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Oftentimes, turbulent flows exhibit a high-frequency turbulent component developing on
a strong low-frequency periodic motion. In such cases, the low-frequency motion may
strongly influence the spatio-temporal features of the high-frequency component. A typical
example of such behaviour is the flow around bluff bodies, for which the high-frequency
turbulent component, characterized by Kelvin–Helmholtz structures associated with thin
shear layers, depends on the phase of the low-frequency vortex-shedding motion. In this
paper, we propose extended versions of spectral proper orthogonal decomposition (SPOD)
and of resolvent analysis that respectively extract and reconstruct the high-frequency
turbulent fluctuation field as a function of the phase of the low-frequency periodic motion.
These approaches are based on a quasi-steady (QS) assumption, which may be justified
by the supposedly large separation between the frequencies of the periodic and turbulent
components. After discussing their relationship to more classical Floquet-like analyses, the
new tools are illustrated on a simple periodically varying linear Ginzburg–Landau model,
mimicking the overall characteristics of a turbulent bluff-body flow. In this simple model,
we in particular assess the validity of the QS approximation. Then, we consider the case of
turbulent flow around a squared-section cylinder at a Reynolds number of Re = 22 000, for
which we show reasonable agreement between the extracted spatio-temporal fluctuation
field and the prediction of QS resolvent analysis at the various phases of the periodic
vortex-shedding motion.
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1. Introduction

Turbulent flows are ubiquitous in nature and in many engineering applications. In
addition to the stochastic high-frequency component, they may also exhibit well-organized
large-scale/low-frequency structures, such as vortex-shedding (VS) structures in bluff
bodies. In many applications, those structures often hold most of the energy present in
the flow. For this reason, their study is mandatory for design, control, state observation
or reduced-order modelling. Such structures may be identified from data (from a
numerical simulation or from experiments) or reconstructed from first principles, where
the underlying mathematical model is explored.

The most standard data-driven analysis is proper orthogonal decomposition (POD)
(see Berkooz, Holmes & Lumley 1993; Lumley 2007) which, if applied to time-series
data (also called snapshot POD), will extract spatial orthogonal modes (together with
their time-varying scalar amplitudes) that optimally represent the flow-field two-point
correlation tensor, making it well suited for model reduction. Although POD optimally
reconstructs time series, the modes produced in this way have no dynamical meaning.
For this reason, other techniques were designed such as dynamic mode decomposition
(see Schmid 2010), where modes are identified by supposing a linear relationship within
the (nonlinear) time-series data, and spectral POD (SPOD) (see Picard & Delville 2000;
Towne, Schmidt & Colonius 2018). This last technique considers the cross-spectral tensor
(computed from the statistics of several realizations) at given frequencies, from which its
eigenvalues/eigenvectors are found, leading to spatial structures and their corresponding
energies, at the given frequencies. It was shown that SPOD is an optimal form of dynamic
mode decomposition for statistically stationary turbulent flows (Towne et al. 2018).

From the first-principles point of view (operator-driven analysis), linear analyses based
on the Navier–Stokes equations linearized around the (time-averaged) mean flow are
now common in the literature. In particular, for turbulent flows, we highlight resolvent
analysis (see McKeon & Sharma 2010; Beneddine et al. 2016), which establishes that
the turbulent fluctuation field can be modelled with the linearized dynamics forced by
nonlinear fluctuations. The input/output relationship between the forcing term and the
fluctuation represents the transfer function, or the resolvent operator, whose singular value
decomposition establishes the most amplified forcing/fluctuation pairs, revealing the most
energetic dynamics. This analysis produces modes comparable with those obtained with a
SPOD analysis, under some assumptions on the correlations of the forcing terms (Towne
et al. 2018).

Both SPOD and resolvent analyses have been extensively applied to flows such as
wall-bounded flows (see Cossu, Pujals & Depardon 2009; Hellström & Smits 2014;
Beneddine et al. 2016; Tutkun & George 2017; Abreu et al. 2020; Lugrin et al. 2021),
jets (Schmidt et al. 2018; Lesshafft et al. 2019) and airfoils (Symon, Sipp & McKeon
2019; Yeh & Taira 2019), to mention a few.

In many turbulent flow conditions, a low-frequency large-amplitude oscillation can be
present and can have a strong impact on other coexisting turbulent phenomena, modulating
them. One very illustrative example is blood flow in the heart or air flow in the lungs
where, according to the phase of the heart beat or of the inhalation/exhalation period,
different physical phenomena may take place. Another example is rotating machines,
where the turbulence emitted by moving blades strongly depends on its position and thus
on the phase of the rotation. This example is intimately connected to a broader category of
problems, which are fluid–structure interactions, where mean-flow analyses do not make
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High-frequency fluctuations on periodic limit-cycles
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Figure 1. Direct numerical simulation of a squared-section cylinder at Re = 22 000. (a) Spectrum at point
(−0.4, 0.63) in the shear-layer region. (b) Snapshots of the (spanwise-averaged) pressure field at four
different phases, exhibiting the high-frequency KH phenomenon (blue circles) and its dependency on the
lower-frequency VS (red circles). The green point represents the probe used in (a). All variables are made
non-dimensional with the side of the square and the inflow velocity while the cylinder is centred at (0, 0).

much sense (in those cases, a change in the reference frame may be needed; see e.g. Shinde
& Gaitonde (2021)). Also, flows around bluff bodies typically present a strong VS motion
where the small-scale turbulent structures evolving on top of them may exhibit different
amplitudes, frequencies and spatial locations depending on the phase and thus the position
of the large-scale vortices. In figure 1, we present results pertaining to a squared-section
cylinder at a Reynolds number Re = U∞D/ν = 22 000. In this flow, two very distinct
physical mechanisms are at play: periodic VS and Kelvin–Helmholtz (KH) instabilities in
the detached shear layers. We can see that the frequency of the former is much lower than
the frequencies of the latter. Also, from the snapshots provided in figure 1(b), we can see
that, due to the VS phenomenon, the shear layers on the top and bottom of the cylinder
slowly oscillate, inducing changes in the dynamics of the KH structures evolving on top of
them (see also Brun et al. 2008).

We remark that classical techniques such as POD, SPOD and resolvent analyses,
although they can certainly identify/reconstruct all the physical structures in a given
flow field, elucidating all present physical mechanisms (see e.g. Pickering et al. (2020)
where SPOD could reveal lift-up, KH and Orr mechanisms in a turbulent jet or Sieber,
Paschereit & Oberleithner (2016) and Mendez, Balabane & Buchlin (2019) where classical
POD techniques were adapted to provide a multi-scale analysis, isolating several physical
mechanisms), they do not manage to describe the phase dependency of small-scale
turbulent phenomena. The reason for this is that they all decompose the signal in spatial
modes multiplied by a temporal behaviour. This implies that the spatial shape of a
particular mode is not allowed to be altered. Indeed, for the squared-section cylinder,
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(a) (b)

Figure 2. Classical SPOD (a) and mean-flow resolvent (b) modes for the flow around a squared-section
cylinder, presented in figure 1, at ω = 20. They produce modes that are ‘steady’ and do not oscillate with VS.

we can clearly see the motion of the high-frequency KH structures with VS motion,
while classical SPOD and mean-flow resolvent analyses produce fixed spatial structures
(see figure 2). Moreover, the SPOD mode shown in figure 2(a) exhibits, mostly in the
bottom shear layer, a shadow of the KH structures at different phases of the VS motion,
a feature that we would like to mitigate in the present work. We remark that, similarly,
those limitations on classical techniques, such as snapshot POD, can also be observed in
the case of highly advective flows or wave propagation phenomena, where solutions to
those problems, although they may retain their shape, travel through space. In those cases,
modified techniques may lead to better results (see e.g. Iollo & Lombardi 2014; Reiss et al.
2018; Cagniart, Maday & Stamm 2019).

The goal of the present article is to extend SPOD and resolvent analyses so that
they describe this phase dependency. From an operator-driven point of view, when
the phase-dependent dynamics evolves periodically, given by a periodic limit cycle, a
linear homogeneous dynamics can be studied using a Floquet-like analysis (Barkley &
Henderson 1996; Jallas, Marquet & Fabre 2017; Shaabani-Ardali, Sipp & Lesshafft 2019).
In the non-homogeneous case, where an active forcing term (possibly unknown, as in
a turbulent configuration) drives the system, a harmonic resolvent analysis (Wereley &
Hall 1990; Padovan, Otto & Rowley 2020) would provide, in a manner similar to that in
McKeon & Sharma (2010) and Beneddine et al. (2016), the most energetic input/output
modes. Both approaches provide modes that evolve as a function of the phase of the
periodic limit cycle, which is what we are looking for. Yet, these approaches are very
expensive and the question arises as to whether simpler and cheaper approaches could
be designed in the case where a separation of time scales holds between the turbulent
component (to be reconstructed) and the periodic motion. As an illustration, we may come
back to the case of the squared-section cylinder, where the KH modes exhibit much higher
frequencies than the VS one (typically 20 to 30 times higher). In such cases, and as is
the objective of this paper, we may develop a simplified approach based on a quasi-steady
(QS) approximation, where the high-frequency dynamics adapts instantaneously to a slow
periodic oscillation of the system. This allows us to study each phase of the slow movement
independently of each other. This approach can be traced back to, for example, the case of
the Stokes layer (Von Kerczek & Davis 1974; Blennerhassett & Bassom 2006), where
parallel-flow linear stability analyses of each phase were performed independently. In
this work, instead of parallel-flow stability analyses, we consider the resolvent analysis.
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High-frequency fluctuations on periodic limit-cycles

As a result, the reconstruction problem is markedly simplified (and therefore also its cost
reduced), since, instead of solving a space/time problem, we only have to solve several
spatial ones, one for each considered phase. This analysis is termed QS resolvent analysis.

From the data-driven point of view, we introduce an extended SPOD analysis based
on the short-time Fourier transform (STFT) instead of the Fourier transform. This STFT
extracts, at a given phase of the slow motion, the local frequency spectrum of the signal,
from which the spectral correlation tensor is built, just as in classical SPOD. For this
reason, this analysis is referred to as phase-conditioned localized (PCL) SPOD analysis.

The paper is organized as follows. First, in § 2, the theoretical aspects of the PCL-SPOD
and QS resolvent analyses are presented. For this, after introducing the Floquet stability
theory (for homogeneous solution) and the harmonic resolvent analysis (for the forced
solution), we consider the QS approximation, which results in the QS resolvent analysis.
Then, we present the STFT and the PCL-SPOD. In § 3, we consider a simple model, a
modified version of the linear Ginzburg–Landau equation, where the instability parameter
is considered as time dependent and periodic. We illustrate the theory on this simple
model, and in particular assess the validity of the QS approximation as a function of the
time-scale separation between the solution and the instability parameter. Then, in § 4, we
use those techniques to identify and reconstruct the KH structures for the squared-section
cylinder case, already presented in figure 1. In order to apply the new tools, the raw
velocity/pressure signals of the direct numerical simulation need first to be separated into a
periodic (phase-averaged) motion and the remaining turbulent part. This is achieved with
a triple decomposition as in (Reynolds & Hussain 1972), (Mezić 2013) and (Arbabi &
Mezić 2017).

2. Theory

The goal of this section is to introduce the tools, both operator-driven and data-driven,
which aim at capturing high-frequency turbulent phenomena evolving according to the
phase of a low-frequency periodic limit cycle. They are introduced with a generic model
consisting of a linear periodically time-varying forced equation.

2.1. A generic model
We consider the following generic linear forced system:

B∂tw + L(t)w = Pf (t), (2.1)

where w(t) and f (t) represent the state and forcing and B, L(t) and P are linear
operators. Operator L(t) is a time-periodic operator of fundamental frequency ω0 =
2π/T0 (representing the effect of the periodic evolution of the phase-averaged component
on the fluctuation field), while f (t) is a generic forcing (due in turbulent flows to
nonlinear interactions of fluctuations). Here we are particularly interested in the case of
high-frequency forcing ωf � ω0.

2.1.1. Stability of unforced solutions
It is important for forced systems to determine whether the homogeneous solutions (f = 0)
are stable or not. This is classically achieved in linear time-periodic systems with a Floquet
stability analysis, where we look for solutions of the form w(t) = ŵ(t)eσ t, where ŵ(t) is
a T0-periodic eigenmode and σ its complex eigenvalue. If the real part of σ is larger than
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zero, then the eigenmode ŵ(t) is said to be Floquet-unstable. By replacing this ansatz in
(2.1), we get

B∂tŵ + σBŵ + L(t)ŵ = 0. (2.2)

The resolution of this system, with, for example, a time-stepping method combined with
an eigensolver, leads to the usual Floquet stability analysis (see e.g. Jallas et al. 2017;
Shaabani-Ardali, Sipp & Lesshafft 2017). Another approach (Lazarus & Thomas 2010)
that has recently attracted attention in the fluids community (see e.g. Moulin 2020a) is
to pose the problem in frequency space by Fourier-decomposing the T0-periodic solution
ŵ(t) and operator L(t) as

ŵ(t) = lim
Nh→∞

+Nh∑
n=−Nh

ŵ(n) exp(inω0t), L(t) = lim
Nh→∞

+Nh∑
n=−Nh

L(n) exp(inω0t). (2.3a,b)

Substituting this expression in (2.2), we obtain the following infinite-matrix
eigenvalue/eigenvector problem:

(H + σB)Ŵ = 0, (2.4)

where B is an infinite block-diagonal matrix with B matrices on the diagonal, H is the
so-called Hill matrix (see Lazarus & Thomas 2010),

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
... . .

.

· · · L(0) − iω0B L(−1) L(−2) · · ·
· · · L(1) L(0) L(−1) · · ·
· · · L(2) L(1) L(0) + iω0B · · ·
. .
. ...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.5)

and the eigenvector

Ŵ = (· · · , ŵ(−1), ŵ(0), ŵ(1), . . .)T (2.6)

is a column vector concatenating all harmonics of the time-periodic mode ŵ(t). This is the
so-called Floquet–Hill theory, which allows us to see the Floquet eigenvalue/eigenvector
problem as a usual (yet infinite) matrix eigenproblem.

2.1.2. Forced solutions
In the case where the system is Floquet-stable, all homogeneous solutions decay to zero
for t → ∞. Then, for a given forcing f (t), there exists a unique sustained solution w(t). We
consider general forcing terms of the form f (t) = ∑

k f̂ (ωf ,k, t) exp(iωf ,kt), with different
frequencies ωf ,k and envelopes f̂ (ωf ,k, t) that are all T0-periodic. By linearity, we may then
look for solutions under the form w(t) = ∑

k ŵ(ωf ,k, t) exp(iωf ,kt), where the envelopes
ŵ(ωf ,k, t) are also T0-periodic. Hence, without loss of generality, we may consider the
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High-frequency fluctuations on periodic limit-cycles

single-frequency forcing case

f (t) = f̂ (t) exp(iωf t), w(t) = ŵ(t) exp(iωf t), (2.7a,b)

where the envelopes f̂ (t) and ŵ(t) are both T0-periodic. Inserting this assertion into (2.1),
we have

B∂tŵ + iωf Bŵ + L(t)ŵ = Pf̂ . (2.8)

If f̂ is available, the solution ŵ may be obtained by time-stepping the system until the
transient has gone away (the system is Floquet-stable). Alternatively, similar to before, we
may pose this problem in frequency space by expanding the various terms in their Fourier
series and rewrite the system (2.8) as

(iωfB + H)Ŵ = PF̂ . (2.9)

Here P is a block-diagonal matrix containing the matrices P and F̂ is the forcing term
with all its time harmonics:

F̂ = (· · · , f̂ (−1), f̂ (0), f̂ (1), . . .)T, f̂ (t) = lim
Nh→∞

+Nh∑
n=−Nh

f̂ (n) exp(inω0t). (2.10a,b)

The advantage of this approach is to show that the forced solution can be obtained by a
usual (yet infinite) matrix inverse, which is called the harmonic resolvent operator. The
latter operator therefore characterizes the input/output dynamics.

2.2. Resolvent analyses
Although (2.8) (or alternatively (2.9)) does provide the exact solution, given a known
forcing term f (t) = f̂ (t) exp(iωf t), we are interested in situations where the solution is
primarily selected by the linear input/output operator and only marginally by the actual
forcing. Such conditions are met when the harmonic resolvent operator is of low rank,
which is a common situation in fluid mechanics due to the existence of strong instability
mechanisms. For this purpose, as in McKeon & Sharma (2010) and Beneddine et al.
(2016), we first (§ 2.2.1) introduce the singular values/singular vectors of the harmonic
resolvent operator, which characterize the rank of the operator and the predominant
responses. Then (§ 2.2.2), we focus on the case where the frequency of the forcing ωf
is much higher than the frequency of the limit cycle ω0 and introduce a QS approximation,
which reduces the problem to a classical resolvent analysis around a time instant of the
low-frequency motion.

2.2.1. Harmonic resolvent analysis
Equation (2.9) establishes an input/output relation between a forcing term F̂ and the
solution Ŵ . Noting the harmonic resolvent operator R(ωf ) = (iωfB + H)−1P so that
Ŵ = RF̂ (see Wereley & Hall 1990; Padovan et al. 2020), we look for the most energetic
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input/output dynamics, maximizing the following energy gain over F̂ :

γ 2(ωf ) =
∫ T0

0 ‖ŵ(t)‖2
Ω dt∫ T0

0 ‖f̂ (t)‖2
Ω dt

=︸︷︷︸
Parseval

∑
i ‖ŵi‖2

Ω∑
i ‖f̂i‖2

Ω

=
∑

i ŵ∗
i MΩ ŵi∑

i f̂ ∗
i MΩ f̂i

= Ŵ∗MŴ
F̂∗MF̂

, (2.11)

subjected to Ŵ = RF̂ . The infinite matrix M is block-diagonal with MΩ matrices on
the diagonal, MΩ being linked to the energy norm ‖u‖2

Ω = √〈u, u〉Ω and 〈u, v〉Ω =∫
Ω

u∗v dx. This then leads to the following (infinite-matrix) eigenproblem:

R∗MRF̂i(ωf ) = γ 2
i (ωf )MF̂i(ωf ), (2.12)

where R∗ is the transconjugate of R. The normalized vectors F̂i are the optimal
forcings such that F∗MF = δij, for each frequency. The corresponding unit-norm optimal
responses are given by the relation Ψ̂i(ωf ) = γ−1

i RF̂i(ωf ).
Similarly to Beneddine et al. (2016), it may be shown that, if γ0(ωf )|F̂0(ωf )

∗MF̂ | �
γi(ωf )|F̂i(ωf )

∗MF̂ | for i ≥ 1 (which is the case if the harmonic resolvent operator is
strictly rank one, γ0(ωf ) > γ1(ωf ) = 0), then

Ŵ(ωf )eiωf t ≈ AΨ̂0(ωf )eiωf t, (2.13)

with A = γ0(ωf )[F̂0(ωf )
∗MF̂ ]. This result states that the spatial structure of the response

is at all times proportional to the dominant singular mode of the harmonic resolvent
operator. Stochastic arguments as in Towne et al. (2018) may also be provided to justify
such a result.

2.2.2. Quasi-steady resolvent analysis
If the envelope of the forcing f̂ (t) evolves on the slow time scale T0 and if ω0 � ωf , then
it is reasonable to simplify the term B∂tŵ in (2.8) (as done in Von Kerczek & Davis (1974)
for Stokes layer analysis), which should be small with respect to iωf Bŵ. We therefore end
up with the following simpler equation:

iωf Bŵ(t)+ L(t)ŵ(t) = Pf̂ (t). (2.14)

There are actually conditions for this approximation to hold. More insight can be gained by
considering the system involving the Floquet–Hill matrix (2.9). Yet, for brevity, we have
put these arguments in Appendix A.

Equation (2.14) is the QS approximation, whose solution can be recast in the following
form:

ŵ(t) = Rtf̂ (t), (2.15)

where Rt = (iωf B + L(t))−1P is the QS resolvent operator. The solution at each time t1,
ŵ(t1), is therefore independent of the solution at any other time t2, ŵ(t2). We see that each
time instant (or phase, within the period [0, T0)) can be analysed separately.

Under the QS approximation given by (2.14), we then look for the most energetic
input/output dynamics, maximizing the following energy gain over f̂ (McKeon & Sharma
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2010; Beneddine et al. 2016):

γ ′2(ωf , t) = ‖ŵ‖2
Ω

‖f̂ ‖2
Ω

= ŵ∗MΩ ŵ

f̂ ∗MΩ f̂
, (2.16)

under the constraint ŵ = Rtf̂ . This leads to the following (finite-matrix) eigenproblem:

R∗
t MΩRtf̂ ′

i (ωf , t) = γ ′2
i (ωf , t)MΩ f̂ ′

i (ωf , t), (2.17)

where R∗
t is the transconjugate of the resolvent Rt. The normalized vectors f̂ ′

i (ωf , t) are the
optimal forcings such that f̂ ′∗

i MΩ f̂ ′
j = δij, for each frequency and phase. The corresponding

optimal fluctuations are given by the relation ψ̂ ′
i (ωf , t) = γ ′

i (ωf , t)−1Rtf̂ ′
i (ωf , t).

Similarly to the previous section, it may be shown that, in the presence of a nearly
rank-one Rt operator,

ŵ(ωf , t)eiωf t ≈ A(t)ψ̂ ′
0(ωf , t)eiωf t, (2.18)

with A as a complex constant. This result states that the spatial structure of the
high-frequency response is at all times proportional to the dominant singular mode of
the QS resolvent. Stochastic arguments as in Towne et al. (2018) may also be provided to
obtain such a result.

2.3. Data-driven approach
In this section, we address the problem of identifying from data high-frequency structures
evolving on slowly varying periodic limit cycles. This analysis is based on the STFT,
which is used as input to define an extended version of SPOD. This approach is termed
PCL-SPOD.

2.3.1. Short-time Fourier transform analysis
The QS approach is well suited for the determination, from knowledge of the governing
equations, of high-frequency fluctuations at every phase within a slowly varying limit
cycle. In this discussion, we look at the data-driven side where, from the raw signal w(t),
we try to answer this same question and identify within the signal high-frequency patterns
that behave as ŵW(t)eiωt. Again, the envelope ŵW(t) evolves on a slow time scale of order
T0 while the exponential is based on a rapid frequency ω � ω0. For this, we consider the
signal around a phase t by multiplying it by a window function W(τ − t), leading to a PCL
signal:

wW(τ, t) = W(τ − t)w(τ ), (2.19)

where the notation (·)W represents the windowed function. The window function
W(η) is chosen to have a compact support of duration T , with W(η) > 0 for η ∈
(−T/2,T/2) and 0 elsewhere, and unit integral over η. A common example of such a
function is the Hann window, shown in figure 3(a). If we want to investigate the frequency
content of the signal in the vicinity of the phase t, we Fourier-transform this quantity:

ŵW(ω, t) =
∫ +∞

−∞
wW(τ, t)e−iωτ dτ =

∫ +∞

−∞
W(τ − t)w(τ ) exp(−iωτ) dτ. (2.20)

This is exactly the STFT or windowed Fourier transform (see Griffin & Lim 1984).
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Figure 3. (a) Normalized Hann window W(η) := (1 + cos(2πη/T))/T within −1/2 ≤ η/T ≤ 1/2 and
zero outside. (b) Fourier transform Ŵ(ωη) = sin(Tωη/2)/((Tωη/2)(1 − (Tωη/2π)2)).

For simplicity, let us choose a signal of the form w(t) = ŵ(t) exp(iωf t), with |ωf | �
ω0. For the case where several frequencies ωf ,k are present, the arguments given in the
following also apply. Since ŵ(t) is a slowly evolving envelope on the time scale T0, if
T � T0, then ŵ(t) is nearly constant within the window W(t − τ) and may be taken out
of the integral:

ŵW(ω, t) =
∫ +∞

−∞
W(τ − t)ŵ(τ ) exp(iωf τ) exp(−iωτ) dτ

≈ ŵ(t)
∫ +∞

−∞
W(τ − t) exp(i(ωf − ω)τ) dτ

≈ ŵ(t) exp(i(ωf − ω)t)
∫ +∞

−∞
W(τ ′) exp(−i(ω − ωf )τ

′) dτ ′

≈ ŵ(t) exp(i(ωf − ω)t)Ŵ(ω − ωf ). (2.21)

This shows that the STFT of the signal is approximately proportional to ŵW ≈
ŵ(t) exp(i(ωf − ω)t), with a constant of proportionality equal to the Fourier transform of
the window function Ŵ(ω − ωf ). The latter is shown in figure 3(b) for the Hann window.

From this, we can see that we have two cases:

(i) If ω is close to ωf but still satisfying |ω − ωf |/ω0 � (T/T0)
−1, then the constant

Ŵ(ω − ωf ) is close to 1. In such a case, we have

ŵW(t) ≈ ŵ(t) exp(i(ωf − ω)t), (2.22)

and the actual frequency of the structure ωf may be determined by looking
for the frequency ω for which ŵW(t) is T0-periodic. In such a case, we finally
have ŵW(t)eiωt ≈ ŵ(t)eiωf t, which shows that the STFT accurately identifies the
spatio-temporal structure. In practice, the STFT ŵW(ω, t) is computed using a fast
Fourier transform algorithm, which provides ŵW(ω, t) on a frequency grid. This first
scenario corresponds to the case where a frequency ω on that grid approximately
corresponds to ωf . Note that when the time resolution is very high,T/T0 � 1, the
range of frequencies |ω − ωf | over which Ŵ(ω − ωf ) remains equal to 1 becomes
very large, which translates to the fact that the frequency resolution ω = 2π/T
in the fast Fourier transform becomes very poor.
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(ii) If the frequency ω is very different from ωf , such that |ω − ωf |/ω0 � (T/T0)
−1,

Ŵ(ω − ωf ) tends to zero, making ŵW → 0. For far enough frequencies, the STFT
therefore filters out the signal.

Those remarks are especially important in the case where several different frequencies
ωf ,k are present in the signal, w(t) = ∑

k ŵ(ωf ,k, t) exp(iωf ,kt). In that case, ŵW(ω, t),
computed at ω, will be influenced by nearby frequencies ωf ,k in the interval (ω −
π/T, ω + π/T). For this reason, if we want to isolate specific frequencies ωf ,k with
ŵW , a large T must be chosen, but still with the constraint T � T0, so that the phase
dependency ŵW(t) is not entirely lost (time resolution). A further discussion on this
compromise is provided in the next section on a numerical problem. We also point out
that if two distinct frequencies ωf ,k are close to each other, it may no longer be possible to
distinguish their modes ŵ(ωf ,k, t).

2.3.2. Phase-conditioned localized SPOD analysis
In turbulent configurations, we are often interested in the stochastic framework, where
several realizations of the flow are considered. From the data-driven point of view, this is
accounted for by a POD analysis of the realizations of the STFT, ŵW . Since this approach
considers the signal conditioned by the phase of the low-frequency motion of the dynamics
and since each phase is evaluated locally and independently of the other phases (due to the
QS considerations), we refer to it as PCL-SPOD analysis.

This PCL-SPOD analysis is very closely related to the classical SPOD (see Towne et al.
2018) where, from a practical point of view, the only difference is that we perform the
POD with modes issuing from a STFT performed on a small interval of length T rather
than from a Fourier transform or STFT performed on the full length of the bin. Basically,
we are trying to maximize over φ̂(x, ω, t) the energy:

λ2(ω, t) =
E

[∣∣∣〈ŵW(x, ω, t), φ̂(x, ω, t)
〉
Ω

∣∣∣2
]

〈
φ̂(x, ω, t), φ̂(x, ω, t)

〉
Ω

, (2.23)

where 〈u, v〉Ω = ∫
Ω

u∗v dx is the energy inner product. The quantity ŵW(x, ω, t) is
stochastic and depends on the realization. The notation E[·] is the expected value operator,
and is defined to be an average over all realizations, each of size T0. This problem is
equivalent to solving the following eigenvalue/eigenvector problem:

∫
Ω

S(x, x′, ω, t)φ̂i(x′, ω, t) dx′ = λi(ω, t)2φ̂i(x, ω, t), (2.24)

where S(x, x′, ω, t) is the cross-spectral tensor, evaluated at phase (or time) t, and is
defined as

S(x, x′, ω, t) = E
[
ŵW(x, ω, t)ŵ∗

W(x
′, ω, t)

]
. (2.25)

We believe that, in a similar way that classical SPOD is related to space/time POD (Towne
et al. 2018), this PCL-SPOD is related to the conditional space/time of Schmidt & Schmid
(2019) and Hack & Schmidt (2021) when the conditioning signals are the phases of the
lower-frequency dynamics. A proof of this is given in Appendix B.
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2.3.3. Phase-average and numerical implementation of PCL-SPOD
We now discuss precisely how to estimate the operator E[·]. Since the low-frequency
oscillation is T0-periodic, we consider here Np individual periods as independent
realizations of the fluid flow. In this context, the expected value operator is written as

E[w](t) ≡ 〈w〉 (t) = 1
Np

Np∑
k=1

w(x, t + kT0), for t ∈ [0, T0). (2.26)

This is precisely the definition of the phase average 〈·〉 introduced by Reynolds & Hussain
(1972), where they also looked for capturing turbulent oscillations around a periodic wave
of period T0 at different phases of the period [0, T0). We remark that this operator readily
considers the signal w(t) at the same phases of the slowly varying dynamics since we
evaluate the signal w(t) at time instants modulo T0. With that in mind, the spectral tensor
S defined in (2.25) can be approximated as

S(x, x′, ω, t) = 1
Np

Np∑
k=1

ŵW(ω, t + kT0)ŵ∗
W(ω, t + kT0) ≡ Ŵ (ω, t)Ŵ (ω, t)∗, (2.27)

where Ŵ (ω, t) is a matrix containing the STFT (normalized by 1/
√

Np) of all the periods
considered for a given phase t and frequency ω. In figure 4, we provide a schematic
representation of how this matrix Ŵ (ω, t) is computed from data. Also, from now on, we
no longer consider the problem posed in the continuous framework, and we consider that
all the space integrals presented so far are given, in a discrete formalism, by the matrix
MΩ , containing the integration weights. In this framework, the PCL-SPOD problem is
rewritten as

Ŵ Ŵ ∗MΩφ̂(ω, t) = λ2(ω, t)φ̂(ω, t). (2.28)

It is worth mentioning that this problem involves finding the eigenvalues/eigenvectors of a
large dense matrix Ŵ Ŵ ∗. Instead, we solve the following eigenvalue/eigenvector problem:

Ŵ ∗MΩŴ ŷ(ω, t) = λ2(ω, t)ŷ(ω, t), (2.29)

involving a much smaller matrix Ŵ ∗MΩŴ , whose dimension is the number of bins. The
PCL-SPOD mode can then be recovered as φ̂ = λ−1Ŵ ŷ.

3. Application to the case of modified linear forced Ginzburg–Landau model

In this section, we illustrate the theory on a simple and well-understood model, the linear
Ginzburg–Landau equation. This equation has served as a prototype for modelling and
understanding fluid dynamics instabilities in parallel and non-parallel wake flows (see e.g.
Roussopoulos & Monkewitz 1996; Cossu & Chomaz 1997; Chomaz, Huerre & Redekopp
1988) and for the design of control strategies (see Lauga & Bewley 2003; Bagheri et al.
2009; Chen & Rowley 2011). For this simple one-dimensional model, we are able to
perform all the analyses presented in the previous section, compare them and also assess
the QS approximation. Here, B = P = I are identity matrices and

L = U∂x − ν∂xx − μ and μ = μ0 − c2
u + μ2

x2

2
, (3.1a,b)

with |w(x → ±∞, t)| → 0. This model mimics an open flow around a bluff body, which is
characterized by downstream advection U, diffusion ν and an instability term (μ0, cu, μ2)
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Ŵ (ω, t) =

ŵW (ω, t) = 1

Period = 1 Period = 2 Period = Np

wW (τ, t)

w (t)

�T

T0 T0
T0

W (τ – t)t t t

ŵW (ω, t) = 2 ŵW (ω, t) = Np

FFT FFT FFT

Figure 4. Schematic representation of how to compute the PCL-SPOD from data of a single run w(t), divided
in Np periods (or bins). This is equivalent to the Welch algorithm (Welch 1967) where no overlap between the
bins is used, in order to keep the phase dependency.

standing for production of perturbations due to shear in the recirculation region. The
spatial extent of the unstable region is governed by μ2: when considering a parallel
(μ2 = 0), unforced (f (t) = 0) case, a solution of the form w = q̂ exp(ikx − iωt) is unstable
for wavenumbers in the interval k ∈ (cu − √

μ0, cu + √
μ0) (see Bagheri et al. 2009),

showing thatμ0 = 0 is the critical value for local temporal instabilities, above which waves
of size around k = cu are amplified. For the non-parallel case, μ2 /= 0, the stability of the
system can be interrogated by the ansatz w = q̂(x)eλt, leading to

λn = μ0 − c2
u − (U2/4ν)− (n + 1/2)h, q̂n = exp((U/2ν)x − χ2x2/2)Hn(χx),

(3.2a,b)
where h = √−2μ2ν and χ = (−μ2/2ν)1/4. The system is thus globally stable when the
real part of λ0 is less than zero, orμ0 < μ0,cr. For the following set of parameters (Bagheri
et al. 2009):

cu = 0.1, μ2 = −0.01, U = 2 + 2icu, ν = 1 − i, (3.3a–d)

the critical value isμ0,cr ≈ 0.4827. However, although the system is stable, it may strongly
amplify external noise (pseudo-resonance phenomenon due to the non-normality of the
linear operator). To quantify this behaviour, we resort to resolvent analysis where we
suppose that both the forcing term and the solution can be written as f (x, t) = f̂ (x)eiωt

and w(x, t) = ŵ(x)eiωt, and maximize the energy gain γ ′(ω) = ‖ŵ‖Ω/‖f̂ ‖Ω , leading to
the results shown in figure 5. We can see that those gains can be very high, even for
subcritical values of μ0.

The discretization of the spatial operators in the Ginzburg–Landau model is handled
with second-order P2 continuous elements using the code FreeFEM (Hecht 2012), the
source code used here having been adapted from Sipp, de Pando & Schmid (2020).
The mesh is uniform with x = 0.05 and extends over x ∈ [−30, 100], well enough
for discretizing the regions where the instability term is positive (μ(x) > 0 roughly
for |x| ≤ 20). The optimal forcings/responses were obtained using Arpack (Lehoucq,
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Figure 5. Optimal energy amplifications γ ′
i=1(ω) by the linear Ginzburg–Landau equation, as a function of

the frequency ω for a few values of μ0 < μ0,cr = 0.4827.

Sorensen & Yang 1998) combined with a direct LU-solver (Amestoy et al. 2019) for the
matrix inverses.

In order to obtain a model whose dynamics varies periodically, we choose to make μ0
time-dependent in the following manner:

μ0(t) = μ̄0 + Aμ0 sin(ω0t − π/2), (3.4)

where μ̄0 is the average value, Aμ0 is the amplitude and ω0 is the frequency for the
oscillation of μ0(t). We may expect that the dynamics presented in figure 5 can be
recovered at all phases within t ∈ [0, T0) for a sufficiently low oscillation frequency
ω0 � ω. This is essentially the QS approach, which is investigated in the following.

3.1. Floquet stability analysis
In this section, we present the Floquet stability analysis. This analysis is carried out using
the Floquet–Hill theory. The eigenvalue problem (2.9) is solved using a shift-and-invert
strategy (the matrix inverses being handled with the sparse LU solver), associated with
an Arnoldi method. The number of harmonics considered was Nh = 60, corresponding
to a frequency discretization ranging from −0.94 to 0.94. In figure 6(a), we provide the
Floquet spectrum for the parameters μ̄0 = 0.4 and Aμ0 = 0.05, which shows that all the
modes present are stable.

One interesting feature shown in this figure is the ω0-periodicity of the spectrum. To
understand this feature, we rewrite the eigensolution w as

w(t) = eσ t
∑

n

ŵn exp(inω0t)

︸ ︷︷ ︸
ŵ(t)

= exp((σ + imω0)t)
∑

n

ŵn exp(i(n − m)ω0t)

= eσmt
∑

n

ŵn+m exp(inω0t)

︸ ︷︷ ︸
shifted ŵ(t)

. (3.5)

Hence, if a mode Ŵ = (· · · , ŵ−1, ŵ0, ŵ+1, . . .) is an eigenvector with eigenvalue σ , so
is Ŵm = (· · · , ŵm−1, ŵm, ŵm+1, . . .) with eigenvalue σm = σ + imω0. We remark that

942 A28-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

37
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.376


High-frequency fluctuations on periodic limit-cycles

Im(σ)
ω

0

=
ω
ω

0

Re(σ) Re(σ)

–5
–1.5 –1.0 –0.5 0 0.2

0

1

0

0.2

0.4

0.6

0.8

1.0

–1.5 –1.0 –0.5 0 0.2

(a) (b)

Figure 6. (a) Floquet spectrum for the case μ̄0 = 0.4, Aμ0 = 0.05 and ω0 = 2π × 0.0025 ≈ 0.016. This
frequency is low in comparison with the peak of the resolvent curve ω ∈ (−0.5,−0.4) in figure 5. (b) A
zoom for Im{σ } ∈ (0, ω0).

the property, although valid theoretically, may not fully hold when truncating the series
representation in (2.7a,b) to Nh harmonics, since, for some m, the mode Ŵm may not be
well represented with the considered harmonics.

Also, we verified that for other values of μ̄0, Aμ0 and ω0, the system remains
Floquet-stable. In the following, we use the set of parameters:

ω0 = 2π × 0.0025 ≈ 0.016, μ̄0 = 0, Aμ0 = 0.45. (3.6a–c)

3.2. Single-frequency forcing case

We consider the single-frequency forcing case, f (t) = f̂ (t)eiωf t, for which the solution can
be sought under the form w(t) = ŵ(t)eiωf t. The latter is computed by solving the linear
system involved in (2.9) with the direct LU solver. In figure 7, we provide the solution for
the case ωf = −30ω0 ≈ −0.47, near the peak of the energy gain curve in figure 5, and
a constant-in-time envelope f̂ (x, t) = g(x), where g(x) = exp(−(x − xf )

2/σ 2
x ) is a spatial

Gaussian localized at xf = −11 and of width σx = 0.4. In figure 7(a), we can see that
the instability parameter μ0(t) presents large values around t/T0 ≈ 0.5. In figure 7(b) we
show the real part of the forcing term f (t) = g(x) exp(iωf t), which shows that the envelope
is constant over the interval t/T0 ∈ [0, 1) and that the forcing frequency ωf is high. In
figure 7(c) we show the solution (real part) in the (x, t) plane, with a snapshot at t/T0 = 0.5
in figure 7(e). We can see that it has a similar oscillatory behaviour to the forcing term but,
now, due to the advection term present in the model (which displaces the structure seen
in figure 7e in the downstream direction), we can see elongated ‘streaks’ (that oscillate in
time and space). This ‘streaky’ behaviour is not present in figure 7(d), which shows the
real part of the envelope ŵ(t). We indeed see that it evolves slowly on the T0 time scale,
which motivates a QS approach, discussed in the next paragraphs. It is also interesting to
notice that the advection term makes the solution exhibit its maximum a little later than
t/T0 = 0.5 (for which the instability term μ0(t) is maximum).

3.2.1. Harmonic resolvent analysis
We address now the harmonic resolvent analysis. We restrict the analysis to the value
of ωf = −30ω0 used in the previous paragraph. Similarly to the eigenspectrum, it may
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Figure 7. Solution of the forced problem (2.8) for f (x, t) = g(x) exp(iωf t) and ωf = −30ω0 ≈ −0.47.
(a) Time evolution of instability parameter μ0(t). (b) Real part of forcing term f (x, t). (c) Real part of solution
w(t) = exp(iωf t)ŵ(t), together with (e) a snapshot at t/T0 = 0.5, showing its typical spatial structure. (d) Real
part of envelope ŵ(t) of the solution. In (b,c,d) the zero level of the function μ(x, t) = μ0(t)− c2

u + μ2x2/2 is
also given.

be shown that the singular values of the harmonic resolvent operator R(ωf ) are also
ω0-periodic, which means that it is enough to vary ωf in the interval [ω̃, ω̃ + ω0) (see
Wereley & Hall 1991).

In figure 8, we plot the first five modes. Interestingly, the first mode exhibits strong
oscillations only in a narrow interval around t/T0 ≈ 0.5. Looking now to the suboptimal
modes, we realize that more and more peaks can be seen in the envelopes, each peak being
localized around different times within [0, T0). We believe that the larger the frequency
separation ωf /ω0, the more peaky the envelopes of the resolvent modes. Indeed, in the
limiting case where the terms related to ω0 can be neglected in the shifted Floquet–Hill
matrix (leading to (A1)), it can be diagonalized using the discrete Fourier transform
(see Appendix A), leading to the QS approximation. Since this approximation yields
independent blocks at each time, its corresponding singular modes should also be localized
at given time instants, as suggested by the harmonic resolvent analysis if ωf /ω0 is
increased.

Also, we can see from table 1 that the singular values are quite close to each other. This
fact implies that the use of the first mode only (as in Beneddine et al. (2016)) to represent
the fluctuation field may not be enough. Indeed, in that same table, we also plot the
cumulative projection of the exact solution presented in figure 7 on the harmonic resolvent
modes. We can see that, to recover 95 % of the fluctuation’s energy, we need at least three
modes. Also, the first mode is only able to recover 67 % of the fluctuation’s energy. In
the next section, we exploit the basis generated by the QS resolvent approximation, and
compare it with the harmonic resolvent approach.
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Figure 8. Harmonic resolvent response modes for ωf = −30ω0 ≈ −0.47. (a–e) The real part of the first five
modes, Re{Ψ̂i(ωf , t) exp(iωf t)}.

n = 0 n = 1 n = 2 n = 3 n = 4

γn 461.2 280.8 203.9 157.9 127.0
pn 66.8 % 89.5 % 96.9 % 97.1 % 97.9 %

Table 1. Optimal energy gains γn for the first five harmonic resolvent modes at ωf = −30ω0 and cumulative
projection, pn = ∑n−1

i=0 ((|
∫ T0

0 〈Ψ̂i(t), ŵ(t)〉Ω |2 dt)/(
∫ T0

0 ‖ŵ(t)‖2
Ω dt)), for the solution w(t) = ŵ(t) exp(iωf t)

presented in figure 7.

3.2.2. Quasi-steady resolvent analysis
To assess the validity of the QS approach, we compare here two aspects. First, we evaluate,
as a function of the frequency ratio ωf /ω0, how close the solution w(t), computed by (2.8)
or (2.9), is to its QS approximation, given by (2.14), for a given forcing term equal to
f̂ (x, t) = g(x). According to the arguments presented in the previous section, they should
be closer to each other for high frequency ratios. Second, we investigate how well a basis,
formed by the singular value decomposition of the QS resolvent Rt, captures the features
of the above solution w(t), also according to the frequency ratio.

In figure 9, we plot the real component of the exact and QS solutions w(t) for three
different frequency ratios, ωf /ω0 = −10,−20 and −30. The forcing frequency is kept
constant and equal to ωf ≈ −0.47 while the frequency ω0 is varied. We can see that
for lower frequency ratios ωf /ω0, the exact solution is weaker and exhibits a time lag
with respect to the QS solution. Obviously, it is the (neglected) time-derivative term ∂tŵ
in the QS approximation that is responsible for these discrepancies. However, when the
frequency ratio is increased, both approaches produce very similar solutions. Indeed, for
ωf /ω0 = −20, both solutions exhibit similar amplitudes and the QS solution is nearly in
phase in comparison with the exact one. For ωf /ω0 = −30, both solutions are exactly the
same. Finally, it is important to note that the validity of the QS approach can be inferred a
posteriori from the sole knowledge of the QS solution by checking its frequency content
ŵ(t) = Rtf̂ (t) = ∑

n ŵ(n) exp(inω0t); that is, all energetic frequencies nω0 should satisfy
|nω0| � |ωf |.
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Figure 9. Comparison between exact (2.9) and QS (2.14) solutions for a single-frequency forcing term with
f̂ (x, t) = g(x) and three frequency ratios (a) ωf /ω0 = −10, (b) ωf /ω0 = −20 and (c) ωf /ω0 = −30. The zero
level of the function μ(x, t) = μ0(t)− c2

u + μ2x2/2 is also given.

We now turn our attention to the QS resolvent analysis, and its use as a basis to represent
the above solution. In figure 10, we plot the QS resolvent gains γ ′, together with the
cumulative projection of the above solution w(t) onto the QS resolvent basis (similar to
what was done for the harmonic resolvent), for every time t. The leading resolvent mode
γ ′

0ψ̂
′
0, computed at the frequency ωf /ω0 = −30, whose phase was adjusted according

to the solution in figure 7(d), is shown in figure 10(d). From the resolvent gains, we
can see that for the three frequency ratios, the first singular value γ ′

0(t) is much larger
than the suboptimal ones at the phase t/T0 = 0.5, where μ0 is maximal. This phase is
not necessarily close to the phase where the energy of the actual solution is maximal
(presented as dashed lines), as already noted before. Also, we can see that the projection
of the solution onto the leading resolvent mode (blue region) is very close to 100 % at
the peak of the energy of the solution, for all three frequencies. As the frequency ratio is
increased, the phase interval where the projection is close to 100 % gets wider and thus the
leading mode exactly represents the solution over a large time interval. We point out that,
in all cases, more singular modes are required to represent the actual solution when the
energy of the solution becomes low. However, at these times, the amplitude of the solution
is very weak, so that the failure of the dominant mode to represent the solution is not very
relevant. Interestingly, even for the lowest-frequency case (and thus the least favourable for
the QS approximation), only two or three QS resolvent modes are necessary to represent
the solution over the whole time interval [0, T0). For this reason, we conclude that the QS
resolvent basis may correspond, at high frequencies, to a better basis than the harmonic
resolvent basis since it leads to a more compact representation of the solution (one spatial
mode may be enough at all phases, whereas two or three modes may be required for the
harmonic resolvent case; see table 1). This good agreement between the QS resolvent
analysis and the solution itself can be appreciated in figure 10(d), showing the leading
singular mode, which is very similar to figure 7(d).

Lastly, another set of parameters cu (such as cu = 0.5 and cu = 2) and U (such as U =
0.5 + 2icu and U = 4 + 2icu) have also been investigated to check whether the spatial
structure of the perturbations (number of wavelengths within the amplified solution) and
the advection velocity had an effect on the QS approximation. It was found that even for
these cases, increasing the frequency ratio ωf /ω0 made the QS solution approach the exact
one, in a manner similar to that presented in figures 9 and 10. The same was true when
considering a spatially and time-varying advection velocity, U = U0 + U1cos(x − ω0t),
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Figure 10. Normalized resolvent gains γ ′
i=0,1(t)/(maxt γ

′
0(t)) (red and blue solid lines) together with

the cumulative projection pn(t) = ∑n−1
i=0 ((|〈ψ̂ ′

i (t), ŵ(t)〉Ω |2)/(‖ŵ(t)‖2
Ω)) of the exact solution on the first

singular value decomposition modes (colour shaded areas) for (a) ωf /ω0 = −10, (b) ωf /ω0 = −20 and
(c)ωf /ω0 = −30. The blue shaded area corresponds to the projection on the first mode (p0), the red shaded area
to that on the first two modes (p1) and so on (green for p2, purple for p3 and grey for p4). For comparison (dashed
black lines), we also plot the normalized energy of the solution ‖ŵ(t)‖2

Ω . For the frequency ωf /ω0 = −30, the
leading mode γ ′

0(t)ψ̂
′
0(x, t) is shown in (d) with the same colour bar as the exact solution shown in figure 7(d).

Its phase and overall amplitude (the complex A coefficient in (2.18)) were adjusted to match those of the exact
solution.

mimicking the case of high-frequency perturbations developing on the upstream shear
layers of cylinder flows.

3.2.3. Short-time Fourier transform analysis
We investigate here the capacity of the STFT, ŵW , to recover the envelope ŵ(t) of the
solution w(t) = ŵ(t) exp(iωf t). More precisely, we investigate here two aspects discussed
before: the impact of the time resolution T/T0 when ω ≈ ωf and the effect of spectral
leakage when ω /=ωf .

For the first aspect, in figure 11(a–c), we provide ŵW(x, t), computed at ω = ωf for
three different time resolutions T/T0 = 1/15, 1/5 and 1/2. We can clearly see that, for
very large T/T0, the time resolution becomes very poor, spreading the solution over
the whole time interval [0, T0), while the solution is strongly localized around t/T0 ≈ 0.5
(see figure 7d). On the other hand, if we reduce the parameter T/T0 we may recover
the time resolution, making ŵW(t) to be closer to the envelope ŵ(t), as is the case when
T/T0 = 1/15. However, one has to keep in mind that the higher the time resolution, the
lower is the spectral resolution, favouring the phenomenon of spectral leakage, where large
amplitudes (which should be weak) can be obtained when ω /=ωf . This is illustrated in
figure 11(d), where we have computed ŵW for ω/ω0 = −25 /=−30 (for T/T0 = 1/15)
and we still obtain large-amplitude signals. As seen in (2.22), this signal should be close
to the original mode shifted in frequency, ŵ(t) exp(i5ω0t), also provided in figure 11(e).
Although in this single-frequency forcing case this phenomenon is not too relevant, this
can affect the results in the multi-frequency forced case, as we see in the following.

3.3. Multi-frequency forcing case
We consider now the case where the forcing term f (t) contains several frequencies ωf ,k, so
that f (t) = ∑

k f̂ (ωf ,k, t) exp(iωf ,kt). The solution of this system, as mentioned previously,
is of the form w(t) = ∑

k ŵ(ωf ,k, t) exp(iωf ,kt), where ŵ(ωf ,k, t) can be obtained as before
by solving (2.9). Since the conclusions related to the solution itself, the QS approximation
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Figure 11. The STFT of solution w(t) = ŵ(t)eiωf t shown in figure 7 (ωf /ω0 = −30), computed at ω =
−30ω0. (a–c) Effect of time resolution T/T0 = 1/15, 1/5 and 1/2 for ω = ωf . (d,e) Comparison between
ŵW (t) as obtained for ω/ω0 = −25 and T/T0 = 1/15 and the frequency-shifted envelope ŵ(t) exp(5iω0t).
These two quantities should be equal due to (2.22).
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Figure 12. Multi-frequency forcing case. (a) Real part of the forcing term f (t) = ∑
k f̂ (ωf ,k) exp(iωf ,kt) and

(b) real part of the response w(t) = ∑
k ŵ(ωf ,k) exp(iωw,kt), given for t ∈ (0, 3T0).

and its projection on resolvent modes should apply in the same manner for each of
those modes ŵ(ωf ,k), we focus this section mainly on the STFT and its use for the
PCL-SPOD. We consider the case corresponding to the sum of three incommensurable
forcing frequencies:

ωf ,1

ω0
= −30 + 0.1,

ωf ,2

ω0
= −38 + 1

3
,

ωf ,3

ω0
= −22 + 2

3
, (3.7a–c)

each being applied with the same spatial forcing structure as before, namely
f̂ (ωf ,k=1,2,3, t) = g(x). The multi-frequency forcing is no longer T0-periodic. In
figure 12(a) we plot the forcing term f (t) and in figure 12(b) the solution w(t) for three
successive periods. We can see that the solution now presents different features in each
of the periods, and due to incommensurability of the frequencies, will be different in
all subsequent periods. This simple multi-frequency case should therefore be seen as a
simplified model of a turbulent system where a ‘stochastic’-like forcing is applied.
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Figure 13. The STFT modes of a given period for three different time resolutions, T/T0 = 1/15 (a), 1/5
(b) and 1/2 (c), evaluated at ω = −30ω0. (d) The two dominant (red and blue) PCL-SPOD energies
(normalized by the maximum value of the leading gain) for those three time resolutions (dashed, solid and
dotted). (e) The leading mode λ0(t)φ̂0(t) for T/T0 = 1/5.

3.3.1. Short-time Fourier transform and PCL-SPOD analyses
We present now the STFT results and their use in the PCL-SPOD analysis. We are
particularly interested in the impact of the chosen time resolution in the STFT on the
PCL-SPOD results, which is a novelty that we briefly discuss. In figure 13(a–c), we
present the STFT ŵW(ω, t) of a given period for three different time discretizations,
T/T0 = 1/15, 1/5 and 1/2, similar to what was done in the single-frequency forcing
case. The chosen frequency for this analysis is ω/ω0 = −30, close to ωf ,1. We can see
that, for the two higher values of T/T0, the signal ŵW has a shape somewhat similar
to that in figure 7(d). However, this approximate agreement deteriorates for the smallest
values of T/T0, contrary to the single-frequency case. Indeed, that case is more prone
to the phenomenon of spectral leakage where the dynamics of other frequencies (in
this case ωf ,2 and ωf ,3) may corrupt the STFT that is meant to isolate ωf ,1. This is
illustrated in figure 14, where we plot the frequency distribution of the full solution w(t) =∑

k ŵ(ωf ,k, t) exp(iωf ,kt). We can distinctly see three ‘bumps’, each one corresponding to a
different frequency ωf ,k (each coloured differently). Also, we provide as blue-shaded areas
the three frequency bands, corresponding to T/T0 = 1/2 (dark blue), T/T0 = 1/5
(blue), T/T0 = 1/15 (light blue), within which the frequencies pass without attenuation
(ranges of ω where Ŵ(ω − ωf ) ≈ 1). For this reason, the analysis with T/T0 = 1/2
recovers the shape of the single-frequency case, since the two other ‘bumps’ (from ωf ,2,3)
have been filtered out at the frequency ω ≈ ωf ,1. Taking now the other time resolution
T/T0 = 1/15, we can see that a large portion of the other two ‘bumps’ falls within the
associated frequency band, which contaminates and distorts the mode extracted by STFT
at ω/ω0 = −30, as seen in figure 13(a).

Those remarks have impacts on the PCL-SPOD results, presented in figure 13(d,e).
Indeed, we can see that the energy curve (normalized by the maximal value of λ0)
presents a smooth and wide distribution over time for T/T0 = 1/2 and a more irregular
and sharper distribution for T/T0 = 1/15. Also, in the latter case, we can see that a
non-negligible suboptimal mode exists, which is not present in the QS resolvent analysis
(in figure 10c). This suboptimal mode is actually a consequence of a richer cross-spectral
tensor due to leaked dynamics of surrounding frequencies. For the caseT/T0 = 1/5, we
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Figure 14. Frequency distribution of the solution in the multi-frequency forcing case. We can see three distinct
‘bumps’, each one coloured accordingly to each of the forcing frequenciesωf ,k. The shaded bands correspond to
three frequency resolutions that are considered in the following for the STFT, namelyω/ω0 = (T/T0)

−1 =
2 (dark blue), 5 (blue) and 15 (light blue).

found that neither of those phenomena were actually present, with a smooth dominant
energy curve, a negligible suboptimal energy and a leading-order PCL-SPOD mode
similar to the QS resolvent one (figure 10d). For those reasons, we believe that T/T0 =
1/5 is a good compromise between time resolution and frequency resolution here.

In this section, we have illustrated using a simple time-periodic example how to identify
a mode from data through PCL-SPOD analysis and how to reconstruct it through an
extended version of resolvent analysis. We have in particular established that, for high
forcing frequencies ωf � ω0, the QS resolvent modes constitute a more compact basis
than the harmonic resolvent modes. In the next section, which deals with turbulent flow
around a squared-section cylinder, we focus on the QS resolvent modes and their link with
the PCL-SPOD analysis.

4. Flow around a squared-section cylinder at Re = 22 000

In this section, we apply the tools presented previously to the turbulent flow around a
squared-section cylinder, at Reynolds number Re = U∞D/ν = 22 000, where D is the
cylinder’s diameter and U∞ the incoming uniform velocity. These two reference scales
are used to non-dimensionalize all quantities in the following. We recall that this flow field
has two clear distinct features: first, a low-frequency periodic VS motion; and second,
high-frequency modes in the fin shear layers arising from the KH instability mechanisms
(see figure 1).

The dataset used throughout the paper came from a direst numerical simulation run,
generated by the FastS code, developed by ONERA, which is a highly optimized solver
for high-performance computing clusters, solving the three-dimensional compressible
Navier–Stokes equations (Dandois, Mary & Brion 2018). The code is run at a low
inflow Mach number, M = 0.1, to be close to an incompressible flow regime. The spatial
discretization used in the solver corresponds to a second-order accurate finite-volume
method based on a modification of the AUSM+(P) scheme (Mary & Sagaut 2002). The
time integration is handled with a second-order-accurate backward scheme of Gear, with a
time step of 3.3 × 10−4. The size of the simulated time window (after an initial transitory
phase was convected away) was of around 300 time units, corresponding to approximately
40 VS periods. The spatial domain for the direct numerical simulation consists of a
circle of diameter 100. This domain is discretized with a mesh built by extruding a
two-dimensional mesh, of around 255 × 103 cells, clustered around the cylinder, along
four diameters in the span, discretized with 960 equally spaced planes.

The frequency content of that signal, shown in figure 1(a), indicates the presence of
a first low-frequency peak corresponding to VS at ω0 ≈ 0.837 (Strouhal number of St =
ω0/2π = 0.133, in accordance with Trias, Gorobets & Oliva (2015)), and also a bump,
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corresponding to the KH modes at higher frequencies, around ω/ω0 ≈ 20, 30, a frequency
ratio close to that in the Ginzburg–Landau model. The spanwise-averaged quantities
(velocity and pressure) were stored on disk every t = 0.0209, which corresponds to a
sampling frequency discretizing the frequency ω = 30 with 10 points.

We remark here that the raw signals q(x, t) cannot directly be used for the analyses
presented in the previous section since they contain both the low-frequency behaviour
(VS mode) and the high-frequency one (KH structures). For this reason, in the following
discussion, we introduce a triple-decomposition concept, which will allow us to separate
them.

4.1. Triple decomposition
In order to separate the periodic VS and the KH structures from the full signal q(x, t), we
rely on a triple decomposition (see Reynolds & Hussain 1972), such that

q(x, t) = q̄(x)+ q̃(x, t)︸ ︷︷ ︸
〈q〉(x,t)

+q′(x, t), (4.1)

where q̄(x) is the mean flow and q̃(x, t) is the periodic component, which together
compose the phase-average 〈q〉 (t) = E[q](t), as already given in (2.26). The remainder
q′ = q − 〈q〉 is the signal that will be fed in the analyses presented in the previous sections.
This remainder of the signal has recently been used (Heidt et al. 2021) in classical SPOD
analyses (and subsequently compared with mean-flow resolvent analyses) in a periodically
forced jet, in order to focus the analysis solely on the KH structures without the periodic
motion.

We suppose that the flow field is governed by the incompressible (which is a good
approximation, due to low Mach number) non-dimensional Navier–Stokes equations, so
that q = (u, p) denotes velocity and pressure fields and

∂tu + u · ∇u + ∇p − ∇ · (Re−1(∇u + ∇uT)) = 0, ∇ · u = 0. (4.2)
The application of the phase average to the variables q leads (see Reynolds & Hussain
1972) to a forced linear system of the form of (2.1), where the state w is now w = q′, the
forcing term f being f = f ′ = ∇ · (〈u′ ⊗ u′〉 − u′ ⊗ u′) and the operators B, L(t) and P:

B =
[

1 0
0 0

]
, P =

[
1
0

]
, L =

[〈u〉 (t) · ∇(·)+ (·) · ∇ 〈u〉 (t)− Re−1(·) ∇(·)
∇ · (·) 0

]
.

(4.3a–c)
More recently, this triple decomposition was reformulated by Mezić (2013) and Arbabi

& Mezić (2017) in terms of a harmonic-averaging procedure:

q̂(ωj) = lim
Tf →+∞

1
Tf

∫ Tf

0
exp(−iωjt)q(t) dt, (4.4)

which, in the limit of large Tf , converges to a non-zero quantity for a countable set of
frequencies {ωj}. We remark that the harmonic average, computed at ω = 0, leads to the
mean flow q̄ = q̂(ω = 0). The phase average can now be redefined as

〈q〉 (x, t) ≡ q̄(x)+
⎛
⎝ ∑
ωj /= 0

exp(iωjt)q̂(ωj)+ c.c.

⎞
⎠ , (4.5)

where 〈q〉 groups together all non-zero harmonic averages of q described by (4.4). We
remark that this is a more general definition than (2.26) since there may be incomensurable
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Figure 15. Streamwise component of (a) mean flow and (b) real part of first harmonic of periodic component
(VS) obtained by harmonic averaging at frequency ω0 = 0.837, for which the spectrum shown in figure 1(a)
was maximum. Both were computed from a time series of around 40 periods. The green window represents the
integration region Ω (defining MΩ ) used for both the PCL-SPOD and resolvent analyses.

frequencies in ωj, leading to a so-called quasi-periodic signal. This generalization may
describe better for example complex fluid systems where several instability mechanisms
are present (such as the lid-driven cavity (Arbabi & Mezić 2017) or the open cavity
(Bengana et al. 2019; Leclercq et al. 2019)). In the context of fluid–structure interactions, it
may also be adapted to the description of quasi-periodic flow-induced vibrations observed
for a single spring-mounted cylinder (Prasanth & Mittal 2008) or airfoil (Menon & Mittal
2019) and for a double spring-mounted plate (Moulin 2020b).

We chose the harmonic-averaging approach to compute 〈q〉 (instead of the
conditional-averaging procedure), since it has better convergence properties, filtering
out more efficiently the high frequencies (see Sonnenberger, Graichen & Erk (2000)
for a discussion on a similar approach). The mean flow q̄ and the first four harmonics
of ω0 ≈ 0.83 (the VS frequency, defined as the value of maximal amplitude of the
signal in figure 1), ωj = jω0, j = 1, 2, 3, 4, were computed. The streamwise component
of the mean flow and of the first harmonic is represented in figure 15. The periodic
component presents a space/time symmetry for 〈q〉, namely (〈u〉 , 〈v〉 , 〈p〉)(x, y, t) =
(〈u〉 ,−〈v〉 , 〈p〉)(x,−y, t + T0/2) (Jallas et al. 2017). It states that the flow at a time t is the
(quasi-)mirror image (with respect to the symmetry axis y = 0) of the flow a half-period
later, at time t + T0/2.

Although those fields are appropriate for us to understand the general mean flow and
first harmonics, they are not used for the actual computation of q′ due to a low-frequency
meandering phenomenon present in the signal. This is discussed in the next section.

4.2. Taking into account low-frequency meandering
In this section, we briefly address the meandering phenomenon, a known feature in
cylinder flow (see Lehmkuhl et al. 2013), whose characteristic frequency is much lower
than the VS one. This phenomenon is present in the spectrum shown in figure 1(a)
where a small ‘bump’ occurs at ω < 10−1. The VS motion, 〈q〉, is thus modulated
by this low frequency, making it difficult to be captured with harmonic averages (4.4)
considering the limited length of the signal available, Tf = 40T0 (convergence is expected
to occur only for very large time spans, typically Tf = O(103T0)). We therefore decided
to compute a different 〈q〉k for each bin of length T0, using still the harmonic-average
procedure (4.4), with Tf = T0. Therefore, 〈q〉k is allowed to fluctuate slowly from bin
to bin according to the low-frequency meandering. The fluctuating field is then defined
within in each bin as q′

k = qk − 〈q〉k. This procedure was shown to mitigate the impact of
the low-frequency meandering and produced a signal q′ containing fewer low-frequency
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(a)

(b)

Figure 16. Deterministic periodic spanwise-averaged pressure fluctuation field 〈p〉, computed with harmonic
averages based on data from a given bin (a) and the fluctuation field p′, obtained by subtracting the raw
snapshots from the deterministic field (b). Both series of plots are presented for the same phases as in
figure 1(b).

structures in comparison with that using the periodic component 〈q〉 obtained with data
for Tf = 40T0. We present in figure 16(a), for a given bin, the deterministic periodic
field (the spanwise-averaged pressure field), composed of the mean flow and first four
harmonic averages determined from the bin. We can see that the VS motion is properly
recovered and that all small-scale features seen in the raw data q (figure 1) for the exact
same phases have been filtered out. In figure 16(b), we provide the fluctuation field q′,
computed by subtracting 〈q〉 (figure 16a) from the raw snapshots q (figure 1b). We can see
that the large-scale vortices associated with the VS fluctuation field have been removed:
the smooth and regular lines above and below the cylinder in figure 16(a) together with the
large-scale structures highlighted by red circles in figure 1(a) are now gone. The remaining
structures are composed mostly of complex high-frequency fluctuations, which clearly
exhibit a dependence on the phase of the VS motion. We remark, however, that, in some
phases (namely the second one here), the iso-values are all positive indicating that the
procedure to extract 〈q〉 is not perfect.

In the next section, we discuss the PCL-SPOD procedure implemented to reveal the
high-frequency dynamics, followed by the QS resolvent analysis, to model them.

4.3. The PCL-SPOD results
We now turn our attention to the PCL-SPOD results. They are obtained by considering
the dataset split in Np = 40 bins. We remark that a small overlap between those bins
was used, in order to accommodate half of the window size T at the beginning and
at the end of it. The short-time (fast) Fourier transform is computed for each bin using a
time window of size T/T0 = 1/6, leading to a fundamental frequency discretization
of ω = 2π/T = 6ω0 ≈ 5. The frequency grid of the STFT is therefore jω, j =
1, 2, 3, . . . ≈ 5, 10, 15, . . .. The PCL-SPOD is subsequently performed by solving the
eigenvalue problem (2.28) using the integration domain Ω = (−0.5 ≤ x ≤ 0.7)× (0.5 ≤
y ≤ 1.2) ∪ (−0.5 ≤ x ≤ 0.7)× (−1.2 ≤ y ≤ −0.5), shown with green boxes in figure 15.
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Figure 17. The PCL-SPOD results. (a) Maximum value of dominant optimal energy λ2
1(t) over 0 ≤ t < T0

as a function of frequency and (b) sum of all energies averaged over the same time interval as a function of
frequency.

In figure 17, we present some characteristics of the energy distribution of the
PCL-SPOD modes as a function of frequency ω. Figure 17(a) shows the maximal value of
the dominant energy λ0(t) over [0, T0), i.e. maxt λ

2
0(t). A bump is clearly observed around

frequencies ω = 20, 25 and 30, indicating that the dominant optimal PCL-SPOD mode,
which is the most coherent among all of them, exhibits its strongest features within this
frequency band. We also show in figure 17(b) the mean total energy, which is the sum of
all eigenvalues λ2

k(t) averaged over the period T0. In contrast, this plot exhibits a ‘plateau’
over 10 ≤ ω ≤ 30, suggesting that part of the energy content at frequencies ω = 15, 20
stems from suboptimal branches. This behaviour is discussed further in the following,
especially for ω = 20 and 30 for which a detailed analysis is provided. The case ω = 25,
the dominant one, is not presented due to its similarities to the two others. We also remark
that, for higher frequencies (ω ≥ 35), there is a clear cut-off in the energy content, while
for the lowest frequencies (ω = 5, 10), we can see an energy increase of the dominant
mode. We believe that this large amount of energy at these lower frequencies can be due
to low-frequency dynamics around ω0 that cascades nonlinearly up to ω ≈ 5, 10 and thus
does not necessarily represent fluctuations arising from linear mechanisms triggered at
high frequencies. Another possibility is spectral leakage of the zero-frequency mode (the
time average of q′

k is zero over the whole period T0 but not over the window W(τ − t)).
In figure 18, we now present the results of the PCL-SPOD analysis as a function of

the phase t/T0 ∈ [0, 1) for ω = 20. In figure 18(a), we plot the eight strongest branches
λ2

k(t), k = 0, 1, . . . , 7. The two dominant branches are highlighted with red and blue
colours. We can see that those branches do not clearly display any preferential phase
within [0, T0) and present similar energies over the period. The latter point is in accordance
with the observation made before, where for frequencies ω = 15, 20 the maximum value
of the energies, maxt λ

2
1 (displayed in figure 17a), is smaller than the sum of all the

branches (displayed in figure 17b). The scaled PCL-SPOD modes, λ(t)φ̂(t), corresponding
to the two dominant branches, are presented in figure 18(b,c), at the four phases of the
fundamental period marked by vertical lines in figure 18(a). They correspond to the phases
shown in figures 1(b) and 16. We can clearly recognize the KH structures (colours) that
evolve according to the VS motion (black solid lines).

Figure 19 displays similar results but for ω = 30. By continuation in phase, we
distinguish several branches that clearly exhibit an oscillating behaviour within the
fundamental period. For example, the two most energetic ones (red and blue) oscillate
in an anti-phase manner. The red curve displays a bump for t/T0 ∈ (0.1, 0.6) and a valley
for t/T0 ∈ (0, 0.1) ∪ (0.6, 1). A similar behaviour is observed for the blue curve but the
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Figure 18. The PCL-SPOD modes for ω = 20. (a) Eigenvalues λ2
0,...,7(t) as a function of the phase t/T0. (b,c)

Absolute value of pressure fluctuations for the optimal (red iso-lines) and suboptimal (blue iso-lines) modes
λ0,1φ̂0,1 at four different (and equidistant) phases (indicated by vertical lines in (a) and corresponding to the
same phases as in figure 1b). The black solid lines are the streamlines of the periodic VS motion at the given
phase.

bump occurs at phases where the red curve presents a valley and vice versa. Moreover,
since only one branch (either red or blue) is dominant for a given phase, it holds most
of the fluctuation energy, which is in accordance with previous comments concerning
figure 17. We discuss now the two dominant PCL-SPOD modes (shown in figure 19b,c and
scaled with λk(t)). We can clearly see that the bump in the red (blue) curve is associated
with KH structures developing only on the upper (lower) shear layer. Interestingly, those
largest energetic amplifications occur when the shear layers are closest to the walls, that is,
when the gradients of 〈q〉 are strongest. This observation agrees with figure 16 where more
fluctuations can be observed at those phases and locations as well. The symmetry observed
is in accordance with the symmetry of the VS motion where the (almost) mirror image of
the field 〈q〉 (t) is observed at t + T0/2. Also, it is seen that all the modes at this frequency
have their support only on the upper or the lower shear layer. This is due to a statistical
decorrelation property between the dynamics at the top and bottom of the cylinder, which
stems from a separation of the spatial supports of the modes. Indeed, as the number of bins
increases, the spectral correlation matrix Ŵ (t)Ŵ ∗(t) = (1/Np)

∑Np−1
m=0 [q̂tm q̂∗

tm] ≡ A can be
split into an upper left block Auu and a lower right block All, where crossing terms, Aul
and Alu, tend to zero as Np → +∞ due to the separation of the supports and therefore the
decorrelation of the top and bottom dynamics. This separation trend was already slightly
present for ω = 20 (see for example figure 18a for first, second and fourth phases and
figure 18b for first and third phases) and is enforced here due to a smaller and more compact
spatial support of the modes on the top/bottom shear layers.
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Figure 19. The PCL-SPOD modes for ω = 30. (a) Eigenvalues λ2
0,...,7(t) and (b,c) absolute value of pressure

fluctuations for the two dominant modes λ0,1φ̂0,1 corresponding to the red/blue curves in (a) at four different
phases (same as in figure 18).

4.4. The QS resolvent results
We now present the results of the QS resolvent analysis. Those results were produced by
discretizing the linear Navier–Stokes equations (4.3a–c) with the finite-element method
in the open-source software FreeFEM++ (Hecht 2012). The refinement of the mesh
was similar to the spatial discretization of a longitudinal plane in the direct numerical
simulation. Moreover, since the focus of the present work is on the spanwise-averaged
fields, we only looked at spanwise-invariant modes. To deal with high-Reynolds-number
flows, we employ a second-order streamline-upwind Petrov–Galerkin method (Brooks &
Hughes 1982; Franceschini, Sipp & Marquet 2020). The resolvent modes are obtained by
solving the eigenvalue problem (2.17) using ARPACK, interfaced with FreeFEM++. We
recall that the inner product used for the energy gain definition (γ ′) is the same as that
used for the SPOD and corresponds to the integration of the velocity fields over Ω (see
green windows in figure 15b). Note, however, that, contrary to the PCL-SPOD analysis,
the results of the resolvent analysis turned out to be quite insensitive to the precise choice
of Ω (some tests were done where Ω was much larger and no significant changes in the
results were observed).

First, similar to what was done for the PCL-SPOD analysis, we plot overall
characteristics of the energy gains as a function of frequency in figure 20. In figure 20(a)
we show the maximal value of γ ′2

0 (t) for t ∈ [0, T0) and in figure 20(b) we plot their sum,
averaged over t ∈ [0, T0). These two plots are close indicating that the maximal value of
γ ′2

0 (t) is representative of the overall linear extraction mechanism of energy. We can see in
particular that both present a maximal value for ω = 15 and that the ‘bump’ in frequency
extends up to ω = 25. This maximal frequency is slightly smaller than that highlighted
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Figure 20. The QS resolvent modes. (a) Maximum value of dominant energy gain γ ′2
0 (t) over 0 ≤ t < T0 as a

function of frequency and (b) average energy gain over 0 ≤ t < T0, summed over all eigenvalues, as a function
of frequency.

for the PCL-SPOD analysis (ω = 30), but we believe that this is a minor difference. We
remark that the large values at ω = 5 observed for the PCL-SPOD analysis are much less
pronounced here, reinforcing that those large energies were due to a cascade initiated at
lower frequencies rather than to the extraction of energy from 〈q〉 at this frequency through
a linear mechanism.

In figures 21 and 22, we show the detailed results for the frequencies ω = 20 and
30, respectively. We can see, in both cases, two very strong branches (in red and blue)
exhibiting the same symmetries in time as those observed for the PCL-SPOD modes at
ω = 30. This clearly stems from the fact that the sole input of the QS resolvent analysis
is the 〈u〉 field, which displays the mirror symmetry discussed before. Also, we can see
that the modes are much stronger during the first two phases on the top shear layer and
inversely on the bottom layer during the last two phases, in a manner similar to that
for the PCL-SPOD results. The modes at frequency ω = 30 exhibit, as expected, smaller
structures and smaller spatial supports than those at frequency ω = 20. The dominant and
subdominant gains γ ′2

i=0,1(t) oscillate in a perfect anti-phase manner for frequency ω = 30,
while the energetic phases at ω = 20 are slightly capped (see for example t/T0 < 0.5
where the red gain exhibits a plateau) due to the larger wavelengths of the KH structures
whose development is obviously constrained by the geometry.

Overall, we conclude that the agreement between PCL-SPOD and QS resolvent modes is
very good, establishing that high-frequency unsteadiness developing on a low-frequency
motion may be well captured by a QS resolvent analysis. More precisely, if we wish to
compare the SPOD and resolvent modes in a more quantitative way, we may compute the
inner product |

〈
ψ̂ ′

i , φ̂i

〉
Ω

|/(‖ψ̂ ′
i ‖Ω‖φ̂i‖Ω), which has been extensively used as a measure

of quality for the SPOD–resolvent agreement (see Pickering et al. 2021). In figure 23 we
provide those results for the two cases, namely ω = 20 and ω = 30. For the case ω = 20,
we can see that the coefficient remains, on average, close to 0.5, indicating a rather good
but not excellent alignment. This can be explained by the fact that the inner product is
defined on both the upper and lower sides of the square, which makes the coefficient
decrease whenever the SPOD modes are strong on both sides of the cylinder, while the
resolvent modes are mainly on top/bottom sides. This is confirmed if alignments restricted
to either the top or bottom sides are considered, in which case the projection coefficients
increase up to values of 0.8. For the case ω = 30, since the SPOD modes are on either the
top or bottom sides (as for the resolvent modes), we obtain projection coefficients of the
order of 0.8 in phases where the modes exhibit strong energies (λ(t) and γ ′(t) are high).
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Figure 21. The QS resolvent analysis for ω = 20. (a) The first four gains γ ′
0,...,3(t)

2 as a function of time and
(b) the absolute value of the pressure fluctuations of the two dominant red/blue modes, scaled by the amplitude,
γ ′

i (t)ψ̂
′
i (t). The vertical lines in (a) depict the four phases represented in (b).
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Figure 22. The QS resolvent analysis for ω = 30: same caption as for figure 21.

5. Conclusion

In this paper, we have proposed a PCL-SPOD and a QS resolvent analysis for the
identification and reconstruction of turbulent high-frequency fluctuation content evolving
as function of the phase of a lower-frequency periodic motion. The PCL-SPOD consists
of the use of the STFT to construct a phase-dependent spectral cross-correlation tensor,
whose eigenvalues/eigenvectors provide energies and modes of the dynamics at that
given phase/frequency, similar to classical SPOD analysis. The QS resolvent analysis
corresponds to a singular value decomposition of the linearized operator around the
lower-frequency motion, at a given phase. These time/frequency approaches rely on
the frequency separation between the high-frequency fluctuations and the low-frequency
periodic motion. The QS resolvent analysis can be seen as a QS approximation of
Floquet-like analyses such as the harmonic resolvent analysis (Wereley & Hall 1991;
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Figure 23. Projection coefficients (thick solid lines) between SPOD and resolvent modes,
|〈ψ̂ ′

i , φ̂i〉Ω |/(‖ψ̂ ′
i ‖Ω‖φ̂i‖Ω), as a function of phase t/T0 for (a) ω = 20 and (b) ω = 30. The thick red

and blue lines designate the same modes as presented in figures 18, 19, 21 and 22. We provide as well, in
both panels (thin solid lines), the top/bottom alignments, with inner products restricted to either top or bottom
subregions (see green rectangles in figure 15b): the thin red (blue) curves correspond to the top (bottom)
alignments.

Padovan et al. 2020). It is in particular much less expensive because it involves solving
only a spatial problem instead of a time–space problem. We illustrated the various tools
(Floquet stability, harmonic resolvent, QS resolvent and PCL-SPOD analyses) on an
idealized linear periodically varying Ginzburg–Landau model and assessed the ranges
of validity of the QS approximation. In particular, we have shown that the QS resolvent
modes offer a more compact basis for the representation of high-frequency dynamics than
the harmonic resolvent analysis. We therefore restricted the analysis of flow around a
squared-section cylinder at Re = 22 000 to the QS resolvent and the PCL-SPOD analyses.
We have shown that the high-frequency fluctuation content (the KH motion) can be
efficiently extracted (by the PCL-SPOD analysis) and reconstructed (by the QS resolvent
analysis) as a function of the phase and that both analyses showed reasonable agreement.

We believe that those techniques could be applied to many other flow configurations
exhibiting high-frequency fluctuations evolving on top of a low-frequency deterministic
flow field, such as biological flows (blood and air flows), rotating machine flows (Tucker
2011; Lignarolo et al. 2015), etc. Other possible applications are turbulence developing
around the periodic shock motion in buffet (Sartor, Mettot & Sipp 2014; Sartor et al. 2015;
Bonne et al. 2019) or the low-frequency oscillation around an airfoil in stall condition
(Almutairi & AlQadi 2013), or to analyse limit-cycle oscillations of spring-mounted wings
in transitional-Reynolds-number flows (Yuan, Poirel & Wang 2013).
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Appendix A. Quasi-steady approximation

The high-frequency condition ωf � ω0 induces that the shifted Floquet–Hill matrix may
be approximated as follows:

H + iBωf =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
... . .

.

· · · L(0) − iω0B + iωf B L(−1) L(−2) · · ·
· · · L(1) L(0) + iωf B L(−1) · · ·
· · · L(2) L(1) L(0) + iω0B + iωf B · · ·
. .
. ...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
... . .

.

· · · L(0) + iωf B L(−1) L(−2) · · ·
· · · L(1) L(0) + iωf B L(−1) · · ·
· · · L(2) L(1) L(0) + iωf B · · ·
. .
. ...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
, (A1)

where all the terms involving ω0 were simplified. This approximation actually holds only
if the energy of the solution ŵ(t) is contained in harmonics ωn = ωf + nω0 satisfying
|nω0| � |ωf |. There are a number of conditions for this to be valid. The idea behind
this is that the energy always cascades from the frequency where it is injected around
ωf to neighbouring frequencies ωf + nω0, due to the off-diagonal blocks related to the
interaction with the frequencies of the oscillating base flow −nω0. Also, the intrinsic
amplification behaviour of the diagonal blocks, which are associated with the resolvent
operator around the time-averaged base-flow oscillation, (L(0) + i(nω0 + ωf )B)−1P, is
important: large gains around ωf will favour the high-frequency property, while large
gains for frequencies away from ωf will tend to produce energy at those frequencies
if the cascade triggers even a small amount of energy there (which may invalidate the
high-frequency property of the solution). In any case, it is important to check a posteriori
that the solution obtained with the QS approximation actually satisfies the conditions for
the high-frequency approximation.

If the high-frequency simplification holds, then the resulting matrix is block-circulant
(see Moulin 2020a), which can be diagonalized with the discrete Fourier transform matrix,
leading to (2.14).

Appendix B. Derivation of PCL-SPOD from conditional space/time POD

The goal of this appendix is to make the connection between the conditional space/time
POD from Schmidt & Schmid (2019) and Hack & Schmidt (2021) and the present
PCL-SPOD. We start doing so by remarking that, by multiplying the raw signal w(t) by
a window function W(τ − t) in (2.19), we target the signal around a given phase t = τ ,
which will serve as a conditioning parameter, similar to the time windows where rare
or extreme events occurred in Schmidt & Schmid (2019) and Hack & Schmidt (2021).
Their goal was then to maximize the energy:

λ2(t) = E[| 〈wW(x, t, τ ), φ(x, t, τ )〉Ω,τ |2]
〈φ(x, t, τ ), φ(x, t, τ )〉Ω,τ

, (B1)
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Figure 24. Correlation tensor (a) E[w(x, τ )w∗(x′, τ ′)], computed at x = x′ = 7.5 for the three-frequencies
case, presented in § 2. (b) A zoom of this tensor, around τ/T0 ≈ 0.5, where this tensor is well approximated by
diagonal lines, motivating the approximation C(τ, τ ′, t) = C(τ − τ ′, t).

where 〈u, v〉Ω,τ = ∫ +∞
−∞

∫
Ω

uv∗ dx dτ is a space/time inner product. This problem is
equivalent to solving∫

Ω

∫ +∞

−∞
C(x, x′, τ, τ ′, t)φτ (x′, τ ′, t) dτ ′ dx′ = λ2(t) φ(x, τ, t), (B2)

where C(x, x′, τ, τ ′, t) = E[wW(x, τ, t)w∗
W(x

′, τ ′, t)] is the cross-correlation tensor, here
parametrized by the time t and such that C(x, x′, τ, τ ′, t) = 0 for |τ − τ ′| > T . Again,
the averaging is performed over the realizations using the expectation operator E[·]. If we
use the following hypothesis:

C(x, x′, τ, τ ′, t) → C(x, x′, τ − τ ′, t), (B3)

meaning that, for each fixed time (or phase) t, the cross-correlation tensor, around that
phase, only depends on the time lag τ − τ ′, then the cross-correlation tensor may be
rewritten as

C(x, x′, τ − τ ′, t) = 1
2π

∫ +∞

−∞
S(x, x′, ω, t) exp(iω(τ − τ ′)) dω, (B4)

where S(x, x′, ω, t) denotes the Fourier transform of the tensor C(x, x′, τ, t). Taking
the Fourier transform of (B2) and simplifying similarly to what is discussed in Towne
et al. (2018), we obtain the eigenvalue problem given by (2.24), where φ̂(x, ω, t) =∫ +∞
−∞ φW(t, τ ) exp(−iωt) dt.
We see that the connection between the PCL-SPOD and the conditional space/time POD

relies on the approximation given by (B3). In order to understand this approximation,
we provide figure 24, computed for the multi-frequency case, presented in § 3, where
the expected value operator E[·] was computed for Np = 3 periods. We can see the
high-frequency structures at some specific phases, τ/T0 ≈ 0.5 (same as shown before in,
for example, figure 7), and very little signal elsewhere. The quantity E[wW(τ, t)wW(τ

′, t)]
focuses the analysis on correlations within small windows (τ, τ ′) ∈ [t − T/2, t + T/2] ×
[t − T/2, t + T/2] (with T � T0) around the principal diagonal, an example of which
being given by the green window. Accordingly, we remark that energetic regions on that
figure change on a slow time scale of order T0 and that correlations are approximately
constant in windows of size T (green window) centred along the principal diagonal
(τ = τ ′). We indeed distinguish blue and red diagonal segments (see in particular the green
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window, zoomed in figure 24b), which indicate that C(τ, τ ′, t) approximately exhibits
constant values along τ − τ ′ = cste so that C(τ, τ ′, t) = C(τ − τ ′, t).
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