j∈I

(
β i

j Zj((− ai(x), 0))
)∧Ki

j

)
(3.10)

for ψ i : R→R+ a Lipschitz-continuous non-decreasing rate function, β i
j ≥ 0 the weight of j

on i, where we choose β i
i = 0, and Ki

j ≥ 0 the saturation threshold. In this framework,
analogously to Corollary 3.3, we can prove the following

Corollary 3.5. Consider the Galves–Löcherbach process having generic intensity φi given by
(3.10), and suppose that

sup
i∈I

∑
j∈I

Ki
j <∞.
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Then φi admits the Kalikow decomposition given by Proposition 3.1(i), with respect to the
collection of neighborhood families (Vi)i∈I, where for all i, Vi =Vi

nested ∪ {vi
0 =∅}, and with

respect to the subspace Y =X , with 	i
0(x)=ψ i(0) and for any k≥ 1,

	i
k(x)=	i

vi
k
(x)

=ψ i

(∑
j∈ωi

k

[
β i

j

∫ 0

−(kδ)∧ai(x)
dxj

s

]
∧Ki

j

)
−ψ i

( ∑
j∈ωi

k−1

[
β i

j

∫ 0

−((k−1)δ)∧ai(x)
dxj

s

]
∧Ki

j

)
,

where wi
0 =∅.

4. Simulation algorithms

In this section we present two types of algorithm corresponding to the two items of
Proposition 3.1. First we present a simulation algorithm that simulates the time-homogeneous
counting process Z for finite networks, starting from the empty past before time 0, up to some
finite time, under the conditions of item (i) of Proposition 3.1. Second, we present a per-
fect simulation algorithm that simulates the process Z in its stationary regime, within a finite
space–time window, under the conditions of item (ii) of Proposition 3.1.

4.1. Simulating forwards in time, starting from a fixed past

Suppose that we are in the situation of item (i) of Proposition 3.1, with I finite, and that we
wish to simulate the process until a certain tmax > 0 starting from the empty past before time 0.
We might never reach tmax because the process might typically explode, so we introduce

τ := tmax ∧ inf{t≥ 0: Zt /∈Y} ∧ inf

{
t≥ 0:

∑
i

Zi
t ≥Nmax

}

for some fixed deterministic number Nmax. We make the following assumption.

Assumption 4.1. For all i ∈ I and for all jump times T of the process Z, there exists �̃i
T :=

�̃i(xT ) which depends only on the configuration up to time T (including T), such that

sup
t≥T

sup
v
φi

v(x←t
t )1xt∩(T,t)=∅ ≤ �̃i

T <∞.

Intuitively, as soon as no point is produced, for any chosen neighborhood v, the intensity
function restricted to this neighborhood is bounded by a predictable function. That allows us,
at the same time, to construct the dominating intensity and do a thinning step.

Example 4.1. The above assumption is satisfied for any non-linear Hawkes process with non-
decreasing rate function and with decreasing interaction functions hi

j, in the framework of

Sections 3.1 or 3.3 above. For instance, in the framework of Section 3.1, recalling that λi(v)
denotes the probability of choosing the neighborhood v= {j} × [− nε,−nε + ε), we put

�̃i
T = sup

j,n
sup

J

hi
j(0)Zj(J)

λi(v)
, (4.1)

where J ⊂ [0, T] is any interval of length ε.
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Let us now describe how we simulate forwards in time, starting from the empty past before
time 0, up to some maximal number of points Nmax > 0. In the following we will add subscript
T to �̃i to distinguish it from the old version.

Step 0. We initialize the set of points with X = 0 ∈X , where 0 ∈X designs the configuration
having no points, and T =N = 0.

While T ≤ τ and N ≤Nmax, do the following.
Step 1. For each i ∈ I, compute

�̃i
T ≥ sup

t≥T
sup

v
φi

v(X←t)1X∩(T,t)=∅.

Step 2. Simulate the next jump

T← T + Exp

(∑
i∈I

�̃i
T

)
.

If T > τ stop, else choose the associated index i with probability

P(I = i)= �̃i
T∑

j∈I �̃
j
T

.

Step 3. Choose the associated interaction neighborhood VT = v with probability λi(v).
Step 4. Accept T as a jump of index i with probability (φi

v(X←T ))/�̃i
T and add (i, T) to X in

this case. Put N←N + 1. If the point is rejected, do nothing. Go back to Step 1.

Remark 4.1. The bound �̃i
T , computed in Step 1, is random since it depends on the configura-

tion X that has been simulated so far.

Corollary 4.1. (Corollary of Proposition 2.1.) The previous algorithm simulates a time-
homogeneous counting process Z of generic intensity given by item (i) of Proposition 3.1.

Proof. Note that the random variable �̃i
T is a bound on the generic intensity φi in the absence

of the appearance of a new point in the future after time T . Hence the ‘new’ T (see also Section
2.3) computed at Step 2 can be seen as the abscissa of a point of an hidden bivariate Poisson
process in a band of height

∑
i∈I �̃

i
T . The association of a particular index i is quite usual (see

e.g. Ogata’s algorithm [26]), and it means that if the chosen index is i then the point T can
also be seen as the next point of the bivariate Poisson process π i discussed in Section 2.3
in the band of height �̃i

T . Since this is an upper bound on φi, the thinning procedure will not
consider points of π i outside this band, at least until a new point is accepted. The association of
a neighborhood in Step 3 is therefore consistent with the three-dimensional Poisson process of
Proposition 2.1, and the points that are accepted at Step 4 are the ones accepted in Proposition
2.1. Therefore this algorithm indeed simulates points with the desired intensities as long as the
process stays in Y and the Kalikow decomposition holds. �

Remark 4.2. Note that this algorithm will indeed save computational time if both the compu-
tation of �̃i

T and the verification that one stays in Y is easy. In the particular example of linear
Hawkes processes (Corollary 3.2), with decreasing hi

j, and bounded support on [0, ε], say, one

can take �̃i
T as defined in (4.1) and we know that the process will stay in Y with probability 1.
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Further algorithmic work, beyond the scope of the present article, might include a bespoke
design of �̃i

T to save computational time.

4.2. Perfect simulation of the process in its stationary regime

Throughout this section we suppose that we are in the situation of item (ii) of Proposition
3.1, that is, the generic intensities φi are upper-bounded by deterministic constants �i and the
subspace Y is invariant under the dynamics, that is, Zt ∈Y implies Zt+s ∈Y for all s≥ 0. This,
for example, is the case for the age-dependent Hawkes process with hard refractory period
considered in Section 3.2 above. In particular, in this case it is possible to restrict the dynamic
to Y , and in what follows we will show how to simulate from the unique stationary version of
the process within this restricted state space Y .

In what follows, we propose simulating, in its stationary regime, the process Zi for a fixed
i ∈ I, on an interval [0, tmax], for some fixed tmax > 0. Our algorithm is a modification of the
method described in [28], which works in the case where all the �i are equal. The procedure
consists of backward and forward steps. In the backward steps, thanks to the Kalikow decom-
position, we create a set of ancestors, which is a list of all the points that might influence the
point under consideration. On the other hand, in the forward steps, where we go forwards in
time, by using the thinning method [26] in its refined version stated in Theorem 2.1, we give
the decision (acceptance or rejection) for each visited point based on its neighborhood, until
the state of all considered points is decided.

The idea of relying on such a two-step procedure is not new and has already been proposed
in the literature, even in a continuous-time setting (see e.g. [12], [14], and [15]), where such
an approach is used to simulate from infinite-range Gibbs measures and/or from the steady
state of interacting particle systems, relying on a decomposition of the spin flip rates as a con-
vex combination of local flip rates. The main difference of our present approach with respect
to these results is twofold. Firstly, in these articles, only spatial interactions are considered,
whereas we have to decompose both with respect to the spatial interactions and the history in
the present article. And secondly and more importantly, in all these articles the authors manage
to go back to transition probabilities and then establish a Kalikow decomposition for them. So
somehow this means that we are back in the framework of discrete-time processes as in [22],
where these ideas were introduced. Such a discrete-time approach is used in [19]. The idea
of decomposing the intensities directly rather than going back to probabilities, and to decom-
pose both with respect to time, i.e. history, and space, i.e. the interactions, is – at least to our
knowledge – completely new.

4.2.1. Backward procedure. Recall that according to item (ii) of Proposition 3.1, all functions
φi and φi

v are bounded by a fixed deterministic constant �i.
For the sake of understandability from a theoretical point of view, we will assume that

the Ni are independent homogeneous Poisson processes on the real line with intensity �i and
that these points are fixed before one starts the algorithm. Indeed, following what was said in
Proposition 2.1, we will recover the points of Zi as a thinning of a three-dimensional Poisson
process. The fact that the intensities are bounded allows us to thin only in a band of height �i,
and that is why we are going to thin Ni into Zi.

In practice, of course, infinite knowledge of the Ni is not possible, and Steps 1′ and 2′ are
there to explain concretely how this is done in practice.

Step 0. Fix i, set the initial time to be T0 = 0.
Step 1. Take T to be the first point of Ni after 0. This is the first possible jump of Zi after T0.
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Step 1′. Simulate this T as

T← T0 + Exp (�i).

In particular, this implies that the underlying Ni is empty on [T0, T).
If T > tmax, stop.
Step 2. Independently of anything else, pick a random neighborhood Vi

T of (i, T) according
to the distribution (λi(v))v∈Vi given in (3.2), that is,

P(Vi
T = v)= λi(v).

On {Vi
T = v}, consider the shift of this neighborhood v by T defined by

v→T := {(j, u+ T) : (j, u) ∈ v}
and, for any j ∈ I, the projection to the second coordinate of v→T by

pj(v
→T ) := {t ∈R : (j, t) ∈ v→T}.

Note that if, for some j, (j, t) /∈ v→T for all t, then pj(v→T )=∅. Finally, we look for the set of
points of N that might directly influence the decision of acceptation/rejection of T:

C(i,T)
1 =

⋃
j∈I

{
(j, t) : t ∈ pj(v

→T ) is a jump of Nj}.
Step 2′. Simulate independent Poisson processes in v→T , that is, for each j ∈ I, we simulate

the points of Nj independently of anything else as a Poisson process of intensity �j on pj(v→T ),

to identify C(i,T)
1 as before.

It is possible that at this point in the algorithm (especially in the iteration below), v→T

intersects with neighborhoods that have already been picked. In this case, simulate only on
the portion of the neighborhood that has never been visited before. Note in particular that we
assume the set {i} × [T0, T) to be an already visited region, and that within this region there
are no points, by definition of T .

Step 3. Recursively, we define the nth set of ancestors of (i, T) by

C(i,T)
n =

⋃
(j,s)∈C(i,T)

n−1

C(j,s)
1 \ (C(i,T)

1 ∪ . . .∪ C(i,T)
n−1

)
,

by performing Step 2 or Step 2′ for each (j, s) ∈ C(i,T)
n−1 .

Note that C(i,T)
n exactly corresponds to the points that are really simulated as new in the

iterated Step 2′.
We denote

N(i,T) = inf
{
n : C(i,T)

n =∅},
where inf ∅ :=+∞. The backward scheme stops when N(i,T) <∞, and below we give suffi-
cient conditions guaranteeing this fact (see Proposition 4.1 below). In this case we say that the
total clan of ancestors of (i, T) is given by

C(i,T) =
N(i,T)⋃
k=1

C(i,T)
k .
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In what follows we also consider the associated interaction support given by

V (i,T) =
⋃

(j,t)∈C(i,T)

(Vi
t )
→t

and we put

T (i,T) := T − inf
{
s : ∃j ∈ I : (j, s) ∈ V (i,T)}, (4.2)

which is the total time the backward steps need to look back in the past.

Remark 4.3. Let us emphasize that λi(∅) does not need to be strictly positive in order to guar-
antee that N(i,T) <∞. If λi(∅)= 0, at every step of the backward scheme we always need to
simulate a Poisson process in a non-empty neighborhood. However, if there is no point sim-
ulated in such a neighborhood, then we do not add any points to the clan of ancestors, and if
this happens sufficiently often, then the backward step ends as well. This is one of the main
advantages of our approach and a major difference with respect to [13] and [19]. In Proposition
4.1 below we give sufficient conditions implying that the algorithm stops after a finite number
of steps almost surely.

Remark 4.4. Steps 1′ and 2′ are consistent with recreating the processes Ni in the neighbor-
hoods of interest, instead of taking them for granted beforehand. In particular, this is the reason
why the algorithm is very careful when dealing with overlapping neighborhoods not to simulate
the same process twice on the same portion of the space.

4.2.2. Forward procedure Supposing that N(i,T) <∞, we now use a forward procedure to
accept or reject recursively each point in C(i,T), until the status of T is decided.

We start with the point (j, s) ∈ C(i,T), which is the smallest in time, so that its associated
neighborhood is either empty (v=∅) or non-empty but without any point of the Poisson
process in it.

Step 1. Accept (j, s) with probability φj

Vj
s
(X←s

s )/�j, where Vj
s is the neighborhood of (j, s).

Step 2. Move to the next point of C(i,T) in increasing time order. Repeat Steps 1 and 2 until
the status of T is determined.

Update step. To simulate on [0, tmax], go back to Step 0 of the backward procedure and
replace the starting time of the initial step T0 with T . Repeat the backward and forward
procedures until T > tmax.

Remark 4.5. If one wants to adapt the algorithm to the simulation of a generic finite subset F
of I×R, it is sufficient to shift everything to the smallest time in F (which will be the initial
T0) and to repeat the process on all the i in F. Again in Step 2′, we need to be careful to simulate
only on new parts of I×R and not parts that have been already discovered and where one of
the Ni has already been simulated.

4.2.3. Why the backward procedure ends after a finite number of steps. Our procedure only
works if N(i,T) <∞ almost surely. In what follows we give sufficient conditions implying this.
To do so, we compare our process to a spatiotemporal branching process. Let us define this
more mathematically.

The initial directed graph of ancestors T . We start with the ancestor which is the point (i, T)
constituting generation 0. All points belonging to C(i,T)

n are called points of the nth generation.
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For each point (j, t) belonging to generation n, all elements of

C(j,t)
1 =

⋃
k∈I

{
(k, s) : s ∈ pk((Vj

t )
→t) is a jump of Nk

}

define the children of the point (j, t). The choices of the children of (j, t) and (j′, t′) for any
two distinct elements of generation n are not necessarily independent, since the associated

neighborhoods might overlap, that is, we may have Vj
t ∩ Vj′

t′ �= ∅.
Note that T is not a tree, precisely because of this potential overlapping: two different

parents might have the same child.

The dominating branching process T̃ . To obtain sufficient conditions implying that N(i,T) <

∞, we therefore construct a dominating spatiotemporal branching process starting from the
same ancestor (i, T), where the choices of children are independent. To go from generation
n to the next generation n+ 1, to any point (j, t) belonging to generation n we associate the
same children C(j,t)

1 , as before, whenever the chosen neighborhood Vj
t does not overlap with

parts of I×R where we have already simulated in previous steps. However, if there are parts
of the neighborhood Vj

t that intersect with parts already visited, we simulate – independently
of anything else – on the whole neighborhood. By doing so, we make the number of children
larger, but for each point, these choices are independent of anything else. If this dominating
branching process goes extinct in finite time, then so does the original process C(i,T)

n , and the
backward part of the algorithm terminates.

To formulate a sufficient criterion that implies the almost sure extinction of the dominating
branching process T̃ , let us denote the product measure P on I×R, defined on the Borel
subsets of I×R, as follows:

P(J × A) :=
∑
j∈J

�j μ(A)

for any J ⊂ I, where A is a Borel subset of R and where μ is the Lebesgue measure. The
following proposition is already proved in [28] in a particular case where all the �j are equal.

Proposition 4.1. If

sup
i∈I

∑
v∈Vi

P(v)λi(v)=: γ < 1, (4.3)

then the backward steps in the perfect simulation algorithm terminate almost surely in finite
time.

Proof. For any neighborhood v, we have∑
j∈v

E(card{t : t ∈ pj(v) is a jump of Nj})=
∑
j∈v

�jμ(pj(v))= P(v).

This implies that
∑

v∈Vi P(v)λi(v) is the mean number of children issued from one point of
type i. Then condition (4.3) implies that the mean number of children is less than one in
each step, which is the classical sub-criticality condition for branching processes; see [1]. The
result then follows from the fact that according to the above discussion, we can dominate
L(i,T)

n := card(C(i,T)
n ) by a classical Galton–Watson branching process having offspring mean

γ < 1 which goes extinct in finite time almost surely. �
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4.2.4. Why we sample from the stationary distribution.

Theorem 4.1. Suppose we are in the situation of item (ii) of Proposition 3.1 and the subspace
Y is invariant under the dynamics, that is, the configuration associated to Z, X, satisfies that
X←t

t ∈Y implies X←t+s
t+s ∈Y , for all positive s. If (4.3) holds, then the process possesses a

unique stationary distribution in restriction to Y , and the accepted points of the forward pro-
cedure yield a perfect sample of this stationary distribution within the space–time window
{i} × [0, tmax].

Proof. In this proof we adapt the ideas of the proof of Theorem 2 in [14] to the present
framework. For any finite subset F of I×R the backward and forward procedures produce a
sample of a point process within the space–time window F, and we write μF for the law of the
output. By construction, the family of probability laws {μF, F⊂ I×R finite} is a consistent
family of finite-dimensional distributions. Hence there exists a unique probability measure μ
on (X∞,B(X∞)) such that μF is the projection onto F of μ, for any fixed finite set F⊂ I×R.

We show that μ is the unique stationary distribution of the process Z within Y . In order to
do so, we use a slight modification of our algorithm in order to construct Z starting from some
fixed past, say x ∈Y , before time 0. The modification is defined as follows.

We fix t, tmax > 0 and put F= {i} × [t, t+ tmax]. Recall that the original backward proce-
dure relies on the a priori realization of all the Poisson processes Ni on (−∞, t+ tmax]. In
our modified procedure we replace, for any i ∈ I, the points of Ni within (−∞, 0) by those
of xi, where x= (xi)i∈I is our initial condition.

Step 0. Put T0 = t.
Step 1. Perform Steps 1–3 of the backward procedure, replacing the Poisson processes Ni

in restriction to (−∞, 0) with the corresponding points of x, and stop this procedure at time

Ñ(i,T) = inf
{
n : C(i,T)

n ⊂ I× (−∞, 0)
}∧N(i,T).

Indeed, on the set {Ñ(i,T) <N(i,T)}, at this time, only points with negative times have to
be considered, and all these points are determined by the initial condition x. In this modified
version, when we stop the algorithm, the output set C(i,T)

Ñ(i,T) might not be empty. This set is
exactly the set of points before time 0 that have an influence on the acceptance or rejection of
the point (i, T).

Notice that the time

inf
{
n : ∃(j, t) ∈ C(i,T)

n :
(
Vj

t
)→t ∩ I× (−∞, 0) �= ∅},

if it is finite, is the first time where the modified algorithm starts to be different from the original
one. In particular, if the backward steps stop before reaching the negative sites, that is, if we
are on the event T (i,T) ≤ T (recall (4.2)), then

C(i,T)
Ñ(i,T) =∅, Ñ(i,T) =N(i,T),

and the two procedures produce the same sets of points.
The forward procedure is performed as before, replacing the unknown points before time 0

with the fixed past configuration x.
Then the law of the set {(τ̃ i

n)} stated at the end of the modified algorithm 2 is the law of
Zi|[t,t+tmax], starting from the fixed past x before time 0. The output of the modified algorithm

equals the output of the unmodified perfect simulation algorithm 2 if T (i,T) ≤ T .
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We now give a formal argument proving that μ is indeed a stationary distribution of the
process. Let f : X∞→R+ be a bounded measurable function that is cylindrical on {i} × [t, t+
tmax]. Then

E
[
f
(
Zi|[t,t+tmax]

) | Z|R− = x
]=E[f ({(τ̃ i

n)}), T (i,T) ≤ T]+E[f ({(τ̃ i
n)}), T (i,T) > T]

=E[f ({(τ i
n)}), T (i,T) ≤ T]+E[f ({(τ̃ i

n)}), T (i,T) > T],

where (τ i
n) is the output of the original perfect simulation algorithm.

But

E[f ({(τ̃ i
n)}), T (i,T) > T]≤ ‖f‖∞P(T (i,T) ≥ t)→ 0 as t→∞,

since finiteness of the tree implies the finiteness of T (i,T), and since by shift invariance the law
of T (i,T) does not depend on T . Hence we obtain that

lim
t→∞E

[
f
(
Zi|[t,t+tmax]

) | Z|R− = x
]=E

[
f
(
Zi|[t,t+tmax]

)]
,

since 1T(i,T)≤T→ 1 almost surely.
This implies that μ is a stationary distribution of the process. Replacing the initial condition

x with any stationary initial condition, chosen within Y , we finally also get uniqueness of the
stationary distribution. �

4.2.5. The complexity of the algorithm Throughout this section we suppose once more that we
are in the situation of item (ii) of Proposition 3.1 and that the subspace Y is invariant under the
dynamics, that is, Zt ∈Y implies Zt+s ∈Y for all s≥ 0. Our goal is to study the effect of the
choice of the (λi(v))v∈Vi on the number of points simulated by our algorithm. Until the end of
this section, we make the following assumption.

Assumption 4.2.

(i) The index set I= {1, . . . ,N} is finite.

(ii) The sub-criticality assumption (4.3) is satisfied.

Let us fix several notations that will be useful below. We let ei denote the ith unit vector of
R

N , 1 is the vector (1, 1, . . . , 1)�, and μ still stands for the Lebesgue measure. Finally, by a
positive vector we mean that all its components are positive.

We will rely on the multitype branching process T̃ introduced at the beginning of Section
4.2.3, which is a space–time-valued process starting from the ancestor (i, T) in generation 0. We
will refer to these points as ‘particles’ and we say the type of a particle is its associated index
value i. Recall that in the definition of this branching process, each particle (j, t) belonging to
generation n, independently of anything else, gives rise to offspring particles which are chosen
as independent copies of

C(j,t)
1 =

⋃
k∈I

{
(k, s) : s ∈ pk((Vj

t )
→t) is a jump of a Poisson process of intensity �k}.

For n≥ 1, let Ki(n) be the N-dimensional vector containing the numbers of offspring par-
ticles of different types belonging to the nth generation of the process issued from (i,
T), that is, Ki(n)= (Ki

1(n), . . . ,Ki
N(n))�, where Ki

k(n) is the number of particles of type k
within generation n. We use the convention that Ki(0)= ei for every 1≤ i≤N. For every
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j ∈ {1, . . . ,N}, let

Xi
j :=Ki

j (1)

be the number of offspring particles of type j of the initial particle (i, T). We have already seen
that Xi

j is the cardinal of the points that a Poisson process of intensity �j produces on pj(Vi
T ),

where Vi
T is the random neighborhood chosen for particle (i, T). In other words, if we let P

denote the Poisson distribution, given that Vi
T = v, we have

L
(
Xi

j | Vi
T = v

)=P(�jμ(pj(v))). (4.4)

Letting Xi =K1(1) ∈RN denote the associated vector, we consider for any θ ∈RN the log-
Laplace transform of Xi given by

φi(θ ) := log Ei
(
eθ
�Xi)

,

where Pi denotes the law of the branching process starting from a single ancestor having type
i and Ei is the corresponding expectation.

Moreover, we consider

Wi(n)=
n∑

k=0

Ki(k)

to be the total number of offspring particles within the first n generations. The log Laplace
transform associated to the random vector Wi(n) is given by

�
(n)
i (θ ) := log Ei

(
eθ
�Wi(n)),

where

�(n)(θ )= (�(n)
1 (θ ), . . . , �(n)

N (θ )
)�.

Since we are working under the sub-criticality condition (4.3),

Wi(∞) := lim
n→∞Wi(n) and Wi =

N∑
j=1

Wi
j (∞)

are well-defined and almost surely finite. In the above formula, Wi
j (∞) denotes the jth coordi-

nate of the N-dimensional vector Wi(∞), that is, the total number of offspring of type j issued
from one ancestor particle of type i. In particular, Wi is the total number of offspring particles
issued from one ancestor particle of type i. We introduce the associated log-Laplace transforms

�i(θ ) := log Ei
(
eθ
�Wi(∞)), �(θ )= (�1(θ ), �2(θ ), . . . , �N(θ ))�.

We are now going to state an exponential inequality, inspired by Lemma 1 of [30]. To do so,
let ‖ · ‖∞ be the ∞-norm on R

N , that is, for x= (x1, . . . , xN), ‖x‖∞ =max{|xi|, 1≤ i≤N},
and let B(0, r) denote the open balls having center 0 ∈RN and radius r with respect to this
norm. We have to introduce an additional assumption stating that the log-Laplace transform φi

is finite within an open ball around 0.
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Assumption 4.3. There exists R> 0 such that for all positive vectors θ belonging to B(0, R)
we have

sup
i
φi(θ )= sup

i

N∑
j=1

log

(∑
v∈Vi

λi(v) exp
[
(eθj − 1)�jμ(pj(v))

])
<∞.

Proposition 4.2. Given Assumptions 4.2 and 4.3, the following holds.

(i) There exists r ∈ (0, R) such that for all θ ∈ B(0, r), �i(θ )<∞, and moreover

�(θ )= θ + φ(�(θ )).

(ii) In particular, for 0≤ ϑ < r, there exists a constant c0 that depends on M and i such that
the following deviation inequality holds for the total number of offspring particles:

Pi(W
i >Ei(W

i)+ x)≤ c0e−ϑx (4.5)

for all x> 0.

Remark 4.6. Let M be the Jacobian matrix of φ( · ) at 0. Since

φi(θ )= log Ei
(
eθ
�Xi)= log Ei

(
N∏

j=1

eθjXi
j

)
,

we deduce that, using (4.4),

Mij =Ei(X
i
j)=

∑
v∈Vi

�jμ(pj(v))λi(v), (4.6)

which is the mean number of offspring particles of type j, issued by a particle of type i. It is a
well-known fact in branching processes (see e.g. Chapter V of [1]) that

Ei((K
i(n))�)= e�i Mn,

and that

Ei((W
i(n))�)=Ei

(
n∑

k=0

(Ki(k))�
)
= e�i

(
n∑

k=0

Mk

)
.

Thus, by monotone convergence,

Ei(W
i)= e�i

( ∞∑
k=0

Mk

)
1, (4.7)

which is finite by (4.3). Hence (4.5) tells us that the number of points produced in the back-
ward steps is well concentrated around its mean. If we think that the overall complexity of the
algorithm is governed by the number of points produced in the backward steps, then (4.7) gives
us a good way to determine which distribution λi can lead to the less costly algorithm. We are
looking basically at the λi that are minimizing (4.7), with M defined by (4.6)
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Proof of Proposition 4.2. Step 1. First we prove that φi(θ ) is well-defined for all θ ∈ B(0, r).
Indeed, since the (Xi

j)j=1,...,N are independent, we have

φi(θ )= log Ei

(
N∏

j=1

exp
(
θjX

i
j

))= N∑
j=1

log Ei
(
exp

(
θjX

i
j

))
.

By (4.4),

Ei
(
exp

(
θjX

i
j

) | Vi
T = v

)= exp
[
(eθj − 1)�jμ(pj(v))

]
,

and integrating with respect to the choice of Vi
T , we obtain

φi(θ )=
N∑

j=1

log

(∑
v∈Vi

λi(v) exp
[
(eθj − 1)�jμ(pj(v))

])
<∞.

Step 2. In the following, we prove that �(n)
i (θ ) satisfies the recursion

�
(n)
i (θ )= θ�Ki(0)+ φi(�

(n−1)(θ )).

Indeed, by definition of Wi(n) we have

Ei
(
eθ
�Wi(n))= eθ

�Ki(0)
Ei
(
eθ
�∑n

k=1 Ki(k)).
Now, let us introduce, for any j and any 1≤ p≤ Xi

j , the vector Kj
(p)(n− 1) of offspring particles

within the (n− 1)th generation, issued from the pth particle of type j in the first generation.
Notice that by the branching property, for p= 1, . . . , Xi

j , we have that the Kj
(p)(n− 1) are

independent copies of Kj(n− 1). Therefore, conditioning on the first generation of offspring
particles,

Ei
(
eθ
�∑n

k=1 Ki(k))=Ei

(
eθ
�∑n

k=1
∑N

j=1
∑Xi

j
p=1 Kj

(p)(k−1)
)

=Ei

(
N∏

j=1

Xi
j∏

p=1

eθ
�∑n

k=1 Kj
(p)(k−1)

)

=Ei

[
E

(
N∏

j=1

Xi
j∏

p=1

eθ
�∑n

k=1 Kj
(p)(k−1) | Xi

)]
.

Since the (Kj
(p)(k− 1))1≤j≤N are independent and independent of Xi, we obtain

Ei

[
E

(
N∏

j=1

Xi
j∏

p=1

eθ
�∑n

k=1 Kj
(p)(k−1) | Xi

)]
=Ei

[
N∏

j=1

Xi
j∏

p=1

E
(
eθ
�∑n

k=1 Kj
(p)(k−1) | Xi

j

)]

=Ei

[
N∏

j=1

Xi
j∏

p=1

E
(
eθ
�∑n

k=1 Kj
(p)(k−1))]
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=Ei

[
N∏

j=1

(
E
(
eθ
�Wj(n−1)))Xi

j

]

=Ei

[
N∏

j=1

e�
(n−1)
j (θ)Xi

j

]

=Ei
[
e�

(n−1)(θ)�Xi
]

= eφi(�(n−1)(θ)),

implying

�
(n)
i (θ )= θ�Ki(0)+ φi(�

(n−1)(θ )),

or, in vector form,

�(n)(θ )= θ + φ(�(n−1)(θ )). (4.8)

Step 3. Let us consider the sums of the elements of the ith line of the matrix M,

N∑
j=1

Mij =
N∑

j=1

Ei(X
i
j).

By definition, this is the mean number of offspring particles (of any type), issued from a particle
of type i, and by the arguments presented in the proof of Proposition 4.1, this mean number is
given by

N∑
j=1

Mij =
∑
v∈Vi

λi(v)P(v)≤ γ < 1,

where the last upper bound holds by our assumptions. Hence

‖M‖∞ = sup
‖x‖∞≤1

{‖Mx‖∞} = sup
i

N∑
j=1

|Mij| ≤ γ < 1,

where ‖ · ‖∞ is the induced norm for matrices on R
N×N . Therefore the derivative of φ in 0

satisfies ‖Dφ(0)‖∞ ≤ γ < 1. Moreover, since the norm is continuous and so is Dφ(s), for any
γ <C< 1, there is a r̃ ∈ (0, R), such that, for ‖s‖∞ < r̃,

‖Dφ(s)‖∞ ≤C< 1.

Hence φ(s) is Lipschitz-continuous in the ball B(0, r̃) and moreover φ(0)= 0, which implies
that

‖φ(s)‖∞ ≤C‖s‖∞
for ‖s‖∞ < r̃.

Now, take θ such that |θi| ≤ r̃(1−C) for any 1≤ i≤N. Using (4.8), we can show by
induction that for all n,

‖�(n)(θ )‖∞ ≤ ‖θ‖∞(1+C+ · · · +Cn)≤ r̃<∞.
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Hence, by monotone convergence of �n(θ )→�(θ ) and the limit in (4.8), we have

‖�(θ )‖∞ ≤ r and �(θ )= θ + φ(�(θ )),

with r= r̃(1−C). In particular, choosing θ = ϑ1 ∈ B(0, r) with ϑ ∈R, we have

Ei
(
eϑWi)

<∞,
where we recall that Wi is the total number of offspring particles of i.

Step 4. We use Markov’s inequality and obtain for any ϑ ∈ (0, r)

Pi(W
i >Ei(W

i)+ x)= Pi
(
eϑWi

> eϑEi(Wi)+ϑx)≤ e�̃i(ϑ)−ϑEi(Wi)−ϑx,

where �̃i(ϑ)= log Ei
(
eϑWi)

. Using Taylor’s formula, we have

�̃i(ϑ)= �̃′i(0)ϑ + 1

2
�̃′′i (ϑ̃)ϑ2 =Ei(W

i)ϑ + 1

2
�̃′′i (ϑ̃)ϑ2

for some ϑ̃ ∈ (0, ϑ). Choosing c0 = supϑ≤r e
1
2 �̃
′′
i (ϑ̃)ϑ2

implies the assertion. �

4.2.6. Choice of the weights on a particular example In this section we discuss a very particu-
lar example to show how to calibrate the choice of the λi in terms of minimizing the number of
points produced in the backward steps. Our example is the age-dependent Hawkes process with
hard refractory period δ > 0 defined by (3.7) and with non-decreasing ψ i which is L-Lipschitz
for all i, so that Corollary 3.3(ii) applies. The following choices are merely directed to have the
simplest possible computations on a non-trivial infinite case.

In what follows, to simplify the computations, we consider that I=Z and L= 1. Moreover,
for all i, we make the following assumptions.

(1) ψ i(0)= 1.

(2) hi
j(t)= β i

j exp (− t/δ), where β i
j = 1/(2|j− i|γ ) for j �= i, for some fixed positive param-

eter γ > 1, and β i
i = 1, where β i

j ≥ 0. Note that ‖hi
j‖1 = β i

jδ and that hi
j(0)= β i

j .

(3) With the notation of Corollary 3.3, we use ωi
1 = {i} and

ωi
k = {i− k+ 1, . . . , i, i+ 1, . . . , i+ k− 1} for all k≥ 2.

With this choice, one can see that �̄i
k defined in Corollary 3.3(ii) is given for k≥ 2 by

�̄i
k =

2

(k− 1)γ
+ e−(k−1)

(
1+

k−2∑
m=1

1

mγ

)
.

Hence, for some constant Cγ > 0 depending on γ , one can always choose, for all k≥ 1,

�i
k ≥Cγ k−γ ,

as long as
∑

k �
i
k <∞. So let us take

�i
k =Cγ k−p
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for some 1< p≤ γ . Note that in this case, �i is independent of i, since

�i =
∞∑

k=1

�i
k =Cγ cp, where cp =

∞∑
k=1

k−p.

By applying Proposition 3.3(ii) combined with Corollary 3.3(ii), we obtain

λi(vi
k)= (cp)−1k−p.

Now let us turn to finding p such that the λi are minimizing (4.7), that is,

Ei(W
i)= e�i

( ∞∑
k=0

Mk

)
1,

with M defined by

Mij =Ei(X
i
j)=

∞∑
k=1

�jμ(pj(v
i
k))λi(vi

k).

Summing over all possible types j, we obtain the mean number of offspring particles of a
particle of type i, which is given by

Mi =
∞∑

j=1

Mij =Cγ δ
∞∑

k=1

(2k− 1)k1−p =: Cγ δf (p), where f (p)=
∞∑

k=1

(2k− 1)k1−p.

Clearly, f (p)<∞ if and only if p> 3, and thus, a fortiori, γ > 3. Since f is a decreasing
function of p, the optimal choice for p is thus p= γ .
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