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NEW ALMOST PERIODIC TYPE FUNCTIONS AND 
SOLUTIONS OF DIFFERENTIAL EQUATIONS 

BOLIS BASIT AND CHUANYI ZHANG 

ABSTRACT. Let Xbe a Banach space and J G {R+, R}. Let n and n 0 be two sub-
spaces of £?(J,^Q, the Banach space of bounded continuous functions from J to X. We 
seek conditions under which n + llo is closed in (T(J, R). This led to introduce a gen­
eral J%nr(J,X) space, which contains many classes of almost periodic type functions as 
subspaces. We prove some recent results on indefinite integral for the elements of these 
classes. We apply certain results on harmonic analysis to investigate solutions of dif­
ferential equations. As an application we study specific JTOr(J, R) spaces: the spaces 
of asymptotic and pseudo almost automorphic functions and their solutions of some 
ordinary quasi-linear and a non-linear parabolic partial differential equations. 

1. Notation, Definitions and Introduction. Throughout this paper, X denotes a 
Banach space and X" denotes the dual space of X. Let J £ {R+, R}. Then C(\X) will 
stand for the Banach space of bounded continuous functions (f from J to X with norm 
\\ip\\ = supxGj H^Wll and £TM(J, X) will denote the subspace of C(J,X) consisting of the 
uniformly continuous functions. If {<^n\ W C C(^,X)9 we write </?«—•</? if and only if 
II Vn—V || —> 0 as n —> oo. In case that X — C, we will omitXfrom our notation and write, 
say, C(J) for C(^X). The translate and the difference of (p by s £ J are respectively the 
functions Rs<p(t) := (f(t + s) for all l £ J and Astp := Rs(p — ip. Let f be a subspace 
of C{^X). Then 5 is said to be translation invariant if Rtf C 7 for all s £ J. If 
(p £ C(^,X) then L(<p) will stand for the subspace of C(R,X) generated by all translates 
of (p. We denote by 

(1.1) <PWP0{^X) = {ip £ CW,X): lim — f \\<p{s)\\ ds = 0}, 
/—»oo t — C Jc 

and 

(1.2) E(J,Jf) = {tp £ G(J,JO : lim — f <p(s+x)ds = M{tp)\, 
t—*oo t — C Jc 

where c = 0 if J = IR+ and c = -t if J = R, and the limit in (1.2) exists uniformly 
with respect to JC £ J. The set (PJ%Po(J,X) is a translation invariant, closed subspace of 
C(J, X) which does not contain any constant functions except 0. (PJ%P0(J, X) is introduced 
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NEW ALMOST PERIODIC TYPE FUNCTIONS 1139 

by Zhang [26-28] and its elements are called ergodicperturbations. We remark that the 
elements of (PJWo(^9X) are not necessary uniformly continuous. £(J,X) is called the 
space of ergodic functions [2, 13,18, 22] andM(</?) is called the mean of if. 

Let if G C(J, JQ. The function if is called (weakly) almost periodic if the set {Rs(f : 
s G J} is (weakly) relatively compact in C(J,X). Denote by (fH&UP(J9X)) %WP($9X) 
(J = R+) all such functions. If J = R, then the space of almost periodic functions will 
be denoted by 5¥P(R9X) (see [1], [11], [17]). Recently, Ruess and Summers [22, Propo­
sition 2.1, Theorem 2.4] and Basit [2, Theorem 2.3.4 and 2.4.7] proved that 

(1.3) (Wm{\X)C<L{\X). 

We recall that a subset E of R is called relatively dense in R if there exists a finite 
subset {fi,/2, •••,*,«} C RsuchthatR = \JJLx{tt+E). This implies that there exists/ > 0 
such that Jx, x + /[ H E ^ 0 for all x G R. A function <p G CM(^,^0 *s s a ^ t 0 ^ e recurrent 
if, for each e > 0 and N > 0 the set 

E(e9N9tp) = {rG R : | | ^ + r ) - tp(t)\\ < e9\t\ < # } 

is a relatively dense subset in R. The set of all the recurrent functions will be denoted by 
r(R,X). 

It is known that r(R, X) is not linear [14,17]. Nevertheless, WP(R,X) is a linear class 
ofr(R9X) and also, Z,(y?) is a linear class of r(R,X) for all ^ G r(R9X). 

A function y? G G(R, -Y) is said to be almost automorphic if it is recurrent and for each 
e > 0 and N > 0 there exist 5 > 0 and M > 0 and a relatively dense subset B(S, M, if) 
such that 

B(89M9 <p) ~ B(89M9 <p) C E(e9N9 if). 

The set of all almost automorphic functions will be denoted by Jl#(R, X). 
The following needed in the sequel statement is obvious. 

PROPOSITION 1.1. Let (f G JWL(R9X) and ijj G CJfoX). Let for each e > 0 aw/ 
N>0 there exist 6 > 0 awd M > 0 swc/z f//af 

E(69M9ip)CE(e9N9tl>). 

Then t/> G JW(R,X). 

If the range of ip is precompact, the above definition is equivalent to the definition 
which S. Bochner [10] introduced for numerical almost automorphic functions. The in­
vestigation of Veech [24] and Basit [6] (see also references in [2]) showed the relation­
ship between almost automorphic functions and almost periodic functions in the sense of 
Levitan. The extension to vector-valued functions and many equivalent definitions are 
obtained in [6, 19,24,25]. 

We shall denote by WftP0(J9X) = {if G W&P(J,X) : Af(||y>(-)||) = 0}, and 
Co(39X) = {if G C(J,X) : limkHoo <p(t) = 0}. It is obvious that Co(J,X) C 
<WJVP0(J9X). 
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Let 
(1.4) n0(J,^) e {«#P0(J,*), G(J,*), WXPo&X)}. 

nc(R,X) denotes any class of functions satisfying: 
(1.5) Ilc(R,X) is a translation invariant, closed subspace of CL(R,X) containing all the 

constant functions. 
(1.6) The map m: Ylc(R,X) —•» nc(R

+,.Y) defined by m(< )̂ = <£>|R+ is an isometry. 
(1.7) nc(R, JL) is closed under multiplication by characters. 

Ur(R,X) denotes any class of functions satisfying (1.5), (1.7) and 

(1.8) Ilr(R,X) C r(R,X). 

It follows from [2, Proposition 2.1.7] that U.r(R,X) satisfies (1.6) and hence 

(1.9) n r(R,*) C TIC(R,X) and Ylr(R
+,X) C Ylc(R

+,X). 

Define 

( 1 1 0 ) AIIMX) = Uc(J9X) + Uo(J9X)9 

Mir(j,x) = n r(j,A) + n0(J,X). 

We have 

(1.11) J^nr(J,X) C J?nc(J,X). 

If cp = ^ + £ with \j) e nc(J, JQ and £ e n0(J,X), then ^ will be called the almost 
periodic type part and £ the ergodic perturbation. We write 

P0MIC(J,X), CoAUcMX), WQM\C{\X) 

insteadofJ?nc(J,X)if 

n 0 ( J ,^ ) = £#P0(J ,J0, G>(4*)> <WXPo(A,X) 

respectively. 
The space J3TIr(J, JQ is a generalization of some spaces of almost periodic type func­

tions. Here, we mention some of them: 
31%&(J,X), the space of asymptotically almost periodic functions, W%?P(J,X), the 

space of weakly almost periodic functions (see [2,13,15,19,22]); (PJ%P(3,X), the space 
of pseudo almost periodic functions (see [26-28]); %JAA(\X), the space of asymptot­
ically almost automorphic functions (see [2]). For other classes of functions satisfying 
(1.5H1-8) s e e P ] . It follows easily that nc(R,X) are A-classes introduced in [2, Defini­
tion 2.2.1]. We prove that -#nr(JJ,X) n CU{^X) is a A-class. 

In this paper, we mainly study the space -#nr(J,X). We prove that these classes are 
closed subspaces of C(J, X) in section 2. Some recent results on indefinite integral ob­
tained in [2] and [27] are extended in section 3. In section 4, we study the harmonic 
analysis introduced in [2] for these classes and give some of its application to ordinary 
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differential equations. Since the elements of these classes are not necessary uniformly 
continuous, the application of the results of [2] is not direct. In Sections 5, we will inves­
tigate a specific J^nr(J,X) space: pseudo and asymptotically almost automorphic func­
tions and their solutions of quasilinear ordinary differential equations. We study the so­
lutions of non-linear parabolic partial differential equations in section 6. 

2. Properties of the Spaces Mlc(^X) and -#TIr(J,X). In this section we study 
n0(J,X), Mlc(3,X) and Mlr{^X). We prove that every ffl\r(^X) class is a closed 
subspace of C(\X) and every CoJVJc(3,X) class is a closed subspace of CU(^,X). 

PROPOSITION 2.1. if<p G ffiIc(J,X) (j?nr(J,X)) and $ e C(R,X) such that V>|j = 
(p, then 

(i) Rs^U e ^n c(J ,^)( jm r(J ,X)) for alls G R; 

fii) V> */|J G mc{\X) n Cui^X) (mr(3,x) n Cu(^x))for aiif e L\R). 

PROOF. First, we prove the case ip G n0(J,X). 
(i) If J = R then xf; = ip and (i) follows from the fact that no(R,X) is translation 

invariant subspace of C(R,X). If J = R+, one can choose fa G C(R,X) such that fait) = 
(p(t) for t > 0, fa(t) = <f(0)(t + 1) for - 1 < t < 0, and fa(t) = 0 for / < - 1 . A direct 
verification shows that Rsfa\j ^ rio(J,^0 for all s G R. Since Rs(i[) — i/>o)| j has compact 
support for all s G R, we conclude that /^(V — V>o)|j £ no(J,X). This implies that 

JW>IJ e rio(J,A). 
(ii) If h > 0 and / = X[o,h] the characteristic function of [0,/*], then 0 * / ( 0 = 

Jo ^(* + *)dx. Direct computation for each of the three cases of UQ(J,X) shows that 
V> * / | J G n0(J,X) H C(J, A). If * < 0, then j j 0C + x)dx = f_h ifct + x + A)<ft = 
- Jo"* Rh<4)(t+x)dx. By (i), we have that i ^ j G n0(J,X). Since -A > 0, it follows that 
SQH Rhijj(t + x) dx\s belongs to n0(J ,^) H £(J,-X). For d > c, define a function gc4 on R 
such that gcj(i) = 1 for f G [c, d] and gc,d(t) = 0 otherwise. We have that 

V> *gĉ KO = / ip(t + x)dx- JC ip(t+x)dx {t G R). 

Hence, we get #gc,</|j G n 0 ( J , ^ G ( J , ^ f o r a l l c , < / G R.If//(0 = EJLi «*&*A(0isa 
step function, then, by the linearity of n 0 ( J , J 0 w e g e t ^ * V̂I J £ no(J,A!)nG(J,A). Since 
/ G L1^)* m e r e exists a sequence of step functions {Hn} such that ||//„ — f\\Li —* 0 as 
»—> oo. This implies that ||t/;*//n—1/;*/|| —> Oas«—• oo. Hence ||t/>*//«|j—'0*/|j|| —» 0 
as w -> oo. Therefore, ^ * / | j G n0(JJ,X) PI G G W 

Secondly, let <p G ^nc(J,X), ip = £|j + £, where < G UC(R,X) and £ € n0(J,X). 
The case ip G J?IIr(J, X) can be proved exactly in the same way. Set r\ = -0 — £. Then 
r/|j = ^ G n0(J,X). By the first part (i), wegeti?5r/|j G n 0 ( J , ^ and by property (1.5) of 
nc(R,X), we havei?5C G nc(R,X). This implies t h a t c h = ^ C | J + ^ | J £ J^nc(J,X). 
By the above rj */ | j G n0(J,X)n G(J, JO and from the inclusion £*/ G 1(0 C nc(R,X) 
for a l l / G Z,*(R) by [2, Lemma 1.2.1], the proof of (ii) is complete. 
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COROLLARY 2.2. Let <p G fflIc(J,X)(jmr(J,X)) and Ptp(t) = J^ip(x)dx. Then 

AhPip G Mlc(J,X) n Cu(J9X)(smr(J9X) n G(J, A)) for all he 1 

PROPOSITION 2.3. C0Mlc(J,X) (C0Mlr(^XJ) is a closed subspace of CU(\X). 

Moreover, C0.#nc(J,X) = Ylc(^X) 0 G(J,X> (C0Mlr(^X) = Tlr(J,X) 0 G(4^) ) -

PROOF. It is sufficient to prove the case <p G C0.#nc(J,X). Let cp = ^ | j + £, where 
V; G nc(R, JQ and £ <E Cb(J, A). We show that 

(2.i) W<IM| . 

Indeed, |M| = | |V | J+ £ll > | | ^ | J + ^ I I > I M I J I I - M l for* G J. Taking the 
limit when s —> oo and using (1.6) and the fact linv_»oo \\RS£,\\ = 0, we get (2.1). 

Now, let {(pn} be Cauchy in Co$LI\c{\X). Then cpn = ipnU+£,n, where i/>« £ nc(R, JQ 
and in G G(J,X). It follows from (2.1) that {^n} is Cauchy too. By property (1.5), 
we conclude that {V>«} converges to X/J G nc(R,X)- This implies that {£„} is a Cauchy 
sequence in 6o(R,^Q and hence converges to £ G Co^^O- Hence, {</?„} converges to 
i/jU + te C0Mlc(3,X). Therefore, CQMlc(3,X) is a closed subspace of Cu(J,X). 

Finally, we show that C0Mlc(^X) = Y1C(J,X) 0 Cb(J,X). Assuming that for cp from 
Coffllc(J,X), there are ^/ G nc(IR,X)and^ G G>(J,J0,/ = 1,2, such that tp = ^,-|j+&. 
Then 0 = ( ^ - V>2)|j + (£1 - &). By (2.1), ||^i - V2II < 0- Therefore, Vi = V>2 and 
£1 = £2. The proof is complete 

We do not know whether or not Po-^nc(J,X) and JF0-#nc(J,X) are closed subspaces 
ofC^X). 

PROPOSITION 2.4. J?nr(J,X) is a closed subspace of C(J9X). Moreover, 

j?n,(j, X) = nr(j,x) 0 n0(J, X). 

PROOF. By Proposition 2.3 the statement holds for the case that n0(J,X) = Co(J,X). 
Now, let n0(J ,J0 = PJ%Po(J,X), let </? = I/>|J + £, where V G nr(R,X) and £ G 
fPJ*P0(JW We show that 

(2.2) « C ^ i ) , 

where V>(R) denotes the range of ifj and (p(J) denotes the closure in X of the range of <p. 
Assume that (2.2) is false. This implies there exists to G R such that ijj(to) $ (p(J). 
Since t/> is recurrent, we can assume that to G J. There exists an e > 0 such that 
infyGj \\i/j(to) — <p(s)\\ > 2e. Since t/> is continuous, there exists 6 > 0 such that 

(2.3) inf \\Rtom -Rh<p(s)\\ > e (\t\ < 6). 

Since R^ty is also recurrent, for e > 0 and 8 > 0 there exists le/2 such that each interval 
(JC,JC + /e/2) contains a number r with the property 

(2- 4) K M + r) - ^>(0ll < I (|/| < «). 
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Let t and r satisfy (2.4) and let / + r G J. It follows from (2.3) and (2.4) that 

R « ' + T)|| = \\RtMt + T)-RtJ(t + T)\\ 

> \\RtMt + r)-RtJ(t)\\ - \\RhiKt)-R*>W + T)\\ 

> i n f | | ^ 0 ^ + r ) - ^ 0 ^ ( 0 l l - s u p | | / ? ^ ( 0 - ^ o ^ + r)|| 
T T 

- 2 

Since each interval (x, x+/e/2) contains a number r, it follows from inequality above that 

}im-^-f\\as)\\ds>^. 
t^oo t — C Jc l*hl2 

This contradicts the fact that £ G <2WP^\X). We have proved (2.2). It follows that 

IMI<IM|. 
Now, we can proceed exactly as in Proposition 2.3 to show that -#Ilr(J,X) is a closed 

subspace of C(\X) and ffilr{^X) = nr(JJ,X) e <P<%PQ{^X). 
To show the assertion for the case that n0(J,X) = WJ%P0(J,X), let ^ = ^ | j + £, 

where V € nr(R,A5 and £ G W&P0(J,X). We need only to show that ||V>|| < |M|. For 
x* G A*, the composition function x* o £ is in W*tP0(J). Since WJ%P0(J) C PJ%P0(J) 
[9, 4.3.13], x* o £ e (P-̂ fPoGJJ). Note that the numerical function x* o ^ is recurrent and 
x* o </? = x* o ij) + x* o £, it follows that 

I** o vix, < I** ° ^loo < \\X*\\\<P\OO (** eT). 

Therefore, ||i/>|| < \\(p\\. The proof is complete. 

We remark that the above proposition gives a new proof that WJ^P^X) = 
WP(J,X) e T*5Kb(J,J0 [15]; and JZ%P(J,X) = WP(J,X) 0 G(J,*) [18, 19]. As a 
consequence, we have 

COROLLARY 2.5. 77*e spaces jm r(J ,X) n Ci(J,X)9 C0^nc(J,X) are A-classes. 

Now, we prove 

THEOREM 2.6. Let xjj G Ci(R,A}. Then i/;|j G ^n r(J ,^)(Co^n c(J ,JO) if and only 

if$ * / | J € ^n r (J ,^) (C 0 Jm c (J ,^) ) /or a/// G L 1 ^) . 

PROOF. Necessity follows from Proposition 2.1. We show sufficiency. Let hn(t) = 

w/2 for |f| < 1/w and /*„(*) = 0 otherwise. Since \j) G G*(R,A ,̂ we conclude that 

/*„* V>(0 = n/2Sl_[n
/n i>(t+x)dx -> ^(0 asn -+ ooin G f l W Hence p„*i/>|j-Villi -* 

0 as n —-> oo. By assumption, we have /*„ * i/;|j G ^n r(J ,X),« G N. By Proposi­

tion 2.4, Mlr( J, X)(CQM\C( J, X)) is closed and hence the limit lim -̂KX) An *^l J = V>|J £ 

^nr(j,X)(c0jmc(j,x)). 
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3. Indefinite Integral of Functions in J3IIr(J, X). In this section we study the in­
definite integral of functions in MIr(J,X) (C0J?nc(J,JO). Throughout the section, if 
(p G C{\X) then Pip will denote the definite integral Pip(t) = Jg ip{x)dx. We extend 
some results obtained in [2, 7, 16,27]. 

THEOREM 3.1. Letcpe n0(J,X). Then Pip G J?n r(J,X)(Co^nc(J, X)) if and only 

if there exists a constant k G X such that Pip -ke n0(J, JO(Co-#nc(JJ, X)). 

PROOF. We need only to prove the necessity. Let Pip G J?LYlr(^,X). Then Pip = 
i/;|j + f, where V G Ur(R9X) and £ G n0(J, A). We have 

AhPy(t) = Py?0 + A) - P<p(f) = f <p(t + x) dx 

and 

AhPip(t) = A ^ W I J + A*«0 = [V>C + A) - -0(O]|J + KC + *) - £(01-

By Corollary 2.2, we get AhP<p G n0(J,JO for all h G J. Since nr(R, JO and n0(J), JO 
are translation invariant, A^^l j £ n r(J , X) and Ah£ G n0(JJ,X). By the uniqueness of the 
decomposition of elements of J5nr(JJ,J0, we get A^I/J = 0 and A/,£(/) = $ <p(t + x)dx. 
Since ?/> is continuous, we conclude that i/) = ^ G l 

The case Co-#TIc(J, JO can be proved in the same way. 
We remark that Theorem 3.1 gives a new proof of [27, Theorem 7] first proved by 

Zhang for the case that nr(R, JO = JVP(R,X) and U0(J,X) = PJ%P0(J,X). As a conse­
quence of Theorem 3.1, we have 

COROLLARY 3.2. Let <p = ^ | j + £ £ Mlr(J9X)f where t/j G Tlr(R,X) and £ G 
n0(J, JO- 77*e«p<p G j?nr(j, JO*yam/o«/yZ/P^IJ e n r ( j , J O ^ ' * « * « * * » # ^ ^ 
swc/z tfiaf Pi-ke n0(J, JO-

PROOF. We need only to prove the necessity. Let Pip = £|j +17, where £ G nr(R, JO 
and 77 G n0(J, JO- Then, for A e J, 

AhPcp(t) = AhCUt) + Ahr](t) 

= AAP0|J(O + AAP«O 

= / il)(t + x)dx+ f £>(t + x)dx. 

Similarly, we have that A ^ j , j j -00 + *)<& ^ n r(J ,J0 and A/^, J# £(f + x)dx G 
ITo(J, JO- By the uniqueness of the decomposition, we get Ah{r) — P£) = 0. This implies 
that there exists keX such that P£ = rj +Jfc. Hence Pi/>| j = <| j - * and P\j)\ j G TIr(J, JO-
Corollary 3.2 holds also for the case <p G Co-#nc(J, JO-

Now, we study sufficient conditions for Pip in J?TIr(J, JO- We have 

THEOREM 3.3. Let ip G J ?n r ( J , J0 (C o ^n c ( J ,^ ) and Pip G £(J,J0- 37re/i P ^ G 

^ n r ( j , J 0 ( c 0 ^ n c ( j , J 0 ) . 

PROOF. Let <p = i/>+£ with i/> G n r(J, JO and £ G n0(J, JO- By Corollary 2.2, AhPi G 
n0(J ,J0 H C(J ,J0 and by [2, Lemma 1.2.1], AAP0 G L(cp) C nr(R, JO for all h G R. 
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This implies that AhPip G Mlr{^X) n Cu(J,x). By Corollary 2.5 Mlr(3,X) n CU(R,X) 
is a A-class. Since/> £ £(R,^),fV G J f f l ^ J ^ n ^ J , ^ by [2, Theorem 3.1.2]. By 
Corollary 2.5, Co-#nc(J,X) is a A-class, hence the statement follows directly from [2, 
Theorem 3.1.1]. 

4. Harmonic Analysis of J?nr(J,X) and Solutions of Linear Differential Equa­
tions. In this section we introduce the spectrum sp^n((/?) of the function ip G C(R,X) 
with respective to J?n r(J,X)(Co^nc(J,Z)). This kind of spectrum proved to be a useful 
tool to examine solutions of differential equations of many function classes [2, 5, 8, 17 
Ch.6]. See also the recent works [4], [20], [23]. We apply the results on spectrum to the 
differences of functions and linear differential equations on the half line. Since the proofs 
for the case Co-#nc(J,X) are the same as in the case CoJ?nr(J,X) we restrict ourselves 
to Mlr(3,X). 

Let if G C(R,X). Denote by I^tp) = {f G L\R) : / * <p|j G -#nr(J),X)}. Since 
.#nr(J,X) is a closed subspace of C(J,X),/#nr(<^) is a closed ideal of/^(R). We set 

(4.1) spxn,(<p) = hull / ^ t o O = { A G l :/(A) = 0 , / G 7 ^ ^ ) } . 

We denote by sp((/?) the Beurling spectrum of (p [21, pi38]. Similar to the corresponding 
properties of Beurling spectrum, the following can be proved exactly as in [2]. 

PROPOSITION 4.1. Let (p G C(R,X) andf G Lx(R). Then 

(a) sP^nr(^) C sp(<p); 
(°) sP^nr(^*/) C sp^nr((^)nsupp/;/ G L 1 ^ ) w * f/wf/ G 7<*nr(</0 «/K//(A) ^ 0. 
(c) Let ip G G(R,^0. Then tp\j e Mlr(J,X) if and only i / sp^Op) = 0. 

THEOREM 4.2. Let ip G Cu(R,X) and let sp(</?) be separated from zero. 
(a) IfAh(p\j = (Rh(p - <p)|j G ffilr(J9X)forallh G R, rte/i <p\j G J?nr(J,JQ. 
0> #VIJ e ^nr(J,^), *A«I/V|J G J?nr(J,J0n a(J,^0-
PROOF. Corollary 2.5, J?nr(J,X) n CU(^X) is a A-class. Therefore (a) follows di­

rectly from [2, Theorem 4.2.4]. 
(b) By [3, Corollary 4.4] P(p is a bounded uniformly continuous function and there 

exists k G X such that sp(P</? + &) is isolated from zero. By Corollary 2.2, AhP(p\j G 
Mlr(\X) for all heR. Therefore, P(p\j G M\r{\X) by (a). 

Now we study the linear differential equation 

(4.2) / ' + axy' + a0y = <p (tp G JOTr(J, *)) . 

We give sufficient conditions under which the bounded solutions of (4.2) is in J%Hr(«J, ̂ 0-

THEOREM 4.3. Ifa0, a\ £Cin (4.2) are such that (iaf + iaa\ +a0^ Ofor allaeR 
and ify is a bounded solution of (4.2), then y G J?ITr(J, X). 

PROOF. If J = R+, we define 7(0 = y(t) for t > 0 and 7(0 = j(0) cos(l - cos t) + 
/ ( 0 ) sin t +/'(0)(sin2 0 /2 for / < 0. It is easy to verify that 7 is a solution of the differ­
ential equation: 

(4.3) Y" + a{Y' + a0Y=il} 

https://doi.org/10.4153/CJM-1996-059-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-059-9


1146 BOLIS BASIT AND CHUANYI ZHANG 

where ^(t) = y(t) for t > 0 and ip(t) = Y" + a\Y' + a0Yfor t < 0. Since Yis bounded, 
by Landau-Esclangon lemma we conclude that Y', Y" are also bounded (see [17, Propo­
sition 4, p.95]). This implies that Y is uniformly continuous. It is easy to check that 
ij) G C(R,X). We prove that sp^nr(F) = 0. Indeed, let a G R, there exists/ G S(R) such 

that/(a) ^ 0. ^ h a v e / * y / / + / * f l i ^ + / * a o y = / * ^ - H e n c e
 ^ * I / / / + « I / / + «Q/] = W> 

We have (/*" + atf + «o/)(a) = [(/a)2 + iaa\ + ao ]/(<*)• From the assumptions we con­
clude that the function g := f" + a\ff + atf satisfies g(a) ^ 0. From (4.1), it follows 
that a $ sp^nr(y). Since a is arbitrary, we get sp^Ur(Y) = 0. By Proposition 4.1 (c), 
y = Y\j G mr(3,X). 

In the same way, we have 

COROLLARY 4.4. Let <p G Mlr(3,X). Let A = u+iv with u ^ 0. Then every bounded 
solution of the equation y' = \y + (p belongs to J?nr(J, X). 

THEOREM 4.5. If\ = u + iv G C with u>0 and tp G Mlr(J,X), then the solutions 
of the equation 

(4.4) tc = Xy + iP 

of the form y{x) — e^lc + $ e~Xt <p(t) di\ are bounded on R+. Furthermore, / / J = IR+, 
theny G Mlr(R

+,X) and \\y\\ < u~l\\cp\\. If J = R, then (4.4) has a unique bounded 
solution defined on R if and only ify(0) = — JQ° e~Xt(p(t)dt. In this case the function 
y0(x) = - J™ e^-t^Wdt is a bounded solution from MIr(R,X). 

PROOF. Direct verification shows that 

(4.5) y(x) = eXx[c + J*e-Xt<p(t)dtl 

is a bounded solution of (4.4). If J = R+, then y G Mlr(R
+,X) by Corollary 4.4. 

Since u > 0,1^1 = e™ —> oo as x —> oo. For y to be bounded on R, we must 
have c + $e~Xt(p(i)dt —-> 0 as x —> oo. This means that we must take in (4.5) 
c = —So°e~Xt(p(t)dt. We note that the improper integral in (4.5) is convergent since 
\e~Xt(p(t)\ < \\<p\\e~'ut for t > 0. Thus, the unique bounded solution of equation (4.4) 
can only be y0(x) = - £ ° eA(*~'V(/) dt, and we do have | \y0(x)\ \ < \\ (p||e"* J™ e~ut dt = 
\\<p\\/u, so thatj^o is bounded. By Corollary 4.4, >>o £ JWLr(R,X). 

When u < 0, we have that j>o(*) = J_oo ex^~x^(p(t)dt is the unique bounded solution 
of (4.3) andyo G J?nr(R,Z). At the same time we have the similar estimate |[yo(*)|| < 

IMI/M-
THEOREM 4.6. Let $ G C(R, JO awd V|J £ -#nr(J,X). Z,*tf <p(f) = e~ivt^(i) with 

v G R and let the Beurling spectrum of<p be separated from zero. Then all solutions of 
equation (4.3) belong to JOTr(J, X) n CM(J,X). 

PROOF. (4.4) has general solutiony(x) = eivx[c + So e~ivtip(t) dt], where c is an arbi­
trary element of X. By Theorem 4.2 (b), we conclude J£ e~ivt^(f) dt]\j is in J?nr(J,X) n 
Cu(^,X). Since J^nr(J,X) contains all constant functions and invariant under multiplica­
tion by characters, y G MIr(J,X) H Cu(J,X). 
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5. Asymptotically and Pseudo Almost Automorphic Functions. In this section 
we will concentrate two new, specific J?nr(J,X) spaces. That is the space of asymptoti­
cally almost automorphic introduced in [2] and the space of pseudo almost automorphic 
functions defined below. 

DEFINITION 5.1. A function x/; G C(^,X) is called pseudo (asymptotically) almost 
automorphic if i/> = < |̂j + ^, where (̂  G JW(R,X) and £ G ¥A$Q(\X)(CO(A9X)). 

The functions ip and £ are called the almost automorphic component and the ergodic 
perturbation respectively of the function ip. Denote by #Jl%l,A^(.flWLfl(J, A)) t h e s e t 

of all such functions i/i. 
By Theorem 2.1.1 and Proposition 2.1.2 in [2], JZ%(R,X) satisfies (1.5)-(l-8). There­

fore, SVL(R,X) is a nr(R,X) space and TA%W9X) and JZ&%(J,X) are JVJr(3,X) spaces. 
It follows from Proposition 2.4 that 

<PJM(J9X) = ^ W ( R , J 0 | J © «#Po(J,*), 

WAA(^X) = J W ( R , X ) | J © G>(J, * ) 

and 

(5.1) # ) C 1 , |M| < IIVII-
THEOREM 5.2. The following statements hold. 
(1) A function £ G CR is in fPJ*P0(R)(G>(R)) if and only if£2 is. 

(2) E G C(R)W w I/I fP^0(R)w(Cb(R)w) «/fl»rf o»(v if the norm function |EQ| w I/I 

PROOF. We show the theorem only for the case of fPJ%P0(R). The case of Co(R) is 
similar. 

(1) The sufficiency follows since 

i £ m\/dx < l [ £ i«x)i2 A I 1 / 2 ^ i *]•/* = [^ £ \m\2 *i1/2. 
The necessity follows from the fact that 2y*P0(R) is an ideal of C(R). 

(2) By (1), 5 - « i , &,•••,&,) e «*Po(R)" if and only if 6 6 G £#P0(R),/ = 
1,2,- • • ,/i. The latter is equivalent to that |E(-)|2 = E?=i |6(0|2 € #*Po(R), which, 
again by (1), is equivalent to that |S(-)| € ##Po(R). 

Let Q C C be compact and define 

£#P 0 (n x R) = £#P0(R, £(«))> & ( Q x R ) = a ( R , C(«)) 

and 
Jl#(Q x R) = JW(R, C(Q)). 

A function ^ G Jl#(Q x R) is called almost automorphic in t G R uniformly in Z G Q. 
#&#(Q x R)(A3L#(Q x R)) is defined to consist of functions V> such that 

^ = <p + £ ^ E JW(Q x R\£ G <PJVP0(n x R)(G(Q x R))). 

The following lemma is straight forward. 
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LEMMA 5.3. Let 0> = (yu ip2, • • •, <pn) e C(R)n. Then ° € -^fl(R, C") i/a/irfo/i/y 
z/O G JW(R)'1. 

For H=(huh2,--9 hn) G C(Ry\ suppose that 7/(0 G Q for all t G R. Define 

Hxt:R-^Qx RbyHxt(t) = (h{(t),h2(t),' • • 9hn(t\t) (t G R). 

For ¥ = (</>i, fe • • •, fa) e PJVl(R)n(JW%(R)n), let O = (</>!, <p2, • • •, <p„) and S = 
(£i > £2,' * •, £«)> where </>,- and & are the almost automorphic component and the ergodic 
perturbation respectively of ^/, / = 1,2, • • •, n. 

The following theorem generalizes [26, Theorem 1.5] 

THEOREM 5.4. Let $ G « W ( j , C ( n ) ) ( j W a ( j , C ( Q ) ) ) . #" ¥ G 

PROOF. It is sufficient to prove the case J = R,V> G fPJW(j,C(Q)), and V G 
#JW(J)W. 

Lett/> = <p + £and*F = O + SwithO = (<p\9(pi9- •• ,<p„) G JW(R)", as above. Since 
¥ ( 0 G Q when / G R, it follows from (5.1) that 0 (0 G Q for f G R. Note that 

\I>OQ¥XL) = (POQ¥XL)+£OQ¥XL) = ipo(®XL)^<po(¥xL)-(po(®XL)+toQ¥xL)l 

We show that (p o (O x t) G JW(R). Let e > 0. Since (p G C(Q x R), there is a 
£ , e / 2 > 6 > 0 s u c h t h a t 

(5.2) |^(Z1?0 - <p(Z2,t)\ < e- (ZUZ2 G Q, |Z! - Z2| < (5;/ G R). 

Note Lemma 5.3 and the hypothesis that O G JW(R)W and <p G JW(R,C(Q)), we 

conclude (</?, <D) G JW(R, C(Q) X RW). From the identity 

<p(Q(t + r), f + r) - ^ ( 0 ( 0 , 0 = ¥>(<&(* + r), f + r) 

- (^(O(0,r + r) +(p(O(0,r + r) - ¥>(O(0,') 

we concludeE(69N,(<p9O)) C E(S,N,(^oOxt)). This implies <p o (O x t) G -3L#(R) 
by Proposition 1.1. 

To finish the proof, we need to show that the function h = <p o Q¥ x t) — cp o (O x t) + 
C o OF x t) is in £#P0(R). First we show that (poQV x i)-<po(® x L) £ &J%P0(R). It 
is trivial in the case that <p = 0. So we assume that ip ̂  0. Let e and 5 be as in (5.2). Set 

(5.4) Q = {f G R : m) - O(0| = |S(0| > «}. 

It follows from [27, Definition 3 and Proposition 4] that there is a T > 0 such that when 
f > r 

(5 5) m([-t,t]nc6) < c 
it -4|Mr 
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where m stands for the Lebesgue measure on R. It follows from (5.2), (5.4) and (5.5) that 

±J_t\<p(V(s)9s)-<p(®(s)9s)\ds 

= i-l [ + / k(^)^) - V(O(J),J)|& 
2M4-/,/]\Q -/[-vine* v J r\ \ J, j \ 

^ 2 + 2 | M I It < C -

Therefore, p ( ^ x O - p ( < D x t ) G £#P0(R). 
A little modification of the proof for [26, Theorem 1.5] shows that £ o (*F x *,) G 

£#P0(R). The proof is complete. 

THEOREM 5.5. Consider systems of the form 

(5.6) ^ = , 4 r + * F , 

where A = (a,y) w a complex n x n matrix and *F = (V>i, V>2> * • • > V^)' G 3yW(R)w 

(JWL#(R)W). 7/7/ze matrix A = (ay) has no eigenvalues with real part zero, then system 
(5.6) admits a unique solution Y = (yi,^2, • • • ,yn)' G fPJl#(R)"(Jl£L#(R)w). Moreover 

(5.7) MINIMI, 
where K > 0 depends only on the matrix A. 

PROOF. By a discussion in [11, Theorem 4.2] the matrix A can be considered trian­
gular. Therefore the theorem follows by applying Theorem 4.5 n times. 

Now, consider a system of the form 

(5.8) ^ - AY + *F + [iG o (7 x t), 
ax 

where /x G C \ {0}, v4 is a complex w x n matrix, *F G #^(R)W(J13L#(R)W), and 
G G £flfl(Q x R)n (jWWt(Q x R)w). Such a system is called quasi-linear. We get the 
generating system of (5.8) by putting \i = 0. 

As in the proof for [26, Theorem 2.3], by using Theorems 5.4 and 5.5 one shows the 
following theorem. 

THEOREM 5.6. Let *F and A be as in Theorem 5.5. Let Y^ be the unique solution in 
£^(R)"(j l&#(R)w) of the generating system of (5.8), let a > 0 and let Q = \J{Z G 
Cw : |Z - Y®\t)\ < a, f G R}. ^ww/we that 

(1) G G ««W[(Q x R)n (jWL?L(n x R)w) swc/z to 

(5.9) |G(Z',0 - G(Z\i)\ < LZJU |z{ - zf'|, (Z7,Z77 eQ9te R), 

where L > 0; 
(2) 0 < |/x| < mm{l/LK,a/K\\G\\}, where K > 0 in (5.7) depends only on the 

matrix A. 
Then there exists a unique solution Y = (yuy2, • • • 9yn)

f G 2JWL(R)n (J3JW(R)W) of the 
system (5.8) such that Y(x) G Qfor allx G R. Furthermore, || 7 - Y^H --> 0 as // —> 0. 
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6. The Solutions of non-linear Parabolic Partial Differential Equations. For 
T > 0 and A > 0, let A = R x [0,7] and Ai = A x [-A,A]. Consider the non­
linear parabolic partial differential equation 

(6.1) ^ = —+il>(x9t9u) ( f e O G A ) , 

where i/> G C(Aj) satisfies the Lipschitz condition 

(6.2) | # c , /, v') - # t , f, v")| < /|v; - v"| ((*, t) G A, v', v" G [ - ^ ] ) . 

In this section, we shall use some knowledge from ordinary differential equations to 
establish some properties of solutions of (6.1). For this purpose, we first consider the 
following ordinary differential equation 

(6.3) g - * - ' . 

where a > 0 and r G C(R). Note that (6.3) admits a unique bounded solution given by 

(6.4) y0(x) = ~ lem j ^ e~atr(t)dt + e-^ J^eatr(t)dt\, 

for which 

(6-5) INI<JflM|. 

It follows from Theorem 4.3 that j>0 in (6.4) is in !PJW(R)( JWL#(R)) if r is. 
Let us now consider the system of ordinary differential equations 

(6-6) ~JY = h~\uk - uk„x\ + \l){x,tk,uk_x\ k= 1,2, ••• ,« , 

where /* = T/« G R, /* = kh and wo(x) = u(x, 0), where w is a solution of (6.1). We need 
to consider (6.6) for variable n; note that the partition {tk}k=o °f [0> ^1 depends on «, as 
do all the functions in a solution (u\, «2, • • •, un) of (6.6). 

As in the proof for [26, Lemma 3.1], one shows the following lemma. 

LEMMA 6.1. Let ip G fPJL?L(Ai)(fL?Lfl(Ai) satisfy the Lipschitz condition (6.2). 
Suppose u is a solution of equation (6.1) such that \\u\\ <A,u and du/dt are uniformly 
continuous, and u^ = w(-,0) G (PflfKJX) (JWL#(R)). Then there exist n0 G N and 

W>0 such that (6.6) has a unique solution (uu u2, • • •, un) G &J%%(R)n (JWL#(R)W) 
for n > n0; it satisfies 

(1) INI <A,\<k<n,and 
(2) the functions eo = 0, ek = u(-, tk) — uk are in C(R) with 

(6.7) INI < Woo(h\ 
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where h = T/n,tk = kh, and UJ is the modulus of uniform continuity ofu and du/dt. 

THEOREM 6.2. Let ijj and u satisfy the conditions of Lemma 6.1. Then u is in 
fPJW(A)(Jl^(A)). 

PROOF. We only show the assertion that u G fPA#(A). Similarly, one shows the 
assertion that u G JWl(A). Let «0 be as in Lemma 6.1, and fixed n>n0 and t G [0, T\. 
Then there is a ko < n such that |f — ftj < h. Recall that h = T/n and ft = kh. If 
Bn = {uk\ k = 1,2, • • •, n} C !PJW(R) is the solution of (6.6) given by Lemma 6.1, the 
uniform continuity of u gives 

\u(x, i) - Uk^x)\ < \u(x91) - u(x9 ftj| + \u(x9 th) - Uko(x)\ 

< (1 + W)u(h) (x G R). 

It follows that the function u(,t) is in the norm closure of U£L«o^n\ hence w(-,/) G 
fPJW(R) (Proposition 2.4). 

Let (/?(-, /) and £(•, 0, <Pk and £* be the almost automorphic components and the ergodic 
perturbations respectively of w(-, t),uk,k = 1,2, • • •, n. To show that u G il5W(A), we 
need to prove that <p G JW(A) and £ G 2l*P0(A). 

Since w(-, 0 , "0, *") G ®W(R) for any t\ t" G [0,71, so is «(-, 0 - w(-, *") and also 
w(-, t) - w* for r G [0, J] and A: = 1,2, • • •, H. It follows from (5.1) that 

(6.9) \WU)-^'J%\<\U'J)-u{'J')^ 

and 

(6.10) \W(-,t)-Vk\\<\H-,t)-uk\\ * = l,2,-.-,#i. 

We show that <p G &%.(&). Let e > 0. Choose « > n0 such that h = T/n implies 

(6.11) 4(W+\)u(h) <e. 

Let Q> = {(p\9(p2,-',<M- By Lemma 5.3, O G JW(R,Cw). LetN > 0. It follows 
from (6.7), (6.9), (6.10) and (6.11) that, for |*| < N,r G E(e/29N90) and f G [0,7], 
there exists a ft^ such that |f — ft^ | < /* and 

|</>(x + r,0-</?(*> 01 < |</?(x + r , 0 — <̂ (x + r,«^)| + |< (̂x + T , ^ ) — y^(x + r)| 

+ \(f(x9tkit)-(f(x9i)\ 

<||«(-,0-"0,6b)ll + ll«(s^)-^ll 
+ l^oC* + T ) - ^ W l + M-'tho) - "Atoll 

< 2(JF + l ) ^ ) + | ^ ( i + r) - <^(x)| 

< ^ + |0(x + r ) - (D(x ) |<e . 
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It follows that E(e/2,N9Q>) C E(e9N,tp). This implies that ip is almost automorphic 
function by Proposition 1.1. 

As in the proof for Theorem 3.3 in [26], one shows that £ E ^PJ3fPo(A). The proof is 
complete. 
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