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Abstract
In this paper, we investigate the attitude manoeuver planning and tracking control of the flexible satellite equipped
with a coilable mast. Due to its flexible beamlike structure, the coilable mast experiences bending and torsional
modal vibrations in multi-direction. The complex nonlinear coupling and other external disturbances significantly
impact the achievement of high-precision attitude control. To overcome these challenges, a robust attitude track-
ing controller is proposed for easy implementation by the Attitude Determination and Control System (ADCS).
The controller consists of a disturbance compensator, feedforward controller and output feedback controller. The
compensator, based on a Nonlinear Disturbance Observer (NDO), effectively compensates for the cluster distur-
bances caused by vibrations, environmental factors and parameter perturbations. The feedforward controller tracks
the desired path in the nominal satellite model. Furthermore, the output feedback controller enables large-angle
manoeuver control of the satellite and evaluates the suppression effect of the controlled output on the observa-
tion error of cluster disturbances used the L2-gain. Simulation results demonstrate that the proposed controller
successfully achieves high-precision attitude tracking control during large-angle manoeuvering.

Nomenclature
� Attitude angle of the rigid platform
ω Angular velocity of the rigid platform
J0 Inertia matrix of the rigid platform
r0 Radius of the rigid platform
wL Vibration vector of the coilable mast
� Modal functions of the coilable mast
η Modal coordinates of the coilable mast
M, K, F Coupled matrices
�1, �2 Coupled matrices
σ MRP, Modified Rodriguez Parameters
SOS Sum of squares
LMI Linear matrix inequality
LTI Linear time invariant

1.0 Introduction
In modern satellite engineering, the utilisation of rigid satellites with flexible attachments has become
widespread to reduce the mass and efficiently carry out specific payload tasks [1, 2]. However, this
approach poses challenges due to the strong coupling between the rigid platform and flexible attachments
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[1, 3]. The control torque applied during manoeuvers can induce vibrations on the flexible attachments,
making it difficult to achieve precise and high-accuracy attitude manoeuver control [4, 5].

Addressing the issue of large-angle rest-to-rest manoeuver, Kim et al. conducted extensive research
involving derivation and physical simulation experiments on jerk-limited and versine profile paths [6].
Their findings showed that employing smooth manoeuver paths can significantly mitigate the vibra-
tions on the flexible attachments. Several techniques have been proposed to achieve smoother paths,
such as single polynomials [7], B-splines [8], and trigonometric smoothing [9], which are capable of
smoothing the time-optimal bang-off-bang profile path [10]. In addition to path planning, Kim et al. also
explored the application of input shaping (IS) in the attitude manoeuver control of flexible spacecraft
and conducted related experiments [11]. The IS method is designed based on the vibration characteris-
tics of flexible attachments [12, 13]. However, it is important to note that while IS can effectively control
vibrations, it may lead to a significant increase in manoeuver time.

To tackle these challenges, the essence of path planning lies in transforming the rest-to-rest manoeu-
ver problem into a tracking control problem of a desired trajectory. This approach helps avoid generating
large control torques directly, thereby minimising the impact of vibrations on the flexible attachments
[11]. Path planning involves two key aspects: (1) design a trajectory path that fulfills the requirements of
flight tasks, including constraints on manoeuver time and control torque for spacecraft; (2) develop a suit-
able controller for trajectory tracking, which must account for external disturbances, model uncertainty
and input saturation during manoeuvers.

At present, numerous nonlinear control methods have been proposed to improve the robustness
of modeling errors, input saturation and other factors [14, 15]. Xiao et al. [16] introduced neural
networks to account for the uncertainty of the flexible spacecraft and designed an adaptive sliding
mode controller to estimate the actuator’s fault boundary. Liu et al. [17] designed a hybrid control
scheme for attitude manoeuver and vibration suppression by combining IS with PD control. Liu et al.
[18] proposed a sample state feedback controller based on novel disturbance observer for the flexible
spacecraft. In general, local linearisation methods is still the most used strategies in spacecraft atti-
tude control and widely used in practical engineering [19–21]. However, the controller obtained by
local linearisation only works near the equilibrium point. When external disturbances are large or the
system state changes significantly, the system may not maintain good performance and even become
unstable.

To ensure robustness against disturbances and uncertainties, robust control theory is adopted, such
as H2 [22], H∞, H2/H∞ mixed [23], and μ-synthesis [24]. For instance, Nagashio et al. [25] designed a
rubust two-degree-of freedom controller and completed flight tests in the ETS-VII mission, proving its
effectiveness in disturbance attenuation and attitude control. Zhang et al. [26] proposed an H∞ controller
to attenuate the estimation error and other disturbances. While robust control theory has demonstrated
promising potential in spacecraft attitude control, it is important to note that most of the existing studies
primarily concentrate on the linearised attitude dynamics model. This approach may present challenges
when attempting to apply it to large-angle attitude manoeuvers. As a result, it is necessary to consider
the robust analysis and synthesis of nonlinear systems.

In linear systems, the robust analysis and synthesis problems can be solved by Riccati equation [27] or
linear matrix inequality (LMI) [28, 29], making it widely used. Some papers treat nonlinear systems as
linear parameter-varying (LPV) systems and establish state-dependent Riccati equations or LMI where
the parameters depend on the system state [30, 31]. In this paper, we use the sum of squares (SOS)
[32, 33] technique to solve the L2-gain output feedback control for nonlinear systems. Based on SOS
and S-procedure, the robust analysis and synthesis of nonlinear systems can be reformulated as SOS
convex programming problems, thus avoiding computational difficulties [34]. The main contributions
of this paper are as follows:

1. The attitude dynamics model of the flexible spacecraft is established by equating the coilable
mast to a continuous flexible beam model.
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Figure 1. The diagram of the flexible satellite.

2. A novel nonlinear disturbance observer (NDO) is proposed to effectively compensate for cluster
disturbances from the environment and flexible attachment.

3. Based on the SOS theory, the challenge of non-convex L2-gain state feedback problems can be
transformed into a convex optimisation problem by introducing SOS constraints. This approach
simplifies controller implementation in engineering, as it primarily deals with polynomial or
rational state functions.

The remainder of this paper is organised as follows: In Section 2, a dynamics model of the satellite
equipped with a coilable mast is conducted based on the Hamilton’s principle. In Section 3, the control
problem of manoeuver mission is proposed. In Section 4, a robust manoeuver tracking controller is
proposed, and its stability is analysed. In Section 5, the controller’s performance in single and multiple
manoeuvers through simulation results. Finally, the conclusion is drawn in Section 6.

2.0 Dynamics modeling
The diagram of the flexible satellite is illustrated in Fig. 1, featuring a flexible coilable mast exhibit-
ing torsional and bending modes. The inertial frame and the satellite body-fixed frame are denoted by
Fi (oixiyizi) andFb (obxbybzb). A floating frame,FL (oLxLyLzL), is employed to fix onto the flexible attach-
ment and represent the vibration vector. For simplicity in describing the control problem, we disregard
the motion of the satellite in orbit.

Regarding the rigid platform, � (t)= [ϕ φ θ
]T ∈R3 represents the attitude angle, and ω (t)=[

ωx ωy ωz

]T ∈R3 represents the angular velocity. Concerning the flexible attachment, wL (x, t)=[
wx wy wz

]T ∈R3 denotes its vibration vector, with wx (x, t) representing torsional deformation and
wi (x, t) (i= y, z) representing bending deformation. The vibration vector is represented by rP (x, t)=
[ r0 + x wy wz ]T in the floating frame and rL (x, t)= R (�) rP (x, t) in the inertial frame, where R (�)

is the rotation matrix between the floating frame and the inertial frame. The kinetic energy of the rigid
platform, torsional kinetic energy of the flexible attachment and bending kinetic energy of the flexible
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attachment are denoted by Ek0, Ek1 and Ek2, respectively. Then the kinetic energy of the entire satellite
can be expressed as follows:

Ek = Ek0 + Ek1 + Ek2

= 1

2
�̇TJ0�̇+ 1

2
Jx

∫ L

0

(ϕ̇ + ẇx)
2dx+ 1

2
ρA
∫ L

0

ṙT
L ṙLdx. (1)

Where, J0 denotes the inertia matrix of the rigid platform. The rotational inertia Jx and mass ρA of the
coilable mast, along with other equivalent parameters, can be calculated using the equivalent modeling
method [35, 36]. The corresponding expressions are provided in the appendix.

The potential energy stored in the flexible attachment is presented as follows:

Ep = 1

2

∫ L

0

(
w′′L
)T

DLw′′Ldx. (2)

The coupling matrix DL is defined as follows:

DL =

⎡
⎢⎢⎣

GJ κ1 κ2

κ1 EIy κ3

κ2 κ3 EIz

⎤
⎥⎥⎦ .

The expressions of its coefficients are also provided in the appendix. The variation of the kinetic energy
can be expressed as follows:

δEk0 =−δ�T (J0ω̇+ω× J0ω) , (3)

δEk1 =−Jx

∫ L

0

δ(ϕ +wx) (ϕ̈ + ẅx) dx

=−
∫ L

0

(
δ�T + δwT

L

) (
Jx�1

)
(ω̇+ ẅL) dx, (4)

δEk2 =−ρA
∫ L

0

δrT
L r̈Ldx

=−
∫ L

0

δ(ṙP +ω× rP)
T
ρA
(
r̈p + 2ω× ṙp + ω̇× rp

)
dx

=−
∫ L

0

(
δwT

L�2 + δ�TrP×
)
ρA
(
r̈p + 2ω× ṙp + ω̇× rp + (ω×)

2rp

)
dx

≈−
∫ L

0

(
δwT

L�2 + δ�TrP×
)
ρA
(
r̈p + 2ω× ṙp + ω̇× rp + (ω×)

2rp

)
dx (5)

Where �1 = diag {1, 0, 0} and �2 = diag {0, 1, 1}. Due to the microsatellite’s generally small angular
velocity, the quadratic coupling term (ω×)

2 in Equation (5) is neglected. Let ω×∈R3×3 denote the
skew-symmetric matrix of vector ω. The variation of the potential energy is then presented as follows:

δEU =
∫ L

0

δwT
LDLw(4)

L dx. (6)

The general form of Hamilton’s principle of variation principle is expressed as follows [37]:∫ t2

t1

(δEK − δEU + δW) dt= 0. (7)

Where, δW = δ�T (Tc + Td) denotes the variation of the work done by the external torque, while Tc ∈R3

and Td ∈R3 denote the control torque provided by the actuators and the disturbances, respectively. By
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substituting Equations (1)–(6) into Equation (7), we obtain the dynamics model represented as a set of
partial differential equations (PDEs) as Equation (8):
⎧⎪⎨
⎪⎩

J0ω̇+ω× J0ω+ Jx�1

∫ L

0

(ω̇+ ẅL)dx+ ρA
∫ L

0

rP ×
(
r̈p + 2ω× ṙp + ω̇× rp

)
dx= Tc + Td

DLw(4)
L +�1Jx (ω̇+ ẅL)+�2ρA

(
r̈p + 2ω× ṙp + ω̇× rp

)= 0.

(8)

The boundary conditions of flexible attachment are given as below [38]:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wx (0, t)=wy (0, t)=wz (0, t)= 0

wx
′ (L, t)=wy

′ (0, t)=wz
′ (0, t)= 0

wy
′′ (L, t)=wz

′′ (L, t)= 0

wy
′′′ (L, t)=wz

′′′ (L, t)= 0

. (9)

For the flexible attachment, the discrete form of the continuous vibration vector can be expressed as:

wi (x, t)=�i (x) ηi (t)=
n∑

j=1

φij (x) ηij (t) , i= x, y, z. (10)

Let �i = [φi1, · · · , φin] ∈R1×n represents the modal functions, and ηi = [ηi1, · · · , ηin]
T ∈Rn×1 represents

the modal coordinates. By defining �L = diag
{
�x, �y, �z

}
and ηL =

[
ηT

x η
T
y η

T
z

]T , we can obtain the
discretised dynamic model as follows:{

Jω̇+ω× J0ω+ Fη̈L +�1 (ω, ηL)= Tc + Td

Mη̈L +KηL + FTω̇+�2 (ω, ηL)= 0.
(11)

Where, J = J0 +�1JxL, the matrices M, K and F are related to the mode function of the flexible beam,
which can bedefined as follows:

M =
∫ L

0

�T
L

(
Jx�1 + ρA�2

)
�Ldx

K =
∫ L

0

(
�L
′′)T

DL�L
′′dx.

F= Jx�1

∫ L

0

�Ldx (12)

Where �L represent the torsional mode function of the flexible beam on the x axis and the bending mode
function on the y and z axes. The mode function needs to satisfy the boundary conditions of flexible
attachment. The coupling matrices �1 (ω, ηL) and �2 (ω, ηL) are related to ω, ηL and their derivatives,
which can be derived as follows:

�1 (ω, ηL)= ρA
∫ L

0

rP ×
(
r̈p + 2ω× ṙp + ω̇× rp

)
dx

�2 (ω, ηL)=�2ρA
∫ L

0

(
2ω× ṙp + ω̇× rp

)
dx. (13)

For the large-angle rest-to-rest attitude manoeuver, the modified Rodriguez parameters (MRP) are used
to describe the attitude [39]. MRP are expressed as σ = [σ1σ2σ3

]T = �ktan �

4
∈R3, where �k represents
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the rotation spindle and � represents the rotation angle. The kinematic model of the satellite described
by MRP is as follows:

σ̇ = A (σ ) ω= 1

4

⎡
⎢⎣

1− σ 2 + 2σ 2
1 2 (σ1σ2 − σ3) 2 (σ1σ3 + σ2)

2 (σ2σ1 + σ3) 1− σ 2 + 2σ 2
2 2 (σ2σ3 − σ1)

2 (σ1σ3 − σ2) 2 (σ2σ3 + σ1) 1− σ 2 + 2σ 2
3

⎤
⎥⎦ω. (14)

Where, σ 2 = σ 2
1 + σ 2

2 + σ 2
3 , and A (σ ) is then expresses by A (σ )= 1

4

((
1− σ 2

)
I + 2σ ×+2σσ T

)
. Let{

σe = σ − σr

ωe =ω−ωr

represent the attitude tracking error, where σr and ωr are the desired statuses provided

by the attitude control unit (ACU). The attitude manoeuver tracking model is then presented as follows:

{
σ̇e= A (σe + σr) (ωe +ωr)− σ̇r

ω̇e=−J−1 (ωe +ωr)× J0 (ωe +ωr)+ J−1Tc + J−1 (Td −�1 (ω, ηL))− ω̇r

. (15)

3.0 Problem statement
The primary objective of this paper is to achieve precise large angle attitude manoeuver tracking control
for the flexible spacecraft under input constraints while mitigating the external disturbances. Unlike
conventional attitude attitude manoeuver problems, special attention must be given to maintaining real-
time tracking of the desired path to prevent vibration of the coilable mast. Since the microsatellite lacks
a modal measurement sensor, the nonlinear observer is employed to assess the influence of the flexible
attachment on the rigid platform. In summary, the control problem can be formulated as follows:

1. Ensure that the tracking errors for the attitude manoeuver, denoted as σe and ωe, converge
asymptotically to the zero.

2. Limit the L2-gain form the input disturbance to the controlled output to be less than a given
constant under the zero initial condition [40].

3. Ensure that the controller output remains within the actuator boundaries, denoted as ‖Tci‖ ≤
‖Tmax i‖ (i= x, y, z).

Remark 1. The external disturbances affecting the rigid-flexible system comprise solar pressure, atmo-
spheric drag, gravity gradient torque, etc. Some of these external disturbances act directly on the rigid
platform, while others affect the flexible attachment in the form of concentrated or distributed loads.
Due to the challenge describing the specific form of the disturbance load accurately, we consider all
disturbances as equivalent perturbations acting on the rigid platform in this paper.

4.0 Manoeuver tracking controller
The manoeuver tracking model in Equation (15) is reformulated as a state-space equation with the
following structure:

ẋ= A (x+ xr) (x+ xr)− ẋr + Bu+ Bw, (16)

A (x+ xr)=
[

0 A (σe + σr)

0 −J−1 (ωe +ωr)× J0

]
B=

[
0

J−1

]
.

Where, x= [σ T
e ωT

e

]T ∈R6 denotes the state variable, u= Tc denotes the control torque, and w= Td −
�1 (ω, ηL) denotes the cluster disturbances composed of environment and flexible vibration. The con-
troller proposed in this paper includes: (1) a compensator based on NDO; (2) a feedforward controller;
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Figure 2. The block diagram of proposed control system.

and (3) an output feedback controller. The controller can be represented as u= uc + ur + un, and the
block diagram of the proposed control system is depicted in Fig. 2.

4.1 NDO-based sompensator
As there is no modal measurement sensor installed on the microsatellite for the flexible attachment,
some papers employ a modal observer to estimate the modal vibration [41]. However, the high order of
the observer is often challenging to implement in engineering. To address this, we consider the high-
order dynamic states and environment disturbances as cluster disturbances and construct a novel NDO
as follows: {

κ̇=−kgJ−1
(− (ωe +ωr)× J0 (ωe +ωr)− ω̇r + Tc + ŵ

)
ŵ= κ + g (ωe)

. (17)

Where, κ (t) ∈R3 denotes an auxiliary variable in NDO; ŵ denotes an observation of the cluster distur-
bances; g (ωe) denotes a nonlinear function matrix related to we; and kg = ∂g(ωe)

∂ωe
∈R3×3 denotes the gain

of NDO. The compensator is then expressed as follows: uc =−ŵ=−κ − g (ωe).

Theorem 1. The observation error of the compensator based on NDO for cluster disturbances is
expressed as: ew =w− ŵ. When kg > 0 is satisfied, ew converges the exponent to zero.

Proof. When the environmental disturbance torque w changes slowly, it can be considered that its
derivative is zero. The differential of ew (t) is presented as follows:

ėw = ẇ− ˙̂w≈−κ̇ − kgẋ

= kgJ−1
(−ω× J0ω− ω̇r + Tc + ŵ

)− kgω̇e.

=−kgJ−1ew (18)

Further, ėw + kgJ−1ew = 0 is obtained and ew will converge exponentially to zero for kgJ−1 > 0.

4.2 Feedforward controller
The feedforward controller is employed to manoeuver the satellite along the desired path without the
effects of disturbances and model parameter uncertainly. It is expressed as: ur = (ωe +ωr)× J0ωr + Jω̇r.
In this paper, the rotation angle in MRP is planned using the sine profile to reduce excessive vibration.
The desired path is represented as follows:

�̇r (t)=
⎧⎨
⎩−

1

α
Ascos (αt)+ β 0 < t < T

0 t � T
. (19)
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Equation (19) shows that the differential of the desired rotation angle changes sinusoidally, and the
rotation of the rotation angle itself can be obtained by integral operation as follows:

�r (t)=
⎧⎨
⎩−

1

α2
Assin(αt)+ βt+�0 0 < t < T

�d t � T
. (20)

Where, �0 and �d are the initial and desired states in rest-to-rest manoeuver. By substituting σr (t) and
σ̇r (t) into Equation (14), the desired angular velocity ωr (t) is obtained. The desired path ω̇r (t) can be
computed by difference operation. The specified parameters α, β, and As in the sine profile path meet
the following constraints: ⎧⎪⎪⎨

⎪⎪⎩
− 1

α2
Assin(αT)+ βT =�d −�0

− 1

α
Ascos

(
α T

2

)+ β = 2�̇max

. (21)

4.3 Output feedback controller
Based on Equation (16), the objects of the feedback controller are as follow:

ẋ= A (x+ xr) x+ Bew + Bun. (22)

The role of the output feedback controller un is to ensure that the L2-gain from the observation error
ew to the controlled output z=Cx+Dew does not exceed the given constant 0 < γ < 1. It always the
case that

∫ T

0

(‖z (t)‖2 − γ 2‖ew (t)‖2
)

dt≤ 0 exists for T > 0 when x (0)= 0 and ew ∈ L2 [0,∞).

Lemma 1. [33] For a polynomial p (x1, x2, · · · , xn) �= p (x), if there are polynomials
f1 (x) , · · · , fm (x) so that p (x) can be written as a sum of squares (SOS), such as:

p (x)=
m∑

i=1

f 2
i (x) . (23)

Then such polynomials as p (x) are called SOS polynomials, and obviously, all SOS polynomials are
non-negative. The set of SOS polynomials is expressed as �SOS, e.g. p (x) ∈�SOS.

Lemma 2. (The S-procedure lemma). [42] Let F0, · · · , FN ∈Rn×n by symmetric matrices. If there exist

scalar variables ε1, · · · , εN > 0 such that F0 −
N∑

i=1

εiFi > 0, the condition holds: vTF0v > 0 for all v 
= 0

such that vTFiv � 0 (i= 1, · · · , N).

Lemma 3. [33] Let F (x) be an N ×N symmetric polynomial matrix of variable x and z (x) be a column
monomials of x. The degree of F (x) is 2d and the degree of z (x) is no greater than d. For the following
three conditions:

1. F (x)� 0 for all x ∈Rn.
2. vTF (x) v ∈�SOS, where v ∈RN .
3. There exists a positive semidefinite matrix Q such that vTF (x) v= (v⊗ (x))TQ (v⊗ z (x)), where

otimes denotes the Kronecker product.

Then (ii)⇒ (i) and (ii)⇔ (iii).

Lemma 4 (Schur complement lemma). [42, 43] Let X be a symmetric matrix of real numbers given by

X =
[

A B

BT C

]
. Then there are three equivalent conditions as follows:
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1. X > 0.
2. A > 0 and C−BTA−1B > 0.
3. C > 0 and A−BC−1BT > 0.

Theorem 2. For the Equation (22), the system is asymptotically stable and∫ T

0

(‖z (t)‖2 − γ 2‖ew (t)‖2
)

dt≤ 0 exists for any T > 0, when the polynomial matrix K (x+ xr)

and the symmetric positive definite constant matrix P exit and satisfy the conditions as follows:⎡
⎢⎣

� (PAc (x+ xr)) PB CT

∗ −γ I DT

∗ ∗ −γ I

⎤
⎥⎦< 0. (24)

Where, ∗ denotes the same element in the symmetric matrix, Ac (x+ xr)= A (x+ xr)+ BK (x+ xr) P,
and � (PAc (x+ xr))= PAc (x+ xr)+ AT

c (x+ xr) P.
The controller is expressed as: un =K (x+ xr) Px.

Proof. By multiplying both sides of the inequality 24 by the matrix diag
{
γ 0.5I, γ 0.5I, γ −0.5I

}
, and setting

G= γ P, the inequality can be rewritten as follows:⎡
⎢⎣

� (GAc (x+ xr)) GB CT

∗ −γ 2I DT

∗ ∗ −I

⎤
⎥⎦< 0. (25)

Assume V (x)= xT (t) Gx (t) is the Lyapunov function. As G > 0 and � (GAc (x+ xr)) < 0, the
system is asymptotically stable. According to 4, inequality 25 can be rewritten as:[

� (GAc (x+ xr)) GB

∗ −γ 2I

]
+
[

CT

DT

] [
C D

]
< 0 (26)

Therefore, for any t > 0, there

‖z(t)‖2 − γ 2‖ew(t)‖2 + V̇(x)

= zT(t)z(t)− γ 2eT
w(t)ew(t)+ V̇(x)

= zT(t)z(t)− γ 2eT
w(t)w(t)

+ 2xT(t)G (Ac (x+ xr) x(t)+ Bew(t))

=
[

x(t)

ew(t)

]T ([
� (GAc (x+ xr)) GB

∗ −γ 2I

]
+
[

CT

DT

] [
C D

]) [ x(t)

ew(t)

]
< 0. (27)

The integration of the inequality 27 from t= 0 to t= T is shown below:∫ T

0

(‖z(t)‖2 − γ 2‖ew(t)‖2
)

dt+ V (x(T))− V (x(0)) < 0 (28)

Since the system is asymptotically stable, it can be shown that
∫ T

0

(‖z(t)‖2 − γ 2‖ew(t)‖2
)

dt < 0
exists.

When C= I and D= 0, the inequality 24 can be reduced to:⎡
⎢⎣

� (PAc (x+ xr)) PB I

∗ −γ I 0

∗ ∗ −γ I

⎤
⎥⎦< 0. (29)
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Figure 3. SSS-1 satellite.

Figure 4. Ground imaging by SSS-1.

The inequality 29 contains terms with unknown variables P and K (x), making it more challenging
to solve. By multiplying both sides of the inequality by Q= P−1, we can rewrite it as follows:

� (A(x+ xr)Q+ BK(x+ xr)) < 0⎡
⎢⎣

� (A(x+ xr)Q+ BK(x+ xr)) B Q

∗ −γ I 0

∗ ∗ −γ I

⎤
⎥⎦< 0.

(30)

Solving the constraints 30 is equivalent to solving a state-dependent LMI problem in infinite dimen-
sions, which is computationally difficult. Based on 1, the LMI constraints (30) can be rewritten as the
SOS constraints as shown below:

vT
1 (Q− ε1I) v1 ∈�SOS, (31)

−vT
2 (� (A (x+ xr) Q+ BK (x+ xr))+ ε2I) v2 ∈�SOS, (32)

−vT
3

⎛
⎜⎝
⎡
⎢⎣

� (A(x+ xr)Q+ BK(x+ xr)) B Q

∗ −γ I 0

∗ ∗ −γ I

⎤
⎥⎦+ ε3I

⎞
⎟⎠ v2 ∈�SOS. (33)

Where, ε1, ε2, ε3 > 0 and v1, v2, v3 ∈R6 are given parameters. For this SOS optimisation problem, it can
be solved by SOSTOOLS. As a simplifying case, when A is constant matrix, it transforms into the LMI
problem for linear time-invariant (LTI) systems.

Considering the controller’s form, when a large rotation angle is required, a correspondingly large
control torque is also needed. However, the control torque provided by actuators is limited. Therefore,
a saturation constraint is incorporated into the control torque as shown below:

ū= Satu (u (t))= Tmaxtanh

(
u (t)

Tmax

)
. (34)
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Table 1. Performance of ADCS

Index Values
Orbit determination accuracy 500 m (3σ)

Attitude determination accuracy ≤ 1◦(3σ)

Attitude pointing accuracy ≤ 3◦(3σ)

Attitude stabilisation accuracy ≤ 0.2◦/s (3σ)

Attitude manoeuver speed 0.25◦/s

5.0 Case study
This paper focuses on the microsatellite SSS-1 (Fig. 3), which was launched on October 14, 2021. The
satellite is equipped with a coilable mast that exhibits bending and torsional vibrations in multi-direction,
causing disturbances to the attitude stability of the platform during ground imaging as shown in Fig. 4.
After deployment in orbit, it can be used to stabilise the satellite’s orientation and extend some sensors
away from the satellite’s body to minimise electromagnetic interference from the platform. Throughout
the satellite’s lifecycle, the main control objectives of the ADCS include:

1. Utilising the magnetic coils to damp the satellite’s motion after separation from the rocket;
2. Finding the sun’s position through the sun sensor and cruising to face it, ensuring adequate

energy supply;
3. Maintaining a stable three-axis orientation towards the sun or the Earth by the command from the

ground, in order to complete payload tasks such as deployment of the coilable mast and remote
sensing camera imaging.

The main performance of the ADCS is shown in Table 1.
In this section, the control performance of the satellite in multiple manoeuver situations is stud-

ied through two cases. In Case 1, the satellite is required to perform a large-angle rest-to-rest attitude
manoeuver in the presence of external disturbances Td1. In Case 2, the satellite needs to complete three
large-angle attitude manoeuvers within a specified time while facing external disturbances Td2. The
model parameters of the simulation are provided as follows:

• Inertia matrix of the rigid platform, J0 =
⎡
⎢⎣

3.6 0.3 0.2

0.3 3.4 0

0.2 0 1.2

⎤
⎥⎦ kg ·m2

• Radius of the rigid platform, r0 = 0.15 m

• Length of the coilable mast, L= 4 m

• Maximum control torque, Tmax = 5.0× 10−3 N ·m
• Attitude manoeuver velocity, �̇max = 0.5◦/s

• Rotation spindle vector,
←
k = [0.248 −0.465 0.850

]T

• NDO gain, kg =
⎡
⎢⎣

20 10 12

10 28 8

12 8 16

⎤
⎥⎦

• External disturbance 1, Td1 =
⎡
⎢⎣

sin(0.05π t− 0.4π)+ sin(0.04π t)

sin(0.05π t+ 0.5π)+ sin(0.04π t)

sin(0.05π t+ 0.6π)+ sin(0.04π t)

⎤
⎥⎦× 10−3 N ·m

https://doi.org/10.1017/aer.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.18


12 Sun et al.

Figure 5. Attitude manoeuvering angular velocity.

• External disturbance 2, Td2 =
⎡
⎢⎣

3 (sin(0.2π t− 0.4π)+ sin(0.4π t))

3 (sin(0.2π t+ 0.5π)+ sin(0.4π t))

3 (sin(0.2π t+ 0.6π)+ sin(0.4π t))

⎤
⎥⎦× 10−3 N ·m

The parameters in the SOS constraints are chosen as ε1 = 0.01, ε2 = 0.001, ε3 = 0.001 and γ = 0.4.
The output feedback controller is then obtained based on SOSTOOLS as follows:

un1 (t)=− (3700+ 3300ϒ 2
)
(σex +ωex)−

(
200+ 180ϒ 2

) (
σey +ωey

)
− (140+ 140ϒ 2

)
(σez +ωez)

un2 (t)=− (200+ 190ϒ 2
)
(σex +ωex)−

(
3500+ 3200ϒ 2

)
ωey

un3 (t)=− (160+ 160ϒ 2
)
(σex +ωex)−

(
1500+ 1200ϒ 2

)
ωez

Where ϒ 2 = σ 2
1 + σ 2

2 + σ 2
3 +ω2

x +ω2
y +ω2

z . The polynomial un (x, xe) involves ignoring monomials
with tiny coefficients, leading to a more concise controller expression.

Different from the general flexible solar panel accessories, the coupling relationship between the coil-
able mast and the rigid platform is reflected in that when the rigid platform performs attitude manoeuver,
the flexible mast will simultaneously undergo torsional deformation along the X-axis and bending defor-
mation along the Y-axis and Z-axis. In order to reveal more dynamic behaviours caused by the vibration
of the flexible mast and simulate the actual spacecraft attitude manoeuver situation. Here, by setting
the driving torque of the controller and setting the initial angular velocity of the spacecraft to zero, the
attitude motion and flexible vibration of the spacecraft are observed. The control torque of the actuator
is shown as follows:

Tc =

⎧⎪⎪⎨
⎪⎪⎩

[
0.2 0.2 0.2

]T
N ·m 0≤ t < 2 s[

0 0 0
]T

2 s≤ t < 20 s

−[ 0.2 0.2 0.2
]T

N ·m 20 s≤ t < 22 s

The Fig. 5 depicts the attitude manoeuvering angular velocity of the spacecraft under the influ-
ence of vibration interference from the coiled mast. As a result, the spacecraft’s attitude stability
diminishes, subsequently impacting the accuracy of its attitude manoeuvering. In the course of the
spacecraft platform’s attitude manoeuver, the coilable mast experiences the influence of the rigid-
flexible coupling effect, manifesting in torsional and bending vibration responses, as delineated in
Fig. 6.

Case 1 To empirically validate the efficacy of the introduced robust control strategy, this study con-
ducts a comparative analysis against the conventional PD controller employed in SSS-1 satellite. The
evaluation encompasses a comprehensive examination of the manoeuvering performance and vibrational
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(a) (b)

Figure 6. Vibration at the tip of the flexible mast.

(a) (b)

Figure 7. MRP and angular velocity in Case 1 (proposed controller).

(a) (b)

Figure 8. Tracking errors in Case 1 (proposed Controller).

characteristics exhibited by the flexible appendages in both control paradigms. The specific formulation
of the PD controller is articulated as follows:

TPD =KPσe +KDωe, KP, KD ∈R3×3. (35)

Where, KP, KD denote the parameters of the PD controller. The satellite’s attitude undergoes an
adjustment from 0◦ to 40◦, with initial and desired angular velocities both set to 0◦/s. Figures 7 and 8
present the performance of attitude manoeuver tracking, illustrating the planned S-shaped curve for the
desired path. Throughout the manoeuver phase, the satellite effectively follows the desired path of MRP
and angular velocity, successfully reaching the predetermined position at about 70 seconds.

Analysis of Fig. 8 reveals that the errors in MRP and angular velocity during the manoeuver phase
dose not exceed 6.00× 10−7 and 2.10× 10−5◦/s, respectively. Upon reaching the desired position, the
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(a) (b)

Figure 9. Tracking errors in Case 1 (PD controller).

(a) (b)

Figure 10. Vibration at the tip in Case 1 (proposed controller).

(a) (b)

Figure 11. Vibration at the tip in Case 1 (PD controller).

error in MRP and angular velocity remains below 5.40× 10−8 and 2.54× 10−6◦/s. In contrast, the angu-
lar velocity tracking error of the PD controller surpasses 0.011◦/s during manoeuvering, accompanied
by a notable deficiency in post-manoeuver attitude control stability, with the attitude angle stability
exceeding 0.007◦/s in Fig. 9. It is evident from these observations that the PD controller falls short of
meeting the stringent demands for high-precision trajectory tracking, particularly in the context of exten-
sive spacecraft attitude manoeuvers. This inadequacy holds the potential to compromise the efficacy of
vibration suppression in the coilable mast.

Figures 10 and 11 illustrate the torsional and bending deformations at the tip of the flexible beam
model by applying proposed controller and PD controller. Initially, the coilable mast is in equilibrium,
subject to vibrations induced by attitude manoeuvering. The proposed controller effectively mitigates
the vibrational amplitude of the flexible attachment.

Case 2 In Case 2, the satellite is tasked with performing three manoeuvers within 160 seconds, tran-
sitioning from 0◦ to 30◦, 60◦ and 80◦. This aims to assess the satellite’s manoeuver capability during
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(a) (b)

Figure 12. MRP and angular velocity in Case 2 (proposed controller).

(a) (b)

Figure 13. Tracking errors in Case 2 (proposed controller).

ground imaging operations. The environment disturbance, set at a higher frequency and amplitude than
in Case, aims to test the satellite’s manoeuver performance under more challenging external conditions.

Figures 12 and 13 illustrate the performance of attitude manoeuver tracking in Case 2, indicat-
ing that the satellite maintains a high tracking and control capability during continuous manoeuver
tasks. However, the control accuracy has slightly decreased due to excessive external disturbances.
Figure 13 depicts the error in MRP and angular velocity, which remains within the acceptable limits
for the requirements (less than 3.98× 10−7 and 3.48× 10−4◦/s, respectively).

Moreover, the simulation results further validate the performance of NDO. The estimations for clus-
ter disturbances are shown as Fig. 14. The observation errors are shown as Fig. 15. The observation
error is less than 4.32× 10−3 N ·m in Case 1 and remains below 5.10× 10−3 N ·m even under external
disturbances with higher frequencies and larger magnitudes in Case 2. The L2-gain robust controller
effectively suppresses observation errors.

Finally, Fig. 16 illustrates the control torque in Case 1 and Case 2. Despite saturation of control torque
in Case 2 due to excessive disturbances, the control accuracy remains uncompromised.

6.0 Conclusions
In this paper, we have investigated the attitude manoeuver control of a microsatellite equipped with a
flexible coilable mast. The attitude manoeuver of spacecraft is a point-to-point control problem. To
minimise the residual vibration of the flexible attachment and improve the spacecraft’s motion sta-
tionarity, the spacecraft is required to follow the predetermined trajectory from the current position
to the desired position. Based on nonlinear robust control theory, a compound robust control strategy
is designed, which can complete the large-angle attitude manoeuver control of flexible spacecraft with
limited control input. The proposed robust control strategy shows good stability and robustness in the

https://doi.org/10.1017/aer.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.18


16 Sun et al.

(a) (b)

Figure 14. Observation by NDO.

(a) (b)

Figure 15. Observation errors by NDO.

attitude manoeuvering tracking mission, effectively inhibits various interference torques in space envi-
ronment, improves the manoeuvering tracking performance and stability of the spacecraft and restrains
the vibration of the coilable mast to a small range. This level of performance is more than adequate to
meet the stringent control requirements of satellites in ground imaging applications.

This study has delved into the intricacies of dynamic modeling and control for spacecraft equipped
with coilable mast. Some pertinent issues warrant further exploration. These include, but are not lim-
ited to:The present work establishes an equivalent model for the coilable mast under conditions of
small deformation, assuming linear elastic behaviour. This model proves applicable within the limited
deformations. However, for larger nonlinear deformations, a more encompassing rigid-flexible coupling
dynamic model needs to be introduced, fitting the nonlinear vibration characteristics.
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(a) (b)

Figure 16. Control torque provided by the actuators.

The precision of the dynamic model is subject to various influencing factors, encompassing sen-
sor measurement noise within the attitude control system, performance decay, and potential failures of
the actuator, among others. Incorporating these factors into the modeling process is essential to derive
controlled models and control algorithms that more closely align with engineering practice.
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Appendix
The coilable mast is a beamlike deployable structure composed of typical spatial repeating elements
with a regular triangular cross section. Base on the equivalent modeling method proposed the equiva-
lent stiffness and inertia items of the equivalent beam model for the coilable mast can be expressed as
follows:

ρA= 3bAblb

ll

+ 3ρlAl + 6ρdAdld

ll
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Table A1. Parameters of the coilable mast

Parameters Values
Elasticity moduli, GPa Eb = 33.87, El = 33.87, Ed = 54.46
Density, kg/m3 ρb = 6.44× 103, ρl = 6.44× 103, ρd = 6.44× 103

Sectional radius, mm rb = 0.65, rl = 1.00, rd = 0.40
Unit length, mm lb = 129.90, ll = 95.00, ld = 160.90

Jx = ρbAbl3
b

2ll

+ ρlAll
2
b

Jy = Jz = ρbAbl3
b

2ll

+ ρlAll
2
l + 2ρdAdldll + 1

2
ρlAll

2
b +

ρdAdldl2
b

ll

+ 3

2
ρbAblbll

EA= 1

�

(
18E2

dA2
dl3

bl3
l + 6ElAlEdAdl3

bl3
d + 6EbAbEdAdl3

l l3
d + 3EbAbElAll

3
d

)

GJ = 1

�

(
E2

dA2
dl7

bll + 1

2
EbAbEdAdl4

blll
3
d

)

EIy = 1

�

(
ElAlEdAdl5

bl3
d +

1

2
EbAbElAll

2
bl6

d +
1

4
EbAlEdAdl2

bl3
l l3

d +
3

2
E2

dA2
dL5

bL3
l

)

EIz = 1

�

(
ElAlEdAdl5

bl3
d +

1

2
EbAbElAll

2
bl6

d +
1

4
EbAlEdAdl2

bl3
l l3

d

)

κ1 =−
√

3

24�
EbAbEdAdl3

bl2
l l3

d, κ2 = 1

�

(
1

24
EbAbEdAdl3

bl2
l l3

d +
1

2
E2

dA2
dl6

bl2
l

)
, κ3 = 0

Where, EIy and EIz denotes the equivalent bending stiffness; GJ denotes the equivalent torsion stiffness;
Jx, Jy and Jz denote the rotational inertia per unit length; ρA denotes the mass per unit length; and
κi (i= 1, 2, 3) denotes the coefficients in DL. The constants Ai, li, Ei and ρi are the sectional area, length,
modulus of elasticity and density of the member and given in Table A1. The subscript i= l, b, d denotes
members of the longerons, the battens and the diagonals.
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