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NEW ALMOST PERIODIC TYPE FUNCTIONS AND
SOLUTIONS OF DIFFERENTIAL EQUATIONS

BOLIS BASIT AND CHUANYI ZHANG

ABSTRACT.  Let X be a Banach space and J € {R*,R}. Let IT and [Ty be two sub-
spaces of C(J, X), the Banach space of bounded continuous functions from J to X. We
seek conditions under which IT + Iy is closed in C(J, R). This led to introduce a gen-
eral AI1,(J, X) space, which contains many classes of almost periodic type functions as
subspaces. We prove some recent results on indefinite integral for the elements of these
classes. We apply certain results on harmonic analysis to investigate solutions of dif-
ferential equations. As an application we study specific AI1,(J, R) spaces: the spaces
of asymptotic and pseudo almost automorphic functions and their solutions of some
ordinary quasi-linear and a non-linear parabolic partial differential equations.

1. Notation, Definitions and Introduction. Throughout this paper, X denotes a
Banach space and X* denotes the dual space of X. Let J € {R*,R}. Then C(J,X) will
stand for the Banach space of bounded continuous functions ¢ from J to X with norm
llell = sup,ey ll¢(®)|| and C.(J, X) will denote the subspace of C(J, X) consisting of the
uniformly continuous functions. If (¢,), ¢ C C(J,X), we write ¢, — ¢ if and only if
llon—ll — 0asn — oo. Incasethat X = C, we will omit X from our notation and write,
say, C(J) for C(J, X). The translate and the difference of ¢ by s € J are respectively the
functions R;p(?) := (¢t +s) forall # € Jand A := Ry — ¢. Let F be a subspace
of C(J,X). Then ¥ is said to be translation invariant if R,F C F foralls € J. If
¢ € C(R,X) then L(p) will stand for the subspace of C(R, X) generated by all translates
of ¢. We denote by

. 1 t
(1.1 PAR,X) = {p € CAX): lim — [l ds = 0},
and
. 1 t )
L) BEX ={p€ Gl lim — [To(s+x)ds = M(p)},
where ¢ = 0if J = R* and ¢ = —¢ if J = R, and the limit in (1.2) exists uniformly

with respect to x € J. The set PAPy(J, X) is a translation invariant, closed subspace of
C(J,X) which does not contain any constant functions except 0. PAPy(J, X) is introduced
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by Zhang [26-28] and its elements are called ergodic perturbations. We remark that the
elements of PAP(J, X) are not necessary uniformly continuous. E(J, X) is called the
space of ergodic functions [2, 13, 18, 22] and M(y) is called the mean of ¢.

Let ¢ € C(J,X). The function ¢ is called (weakly) almost periodic if the set {R¢ :
s € J} is (weakly) relatively compact in C(J, X). Denote by (W.ﬂ.‘P(J,X)) AP, X)
(J = R*) all such functions. If J = R, then the space of almost periodic functions will
be denoted by AP(R, X) (see [1], [11], [17]). Recently, Ruess and Summers [22, Propo-
sition 2.1, Theorem 2.4] and Basit [2, Theorem 2.3.4 and 2.4.7] proved that

(1.3) WaAPJ,X) C EJ,X).

We recall that a subset E of R is called relatively dense in R if there exists a finite
subset {1, 5, -, tn} C Rsuchthat R = J, (¢ +E). This implies that there exists / > 0
such that Jx,x + [N E # ) for all x € R. A function ¢ € C,(R,X) is said to be recurrent
if, for each e > 0 and N > 0 the set

Ee,N,p) ={r€R: [t +7) — o] <e,|f| <N}

is a relatively dense subset in R. The set of all the recurrent functions will be denoted by
r(R, X).

It is known that #(R, X) is not linear [14, 17]. Nevertheless, AP(R, X) is a linear class
of (R, X) and also, L(y) is a linear class of 7(R, X) for all ¢ € r(R, X).

A function ¢ € G/(R, X) is said to be almost automorphic if it is recurrent and for each
€ > 0and N > 0 there exist 6 > 0 and M > 0 and a relatively dense subset B(6, M, ¢)
such that

B(,M, ) — B(6, M, ¢) C E(e, N, p).

The set of all almost automorphic functions will be denoted by AA4(R, X).
The following needed in the sequel statement is obvious.

PROPOSITION 1.1. Let ¢ € AAR,X) and ¥ € CuR,X). Let for each ¢ > 0 and
N > 0 there exist 6 > 0 and M > 0 such that

E@©,M, ) C E(e,N, ).
Then ¢ € AAR, X).

If the range of ¢ is precompact, the above definition is equivalent to the definition
which S. Bochner [10] introduced for numerical almost automorphic functions. The in-
vestigation of Veech [24] and Basit [6] (see also references in [2]) showed the relation-
ship between almost automorphic functions and almost periodic functions in the sense of
Levitan. The extension to vector-valued functions and many equivalent definitions are
obtained in [6, 19, 24, 25].

We shall denote by WAR(J,X) = {p € WAPU,X) : M(|e()|) = 0}, and
GW,X) = {y € CUX) : limy_, @) = 0}. It is obvious that G(J,X) C
WAP(J, X).
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Let
(1.4) Tho(d,X) € {PABI,X), Go(d, X), WAR (S, X)}.
IT.(R, X) denotes any class of functions satisfying:
(1.5) (R, X) is a translation invariant, closed subspace of C,(R, X) containing all the
constant functions.
(1.6) The map m:I1.(R,X) — IT.(R*, X) defined by m(p) = ¢|g+ is an isometry.
(1.7) TI.(R,X) is closed under multiplication by characters.
IT,(R, X) denotes any class of functions satisfying (1.5), (1.7) and

(1.8) ILR,X) C (R, X).
It follows from [2, Proposition 2.1.7] that I'T(R, X) satisfies (1.6) and hence

(1.9) IT(R, X) C I1(R, X) and IT,(R*, X) C [I.(R*, X).
Define
(1.10) AN, X) = TL(J, X) + Tlo(d, X),
Al (J, X) = I1,(J, X) + (J, X).
We have
(1.11) A11,(J, X) C A, X).

If o = ¢+ & withy € I1.(J,X) and £ € Ty(J, X), then 1) will be called the almost
periodic type part and ¢ the ergodic perturbation. We write

P()ﬂHC(‘Da X)a CoﬂIIC(‘IL X)-.» WOQHC(J)X)
instead of AIT.(J, X) if
HO(J’X) = TMO(‘H, X)s C‘O(\Da X)’ (WMO(J,X)

respectively.

The space AI1,(J, X) is a generalization of some spaces of almost periodic type func-
tions. Here, we mention some of them:

AAP(J, X), the space of asymptotically almost periodic functions, WAP(J, X), the
space of weakly almost periodic functions (see [2, 13, 15, 19, 22]); PAP(J, X), the space
of pseudo almost periodic functions (see [26-28]); AA44(J, X), the space of asymptot-
ically almost automorphic functions (see [2]). For other classes of functions satisfying
(1.5)(1.8) see [2]. It follows easily that IT (R, X) are A-classes introduced in [2, Defini-
tion 2.2.1]. We prove that AI1,(J, X) N C(J,X) is a A-class.

In this paper, we mainly study the space AI1,(J, X). We prove that these classes are
closed subspaces of C(J, X) in section 2. Some recent results on indefinite integral ob-
tained in [2] and [27] are extended in section 3. In section 4, we study the harmonic
analysis introduced in [2] for these classes and give some of its application to ordinary
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differential equations. Since the elements of these classes are not necessary uniformly
continuous, the application of the results of [2] is not direct. In Sections 5, we will inves-
tigate a specific AT1,(J, X) space: pseudo and asymptotically almost automorphic func-
tions and their solutions of quasilinear ordinary differential equations. We study the so-
lutions of non-linear parabolic partial differential equations in section 6.

2. Properties of the Spaces AI1.(J,X) and AI1,(J,X). In this section we study
Iy (J, X), AI1.(J,X) and AI1,(J, X). We prove that every AI1,(J, X) class is a closed
subspace of C(J, X) and every Cy AI1.(J, X) class is a closed subspace of (,(J, X).

PROPOSITION 2.1. If ¢ € ATL(J, X) (AI1,(J, X)) and ) € C(R,X) such that |y =
@, then

@) Ryl € AT, X) (A1, X)) for all s € R;

(@) *fls € ALE0N CEX) (ALG,X) N CE, X)) for all f € L'(R).

PROOF. First, we prove the case ¢ € I(J, X).

(i) IfJ = R then ¢ = ¢ and (i) follows from the fact that ITy(R, X) is translation
invariant subspace of C(R, X). If J = R*, one can choose 19 € C(R, X) such that 1o(¢) =
p(f) for t > 0,¢p(t) = p(0)(t+ 1) for —1 < ¢ < 0, and Yo() = 0 for ¢ < —1. A direct
verification shows that Ryig|y € Io(J, X) for all s € R. Since Ry(y) — 1o)|s has compact
support for all s € R, we conclude that R;(v) — vg)|ls € Tlp(J,X). This implies that
Rsly € TTo(J, X).

@i)) Ifh > 0 and f = x4 the characteristic function of [0, A], then ¥  f(¢) =
Jz‘ (¢t + x)dx. Direct computation for each of the three cases of ITy(J,.X) shows that
Y *flg € T8, X) N G(J,X). If h < 0, then [E oyt + x)dx = [°, ¥t +x+h)dx =
—Jy h Ry(¢+x) dx. By (i), we have that Ryibly € Tp(Jd, X). Since —h > 0, it follows that
o Ryp(¢ + x) dx| belongs to TTo(J, X) N C,(J, X). For d > c, define a function g.; on R
such that g. 4(f) = 1 for ¢ € [c,d] and g, 4(f) = 0 otherwise. We have that

Yrgea® = [ Wt~ [(yernde (€R).

Hence, we get xg, 4|y € Io(J, )NG(J, X) forallc,d € R.IFH() = | axge,.q,(D)is a
step function, then, by the linearity of TTy(J, X) we get Hx 1|y € ITp(J, X)NCu(J, X). Since
f € L'(R), there exists a sequence of step functions {H,} such that ||H, — f]|;: — 0 as
n — 00. This implies that ||1)* H,—*f]| — 0asn — oo. Hence ||y Hy|g—¢xf]y]| — O
as n — 00. Therefore, ¢ x f; € Io(J, X) N Cu(d, X).

Secondly, let ¢ € AI1.(J,X), ¢ = (Jy + £, where ¢ € TI(R,X) and £ € TIp(J, X).
The case ¢ € AI1,(J,X) can be proved exactly in the same way. Set ) = ¢ — ¢. Then
nly = & € Io(J, X). By the first part (i), we get Ryn|y € ITo(J, X) and by property (1.5) of
IT.(R, X), we have R, € T1.(R, X). This implies that Rsyp|y = Ry(|y +Rsn|y € ATL(J, X).
By the above 1% |y € [y(J, )N C,(J, X) and from the inclusion {*f € L) C IT(R,X)
for all f € L'(R) by [2, Lemma 1.2.1], the proof of (ii) is complete.
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COROLLARY 2.2. Let ¢ € ATl(J, X)( A4, X)) and Po(t) = f5p(x)dx. Then
AP € ATL(J,X) N G, X)( AT, X) N Cu(d, X)) for all b € b,

PROPOSITION 2.3. CoAIl.(J,X) (Coﬂﬂ,(J,X)) is a closed subspace of C,(J,X).
Moreover, CoAT(J, X) = T1.(J, X) ® Co(J, X) (Co AL, (J, X) = T1,(J, X) ® Go(d, X))

PROOF. It is sufficient to prove the case p € CoAI1.(J,X). Let p = 9|y + £, where
Y € II(R,X) and £ € Co(J, X). We show that

@n Il < llell.

Indeed, |||l = [lv]s+ &l = IRpla + Regll = IRsll — |IR&]| for s € J. Taking the
limit when s — oo and using (1.6) and the fact lim,_., ||Rs|| = 0, we get (2.1).

Now, let {¢,} be Cauchy in Co A1 (J, X). Then ¢, = 1, |y+&n, where ¢, € II(R, X)
and ¢, € G, X). It follows from (2.1) that {1, } is Cauchy too. By property (1.5),
we conclude that {1, } converges to 9 € II.(R,X). This implies that {£,} is a Cauchy
sequence in Go(R, X) and hence converges to £ € (o(J, X). Hence, {¢,} converges to
Y|y + & € CoAll(J, X). Therefore, Co AI1.(J, X) is a closed subspace of (,(J, X).

Finally, we show that Co AI1.(J, X) = I1.(J,X) ® (o(J, X). Assuming that for ¢ from
CoAl1.(J, X), there are 9; € I1.(R,X) and ¢; € Co(J, X), i = 1,2, such that ¢ = |y +&;.
Then 0 = (1 — P2)lu + (&1 — &2). By (2.1), ||¥1 — ¥2|| < 0. Therefore, 1 = 1, and
&1 = &,. The proof is complete

We do not know whether or not Py AI1.(J, X) and Wy AI1.(J, X) are closed subspaces
of C(J,X).

PROPOSITION 2.4. AIl(J,X) is a closed subspace of C(J,X). Moreover,
AI,(J,X) = I, X) @ (I, X).

PROOF. By Proposition 2.3 the statement holds for the case that I[Ty(J, X) = G(J, X).
Now, let ITo(J,X) = PAP(,X), let ¢ = |y + &, where oy € TI(R,X) and £ €
PAP(J, X). We show that

2.2) Y(R) C (),

where (R) denotes the range of ¥ and ¢ (J) denotes the closure in X of the range of .
Assume that (2.2) is false. This implies there exists zp € R such that ¥(t)) & @(J).
Since 1) is recurrent, we can assume that f; € J. There exists an ¢ > 0 such that
infycy ||1(t) — @(s)|| > 2e. Since 1 is continuous, there exists § > 0 such that

2.3) inf Ry () = Rup@) > ¢ (1] <9).

Since Ry, is also recurrent, for e > 0 and § > 0 there exists /, /, such that each interval
(x,x +1 ;) contains a number T with the property

2.4 Rt +7) = RO < 5 (l1] <)

NS
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Let ¢ and 7 satisfy (2.4) and let ¢ + 7 € J. It follows from (2.3) and (2.4) that

”Rl‘oé(t +T)” = ”Rg‘,@(t +T) - Rfow(t +T)“
2 ”Rto@(t +T) - Rtow(t)“ - ”Rtow(t) - Rto'w(t +T)”
2 “}f”Rto (P(t + T) - Rtod)(t)” — sup “Rtow(t) - Riow(t + T)”
> <
-2

Since each interval (x, x +/ /,) contains a number 7, it follows from inequality above that

€b
tim —— [" &)l ds > T

This contradicts the fact that ¢ € PAPy(J, X). We have proved (2.2). It follows that
¥l < llell-

Now, we can proceed exactly as in Proposition 2.3 to show that AI1,(J, X) is a closed
subspace of C(J, X) and AI1,(J, X) = I1,(J, X) ® PAR(J, X).

To show the assertion for the case that ITo(J,X) = WAR(J,X), let ¢ = Y|y + &,
where 1 € IT(R,X) and ¢ € WAPy(J, X). We need only to show that ||| < ||¢]|. For
x* € X*, the composition function x* o £ is in WAPy(J). Since WAP(J) C PAR(J)
[9,4.3.13], x* o £ € PAPy(J). Note that the numerical function x* o 1 is recurrent and
x*op =x* o +x*of, it follows that

I o loo < 5" 0 9loo < [IX"[l[iolo0 (" € X7).

Therefore, ||9|| < ||¢]|. The proof is complete.
We remark that the above proposition gives a new proof that WAP(J,X) =
AP, X) & WAP(J, X) [15]; and 24P, X) = AP, X) ® G, X) [18, 19]. As a

consequence, we have
COROLLARY 2.5.  The spaces AI1,(J, X) N C,(J, X), Co AI1.(J, X) are A-classes.
Now, we prove

THEOREM 2.6. Let v € C(R,X). Then |y € ﬂH,(J,X)(CoﬂlHC(J,X)) if and only
if Y xfly € AL, X)(Co AT, X)) for all f € L'(R).

PROOF. Necessity follows from Proposition 2.1. We show sufficiency. Let h,(f) =
n/2 for |t| < 1/n and h,(f) = 0 otherwise. Since ¥ € C.(R,X), we conclude that
hox(t) =n/2 fl/Jn Y(t+x)dx — P(¢) as n — oo in G(R, X). Hence || b, x|y —Y|u]| —
0 as n — oo. By assumption, we have h, x 9|, € AI1,(J,X),n € N. By Proposi-
tion 2.4, ﬂﬂr(J,X)(CoﬂHc(J,X)) is closed and hence the limit lim, oo A * 9|y = Y]y €

AL (S, X)( CoATL(, X))
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3. Indefinite Integral of Functions in 4I1,(J,X). In this section we study the in-
definite integral of functions in AI1,(J, X) (Coﬂch(J, X)) Throughout the section, if
¢ € C(J,X) then Py will denote the definite integral Po(f) = [§ p(x)dx. We extend
some results obtained in [2, 7, 16, 27].

THEOREM 3.1.  Let ¢ € TTo(J, X). Then Py € AT (J, X)(CoAT1(J, X)) if and only
if there exists a constant k € X such that Pp — k € HO(J,X)(CoﬂHC(\ﬂ, X))

PROOF. We need only to prove the necessity. Let Pp € AI1(J,X). Then Pp =
Plg + &, where ¢ € T1(R, X) and £ € TTo(J, X). We have

P = Po(t+ ) — Po()) = [ p(t+x)dx
and
AP () = Ay + M) = [t + ) — (O ]ly + [EG+ ) — £

By Corollary 2.2, we get APy € Tlp(J,X) for all 2 € J. Since IT(R,X) and ITo(J, X)
are translation invariant, A,1|y € T1,(J, X) and A€ € TTo(J, X). By the uniqueness of the
decomposition of elements of AIT,(J, X), we get Ayip = 0 and A4E(f) = J2 (¢ +x)dx.
Since 1 is continuous, we conclude that ¢ = k£ € X.

The case Cy Al (J, X) can be proved in the same way.

We remark that Theorem 3.1 gives a new proof of [27, Theorem 7] first proved by
Zhang for the case that [1,(R,X) = AP(R,X) and I1y(J, X) = PAP(J, X). As a conse-
quence of Theorem 3.1, we have

COROLLARY 3.2. Let ¢ = |y + ¢ € A,(J,X), where ¢y € IL(R,X) and § €
Io(J, X). Then Py € AN,(J,X) if and only if Py|y € T1(J,X) and there exists k € X
such that P€ — k € T1y(J, X).

PROOF. We need only to prove the necessity. Let Py = (| + 77, where ¢ € IT,(R, X)
and 1 € [1y(J, X). Then, for 4 € J,

ApPo(t) = Alls(®) + Apn(2)
= AuPy|y(8) + A PE(2)

= ["p+xde+ [ e+
0 0

Similarly, we have that A,(]y, jé’ Pt + x)dx € I(J,X) and Ay, fé’ £+ x)dx €
ITo(J, X). By the uniqueness of the decomposition, we get A,(n — P¢) = 0. This implies
that there exists £ € X such that P£ = 1+ k. Hence Py)|y = {|; — kand Py|; € IT,(J, X).
Corollary 3.2 holds also for the case ¢ € Cy AI1.(J, X).

Now, we study sufficient conditions for Py in AIT,(J, X). We have

THEOREM 3.3. Let ¢ € AI,(J,X)(CoAIl.(J,X)) and Pp € E(J,X). Then Py €
AL (S, X)(Co AT, X)).

PROOF. Letyp = y+¢ withy € TT,(J, X)and ¢ € T(d, X). By Corollary 2.2, A,P¢ €
To(J, X) N Gu(J, X) and by [2, Lemma 1.2.1], APy € L(p) C TL(R, X) for all & € R.
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This implies that A, Py € AI1,(J, X) N C,(J, x). By Corollary 2.5 AI1,(J, X) N G.(R, X)
is a A-class. Since Py € E(R,X), Pp € AI1.(J, X)N Cu(J, X) by [2, Theorem 3.1.2]. By
Corollary 2.5, CoAI1.(J,X) is a A-class, hence the statement follows directly from [2,
Theorem 3.1.1].

4. Harmonic Analysis of AI1,(J, X) and Solutions of Linear Differential Equa-
tions. In this section we introduce the spectrum sp 417 () of the function ¢ € C(R, X)
with respective to ﬂlHr(\ﬂ,X)(Coﬂch(J, X)) . This kind of spectrum proved to be a useful
tool to examine solutions of differential equations of many function classes {2, 5, 8, 17
Ch.6]. See also the recent works [4], [20], [23]. We apply the results on spectrum to the
differences of functions and linear differential equations on the half line. Since the proofs
for the case CyAI1.(J, X) are the same as in the case Co AI1,(J, X) we restrict ourselves
to AI1,(J, X).

Let ¢ € C(R,X). Denote by Igr; (¢) = {f € L'(R) : f x ¢|y € AI1,(J,X)}. Since
A11,(J, X) is a closed subspace of C(J, X), Lar, () is a closed ideal of L'(R). We set

@D span,(¥) = hull Lnn, (p) = {X € R:f(\) = 0,1 € Lan, (¢)}.

We denote by sp(¢) the Beurling spectrum of ¢ [21, p138]. Similar to the corresponding
properties of Beurling spectrum, the following can be proved exactly as in [2].

PROPOSITION 4.1.  Let ¢ € C(R,X) andf € L'(R). Then

(@ span, () Csp(e); ) )

() span,(¢*f) C span, (P)Nsuppfsf € L'(R) such that f € Lan, () and f(X) # 0.

(c) Let ¢ € G(R,X). Then |, € AT1,(J,X) if and only if sp g5 (¢) = 0.

THEOREM 4.2. Let ¢ € (R, X) and let sp(p) be separated from zero.

(@ If Mupls = Rup — p)s € A3, X) for all h € R, then ¢y € ATL(J, X).

(®) If ¢l € AL, X), then Pp|y € AIL,X) N G, X).

PROOF. Corollary 2.5, 4AI1,(J, X) N C,(J, X) is a A-class. Therefore (a) follows di-
rectly from [2, Theorem 4.2.4].

(b) By [3, Corollary 4.4] Py is a bounded uniformly continuous function and there
exists k € X such that sp(Py + k) is isolated from zero. By Corollary 2.2, A,Pyply €
AlT,(J, X) for all h € R. Therefore, Pp|; € AIL(J,X) by (a).

Now we study the linear differential equation

4.2) Y'+ay +ay=¢ (p€ANJX).
We give sufficient conditions under which the bounded solutions of (4.2) is in AI1,(J, X).

THEOREM 4.3. Ifag,a; € C in (4.2) are such that (ia)* +ica, +ag # 0 forall « € R
and if'y is a bounded solution of (4.2), then y € AI1,(J, X).

PROOF. If J = R*, we define Y(f) = y(¢) for t > 0 and Y(¢) = y(0)cos(l — cos?) +
¥'(0)sin¢+y"(0)(sin? £) /2 for ¢ < 0. It is easy to verify that Y is a solution of the differ-
ential equation:

@.3) Y'+a Y +agY = ¢
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where Y(t) = p(¢) for t > 0 and Y¥(f) = Y’ +a; Y’ + aoY for t < 0. Since Y is bounded,
by Landau-Esclangon lemma we conclude that Y, Y” are also bounded (see [17, Propo-
sition 4, p.95]). This implies that Y is uniformly continuous. It is easy to check that
¥ € C(R,X). We prove that sp g5 (¥) = (). Indeed, let o € R, there exists / € S(R) such
that f(c) # 0. We have f/*Y" + fxa, Y’ + fxaoY = fx. Hence Yx[f" +aif’ +aof] = Y*f.
We have (" + aff\’ +agf)(a) = [(i)? + iaa; + ag]f(c). From the assumptions we con-
clude that the function g := f” + af’ + aof satisfies g(a) # 0. From (4.1), it follows
that & & spgp (¥). Since « is arbitrary, we get spgp (Y) = (. By Proposition 4.1 (c),
¥ = ¥y € AT, X).
In the same way, we have

COROLLARY 4.4. Let p € AM,(J,X). Let \ = u+ivwithu # 0. Then every bounded
solution of the equationy’ = \y + ¢ belongs to AI1,(J, X).

THEOREM 4.5. IfA = u+iv € Cwithu > 0 and ¢ € Al1,(J, X), then the solutions
of the equation

4.4) b =M+

dx
of the form y(x) = e¥[c + [5 e p(¢)dt] are bounded on R*. Furthermore, if J = R,
theny € AL (R*,X) and |ly|| < u |||l If J = R, then (4.4) has a unique bounded
solution defined on R if and only if y(0) = — [$° e Mp(8)dt. In this case the function
Yo(x) = — [ & p(£) dt is a bounded solution from AT (R, X).

PROOF. Direct verification shows that
4.5) W) = e+ [Ce M),

is a bounded solution of (4.4). If J = R*, then y € AIL(R*,X) by Corollary 4.4.
Since u > 0,]e™| = ¢* — 00 as x — 00. For y to be bounded on R, we must
have ¢ + Fe Mp(t)dt — 0 as x — oo. This means that we must take in (4.5)
c = — [ e Mp(f)dt. We note that the improper integral in (4.5) is convergent since
lep@®)] < |l¢lle™ for t > 0. Thus, the unique bounded solution of equation (4.4)
can only be yo(x) = — [ **D () dt, and we do have ||yo(x)|| < ||¢|le” [P e dt =
ll¢]l /u, so that yg is bounded. By Corollary 4.4, y, € AI1,(R, X).

When u < 0, we have that yo(x) = f*. e’ ™(f)dt is the unique bounded solution
of (4.3) and yy € AI,(R, X). At the same time we have the similar estimate |[yo(x)|| <
lloll/lul.

THEOREM 4.6. Let ¢ € C(R,X) and |y € AN(J,X). Let p(t) = e ™y(t) with
v € R and let the Beurling spectrum of ¢ be separated from zero. Then all solutions of
equation (4.3) belong to AI1,(J,X) N C,(J, X).

PROOF. (4.4) has general solution y(x) = €**[c + [5 e "4(¢f) dt], where c is an arbi-
trary element of X. By Theorem 4.2 (b), we conclude f§ e ™y(f) dt]|y is in AIT(J, X) N

CG.(J, X). Since AI1,(J, X) contains all constant functions and invariant under multiplica-
tion by characters, y € AI1,(J, X) N G,(J, X).
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5. Asymptotically and Pseudo Almost Automorphic Functions. In this section
we will concentrate two new, specific AI1,(J, X) spaces. That is the space of asymptoti-
cally almost automorphic introduced in [2] and the space of pseudo almost automorphic
functions defined below.

DEFINITION 5.1. A function ¢ € C(J,X) is called pseudo (asymptotically) almost
automorphic if Y = |y + &, where ¢ € AAR,X) and £ € PAR (I, X)( G, X)).
The functions ¢ and ¢ are called the almost automorphic component and the ergodic
perturbation respectively of the function 1. Denote by TM(J,X)(W(J,X)) the set
of all such functions 1.

By Theorem 2.1.1 and Proposition 2.1.2 in [2], AA(R, X) satisfies (1.5)—(1.8). There-
fore, A4(R, X) is a I1,(R, X) space and PAA(J, X) and AAA(J, X) are AI1,(J, X) spaces.
It follows from Proposition 2.4 that

PAA,X) = AAR, X)|y & PAR(J, X),

and

.1 e®) CP(), el < vl
THEOREM 5.2.  The following statements hold.
(1) A function ¢ € CRis in fPﬂ_‘Po(R)(Co(R)) if and only if €% is.
2) e CR) isin EPﬂEPo(R)"(CO(R)”) if and only if the norm function |E(-)| is in
PARR(GRY").
PROOF. We show the theorem only for the case of PAP(R). The case of (op(R) is

similar.
(1) The sufficiency follows since

1 p . , .
i el s < [ e ad P 1@ 2 = 15, [ lewP )

The necessity follows from the fact that PAPy(R) is an ideal of C(R).

(2) By (1), E = (&1,&2,-+, &) € PAR(R)" if and only if £ € PAR(R),i =
1,2,---,n. The latter is equivalent to that |E()? = T, |&()> € PAR(R), which,
again by (1), is equivalent to that |Z(-)| € PAR(R).

Let Q C C” be compact and define

PARYQ x R) = PABR(R, C(Q)), G(Q x R) = G(R, C(Q))

and

A4 x R) = A4(R, C(Q)).

A function ¢ € A4(Q x R) is called almost automorphic in ¢ € R uniformly in Z € Q.
PAAQ x R)(AAA(Q x R)) is defined to consist of functions 1 such that

I ((p € AAQ x R), £ € PABQ x R)(Go(Q x R))).

The following lemma is straight forward.
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LEMMA 5.3. Let® = (1,2, ,on) € CRY". Then ® € AA(R,C") if and only
if® € AARY".

For H = (hy,hy,- - -, h,) € C(RY", suppose that H(f) € Q forall ¢ € R. Define
Hxi:R—QxRby Hx ut)= (hi(0), h20), - -, hn(0),1) (¢ € R).

For ¥ = (1,92, -, %) € PAARY" (AAARY"), let @ = (p1,2, -+, pn) and E =
(1,8, -, &), where ; and &; are the almost automorphic component and the ergodic
perturbation respectively of v;, i = 1,2,---,n.

The following theorem generalizes [26, Theorem 1.5]

THEOREM 54. Let ¢ € PAA(J,CQ)) (m(m, C(Q))). FY e
PAAWY (AAAJY") and P(J) C Q, then o (¥ x 1) € PAAI)(AAA)).

PROOF. 1t is sufficient to prove the case J = R,y € TM(J, C(Q)), and ¥ €
PAA(JY.

Lety = p+fand ¥ = ®+E with ® = (¢1, 92, - -, ¢n) € AA(R)", as above. Since
Y(r) € Q when t € R, it follows from (5.1) that ®(¢) € Q for ¢ € R. Note that

Yo(¥x1) = po(¥X1)+Eo(¥X1) = po(@ X 1)+[po(¥ X 1) —po(®@ X )+Eo (¥ X )],

We show that ¢ o (@ x 1) € AA(R). Lete > 0. Since ¢ € G(Q X R), there is a
8,€/2 > § > 0 such that

(5.2) 0@~ ¢@0| <5 (1.2 €912~ 2] <81 €R).

Note Lemma 5.3 and the hypothesis that ® € AA(R)" and ¢ € M(R, C(Q)), we
conclude (¢, ®) € A4(R, C(Q) x R"). From the identity

(Dt +7),1+7) — (@), 1) = (D +7),1+7)
— (@), t+7) + (D), +7) — o(D(1), 1)

we conclude E(&,N, (v, (D)) - E(é, N,(po® X L)). This implies ¢ o (@ x 1) € A4(R)
by Proposition 1.1.

To finish the proof, we need to show that the function 2 = o (¥ X ) —po (P x 1)+
o (W x 1) is in PAPy(R). First we show that ¢ o (¥ X 1) — ¢ o (® x 1) € PAP(R). It
is trivial in the case that o = 0. So we assume that ¢ # 0. Let € and 6 be as in (5.2). Set

(5.3)

5.4 Cs={teR: ¥ —0@0) = |E()| > 6}

It follows from [27, Definition 3 and Proposition 4] that there is a 7 > 0 such that when
t>T

5.5) m([—t, 61 N Cy) <&

2 4lell”
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where m stands for the Lebesgue measure on R. It follows from (5.2), (5.4) and (5.5) that

1
o [ 1o ().5) = o(0(s).5)| ds
1
= 5l Fnat o 1(2605) = (@5
m(—6ANG) _
2t
Therefore, p o (¥ X t) — ¢ o (® X 1) € PAP(R).
A little modification of the proof for [26, Theorem 1.5] shows that £ o (¥ X ¢) €
PAPy(R). The proof is complete.

€
< -+
< S+ 2]l

THEOREM 5.5.  Consider systems of the form

dY
(5.6) ol AY+ ¥,
where A = (ay) is a complex n X n matrix and ¥ = (YP1,2,- -+ ) € PAAR)"
(W(R)"). If the matrix A = (ayj) has no eigenvalues with real part zero, then system
(5.6) admits a unique solution Y = (y1,y2, -+ ,y») € PAAR)" (W(R)”). Moreover

G.7 Yl < K1l
where K > 0 depends only on the matrix A.

PROOF. By a discussion in [11, Theorem 4.2] the matrix 4 can be considered trian-
gular. Therefore the theorem follows by applying Theorem 4.5 n times.
Now, consider a system of the form

(5.8) %:AY+‘{’+uGo(Y><L),

where p € C\ {0}, 4 is a complex n X n matrix, ¥ € PAA(R)" (W(R)"), and
G € PAAQ x Ry (W(Q X R)”). Such a system is called quasi-linear. We get the
generating system of (5.8) by putting p = 0.

As in the proof for [26, Theorem 2.3], by using Theorems 5.4 and 5.5 one shows the
following theorem.

THEOREM 5.6. Let ¥ and A be as in Theorem 5.5. Let YO be the unique solution in
TM(R)”(W(R)”) of the generating system of (5.8), let a > 0 and let Q = |J{Z €
C":|1Z - YO()| < a,t € R}. Assume that

(1) G € PAAQ x Ry (AAA(Q x R)") such that

(5.9) |G, 0)— GZ", 0| <LE-,|z — 2|, (2,2 € Q,t€R),
where L > 0;
(2) 0 < |p| < min{1/LK,a/K| G|}, where K > 0 in (5.7) depends only on the
matrix A.

Then there exists a unique solution Y = (1,2, - -, ¥n) € PAARY)" (W(R)") of the
system (5.8) such that Y(x) € Q for all x € R. Furthermore, ||Y — YO|| — 0 as p — 0.
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6. The Solutions of non-linear Parabolic Partial Differential Equations. For
T>0andAd > 0,let A =R x[0,T] and A} = A X [—A4,A]. Consider the non-
linear parabolic partial differential equation

Pu  ou
pe il +(x, t,u) ((x,t) € A),

6.1)
where 1) € C(A)) satisfies the Lipschitz condition
6.2) e, 6,V — e, 6,V S IV =V () € AV, V" €[4, 4)).

In this section, we shall use some knowledge from ordinary differential equations to
establish some properties of solutions of (6.1). For this purpose, we first consider the
following ordinary differential equation

6.3) i Ay=r,
where a > 0 and r € C(R). Note that (6.3) admits a unique bounded solution given by
I —at —ax [F at
(6.4) Yox) = —Z{e /joe r(f)dt+e /_ooe r(t)dt},
for which
1
(6.5) [yoll < ?Hrll.

It follows from Theorem 4.3 that yo in (6.4) is in PAA(R)(AAA(R)) if r is.
Let us now consider the system of ordinary differential equations

Jzuk

(6.6) -3

= h up — w1+ O, b, k), k= 1,2,---,n,

where h = T'/n € R, t; = kh and ug(x) = u(x, 0), where u is a solution of (6.1). We need
to consider (6.6) for variable n; note that the partition {#};_, of [0, T] depends on n, as
do all the functions in a solution (u,uy, - - - , u,) of (6.6).

As in the proof for [26, Lemma 3.1], one shows the following lemma.

LEMMA 6.1. Let ¢y € PAA(N)AAA(A:) satisfy the Lipschitz condition (6.2).
Suppose u is a solution of equation (6.1) such that ||u|| < A,u and du /ot are uniformly
continuous, and uy = u(-,0) € PAAR) (W(R)). Then there exist ng € N and
W > 0 such that (6.6) has a unique solution (uy,uz,- - - ,upn) € PAAR)" (W(R)")
Jor n > ny, it satisfies

(D) |lwl| <4,1 <k<n,and

(2) the functions ey = 0, e, = u(-, ty) — uy are in C(R) with

6.7) llexll < Ww(h),
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where h = T /n, ty = kh, and w is the modulus of uniform continuity of u and du | ot.

THEOREM 6.2. Let v and u satisfy the conditions of Lemma 6.1. Then u is in
PAAL)(AAAD)).

PROOF. We only show the assertion that u € PAA(A). Similarly, one shows the
assertion that u € A44(A). Let np be as in Lemma 6.1, and fixedn > ng and ¢ € [0, T.
Then there is a kp < n such that |t — #,| < h. Recall that h = T/n and ¢, = kh. If
B, = {u:k =1,2,---,n} C PAA(R) is the solution of (6.6) given by Lemma 6.1, the
uniform continuity of u gives

|uCx, ) — i ()] < |uaCx, £) — e, )| + |uaCx, i) — v ()]

6.8)
< (1+Wyw(h) (x€R).

It follows that the function u(:, ) is in the norm closure of ,2, Bs; hence u(-,?) €
PAA(R) (Proposition 2.4).

Let (-, £) and £(-, £), ¢ and & be the almost automorphic components and the ergodic
perturbations respectively of u(-, ), uy,k = 1,2,---,n. To show that u € PAA(A), we
need to prove that ¢ € AA(A) and £ € PAP(D).

Since u(-, ), u(-,") € PAAR) for any ¢,¢" € [0, T], so is u(-,#') — u(-,¢") and also
u(-,t) —u; fort € [0,T)and k = 1,2, - -, n. It follows from (5.1) that

(6.9) oGty = @GN < JluC, ) — ul, )|
and
(6.10) o, — @ll < lluC,) —well k=1,2,---,n.

We show that ¢ € A4(A). Let e > 0. Choose n > ng such that & = T'/n implies
(6.11) AW + Dw(h) < e.

Let ® = {p1, 92, -, ¢n}. By Lemma 5.3, ® € AA(R,C"). Let N > 0. It follows
from (6.7), (6.9), (6.10) and (6.11) that, for |x| < N,7 € E(¢/2,N,®) and ¢ € [0, T],
there exists a #, such that |f — #,| < h and

[ +7,0 — o(x, )] < [px +7,8) — p(x+7,8,)| + |l + 7, 8,) — g, (x +7)|

+ ok (6 +7) — P )] + |9 () — 0 (x, 4,
+ip(x, 1) — p(x, 0)]

< s 6) = )N+ N, ) — k|
+ [k (6 + 1) — @, )] + ||uC- th,) — wi ||
+{|uC, tr,) — uC> D)

< 2W + Dw(h) + | @i, (x +7) — @ (%)

< % +|D(x +7) — D) < .
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It follows that E(e /2, N,®) C E(e, N, ¢). This implies that ¢ is almost automorphic
function by Proposition 1.1.

As in the proof for Theorem 3.3 in [26], one shows that £ € PAPy(A). The proof'is
complete.
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