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Abstract
In this paper, we study the Hausdorff dimension of sets defined by almost convergent binary expansion sequences.
More precisely, the Hausdorff dimension of the following set

{
x ∈ [0, 1) :

1

n

a+n−1∑
k=a

xk −→ α uniformly in a ∈N as n → ∞
}

is determined for any α ∈ [0, 1]. This completes a question considered by Usachev [Glasg. Math. J. 64 (2022),
691–697] where only the dimension for rational α is given.

1. Introduction

The concept almost convergence was first introduced by Lorentz [6] in 1948 which is used to study the
property of divergent sequences, that is what will happen if all the Banach limits of a sequence are equal.
In [6], Lorentz defined almost convergence by the equality of all the Banach limits and discovered that
this definition is equivalent to the one we give later. Lorentz [6] also studied the relationship between
almost convergence, or in other words summation by method F, and matrix methods, then found that
most of the commonly used matrix methods contain the method F. One is referred to [6] for details.

Definition 1.1. A bounded sequence {xk}∞
k=1 is called almost convergent to a number t ∈R, if

1

n

a+n−1∑
k=a

xk −→ t

uniformly in a ∈N as n → ∞. We write this by {xk}∞
k=1 ∈ AC(t).

It is easy to notice that if take a = 1, the summation is exactly Cesàro summation. So a sequence
that is almost convergent to t must be Cesàro convergent to t. Borel [2] presented a classical result that
the set such that the corresponding sequences with binary expansions of numbers in [0, 1] are Cesàro
convergent to 1

2
has full Lebesgue measure. That is

L

({
x ∈ [0, 1) : lim

n→∞
1

n

n∑
k=1

xk = 1

2

})
= 1,
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where L denotes the Lebesgue measure and x = (x1x2 . . . )2 denotes the binary expansion of x ∈ [0, 1].
Besicovitch [1] showed that for all 0 ≤ α ≤ 1, the set

Fα =
{

x ∈ [0, 1) : lim
n→∞

1

n

n∑
k=1

xk = α

}

has Hausdorff dimension −α log2 α − (1 − α) log2(1 − α). Besicovitch’s result is also extended to other
matrix summations [8]. For further research about almost convergence and its applications, one can refer
to [4, 7, 8] and the references therein.

Almost convergence can imply Cesàro convergence, and a Cauchy sequence must be an almost con-
vergent sequence. Besides, there are many other sences of convergence. For each one, we can study
the Hausdorff dimension of the sets similar to Fα. In this paper, we consider numbers with almost con-
vergent sequences associated with their binary expansions. Connor [3] proved that there is no almost
convergent binary expansion sequences for almost all numbers in [0, 1]. In 2022, Usachev [8] showed
that for rational α, the Hausdorff dimension of the set

Gα :=
{

x ∈ [0, 1) :
1

n

a+n−1∑
k=a

xk −→ α uniformly in a ∈N as n → ∞
}

=
{

x ∈ [0, 1) : {xk}∞
k=1 ∈ AC(α)

}

is also −α log2 α − (1 − α) log2(1 − α), but left a problem for the case when α is irrational. Usachev’s
proof depends highly on the rationality of α, while our method is applicable for any α.

Theorem 1.2. For all 0 ≤ α ≤ 1, we have

dimHGα = −α log2 α − (1 − α) log2(1 − α).

We refer to Lorentz [6] for the definition of strongly regular matrix method.

Definition 1.3. A matrix method of summation is a mapping on the space of all sequences {xk}∞
k=1

generated by a matrix A = {ank}∞
n,k=1, which is

{xk}∞
k=1 �−→

{ ∞∑
k=1

ankxk

}∞

n=1

.

We call it strongly regular if
∞∑

k=1

|ank − an,k+1| −→ 0 as n −→ ∞.

Corollary 3.5 in [8] remains true for irrational α. That is

Corollary 1.4. Let A = {ank}∞
n,k=1 be a strongly regular matrix method, which is weaker than (or

consistent with) the Cesàro method, and let 0 ≤ α ≤ 1. The Hausdorff dimension of the set{
x ∈ [0, 1) : lim

n→∞

∞∑
k=1

ankxk = α

}
,

is −α log2 α − (1 − α) log2(1 − α).

The proof of this corollary is completely same as which in [8].

https://doi.org/10.1017/S0017089523000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000046


452 Qing-Yao Song

2. Preliminaries

In this section, we recall the definition of Hausdorff dimension and mass distribution principle that will
be used later.

Definition 2.1. [5] Given a set E ⊂R
n, its s -dimensional Hausdorff measure is

H s(E) = lim
δ→0

inf
{ ∞∑

i=1

|Oi|s : E ⊂
∞⋃

i=1

Oi, 0 ≤ |Oi| ≤ δ

}

where {Oi}∞
i=1 is an open cover, and | · | denotes the diameter. Besides, the Hausdorff dimension of E is

dimHE := inf{s : H s(E) = 0}.

Theorem 2.2. (Mass distribution principle) [5] Let E be a set, and there is a strictly positive Borel
measure μ supported on E. If some s ≥ 0,

lim inf
r→0

log μ(B(x, r))

log r
≥ s

holds for all x ∈ E, then

dimHE ≥ s.

At the end, we fix a notation. For any x ∈ [0, 1), let

x = x1

2
+ x2

22
+ . . .

be the binary expansion of x. We write x = (x1, x2, . . . )2. For any m ≥ 1 and a finite block (ε1ε2 . . . εn)
with εi ∈ {0, 1} for all 1 ≤ i ≤ n, we write

In(ε1ε2 . . . εn) =
{

x ∈ [0, 1) : xi = εi, 1 ≤ i ≤ n

}
,

which is the set of points whose binary expansion begin with the digits ε1, ε2, . . . , εn. Recall that

Fα =
{

x ∈ [0, 1) : lim
n→∞

1

n

n∑
k=1

xk = α

}

is the set which consists of numbers with binary expansion sequences that are Cesàro convergent to α,
and

Gα =
{

x ∈ [0, 1) :
1

n

a+n−1∑
k=a

xk −→ α uniformly in a ∈N as n → ∞
}

.

The upper bound of the Hausdorff dimension of Gα is trivial since Gα is a subset of Fα, so by
Besicovitch’s result [1],

dimHGα ≤ dimHFα = −α log2 α − (1 − α) log2(1 − α).

Thus, we need only to focus on the lower bound of the Hausdorff dimension of Gα.

3. Proof of Theorem 1.2

The lower bound of the Hausdorff dimension of Gα is given by classical methods:

(1) Construct a Cantor subset of Gα, denoted by Em,α for each m ∈N large;
(2) Define a probability measure supported on Em,α;
(3) Use mass distribution principle to find the lower bound of the Hausdorff dimension of Em,α.
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So define the set Em,α as:

For every m ∈N, Em,α :=
{

x ∈ [0, 1) :
jm∑

k=(j−1)m+1

xk = [mα] + ξj for all j ∈N

}
,

where [mα] denotes the largest integer less than or equal to mα, and {ξj}j∈N is defined as follows. Firstly,
take ξ1 to be 0, and ξ2 to be the integer such that 2[mα] + ξ1 + ξ2 = [2mα], so ξ2 could be 0 or 1. Then,
secondly, we define ξj inductively, that is, we choose ξj to be an integer satisfying

j[mα] + ξ1 + ξ2 + . . . + ξj = [jmα].

By a simple calculation, we have

ξj =
[
jmα

] − [
(j − 1)mα

] − [
mα

] = {
(j − 1)mα

} + {
mα

} − {
jmα

}
,

where {mα} = mα − [mα]. Therefore, ξj could be −1, 0, 1, or 2.
In other words, Em,α is a collection of such numbers, whose binary expansion sequences satisfy that

for all j ∈N, the first jm digits contain exactly [jmα] many ones, and if we cut the sequences into blocks of
length m, the j-th block contains exactly [mα] + ξj ones. Except that, there is no request for the position
of ones.

We check that Em,α is indeed a subset of Gα when m is sufficiently large.

Lemma 3.1. Let 0 < α ≤ 1, m >
[

100
α

] + 100, or α = 0, m ∈N. Then for any x ∈ Em,α,

1

n

a+n−1∑
k=a

xk −→ α uniformly in a ∈N as n → ∞.

Proof. First, for α = 0, Em,0 contains a single point 0, so it is a subset of G0. Second, for 0 < α ≤ 1,
we see that [mα] cannot be 0 for m large. Fix an integer a, for any x ∈ Em,α, let j1 be the largest j such
that jm < a, and j2 be the smallest j such that jm ≥ a + n − 1. Then, on one hand,

a+n−1∑
k=a

xk ≤
j2m∑

k=j1m+1

xk ≤ [
j2mα

] − [
j1mα

] ≤ (j2 − j1)mα + 1. (3.1)

On the other hand,
a+n−1∑

k=a

xk ≥
(j2−1)m∑

k=(j1+1)m+1

xk ≥ [
(j2 − 1)mα

] − [
(j1 + 1)mα

] ≥ (j2 − j1)mα − 2mα − 1. (3.2)

Furthermore, we have

n − 1 ≤ (j2 − j1)m ≤ n + 2m. (3.3)

Combining (3.1) (3.2) (3.3) together, it follows that

(n − 1)α − 2mα − 1

n
≤ 1

n

a+n−1∑
k=a

xk ≤ (n + 2m)α + 1

n
. (3.4)

Since the left and the right most terms in (3.4) do not depend on a, the convergence is uniform when
n tends to infinity. This shows Em,α is a subset of Gα.

Next, we analyze the Cantor structure of Em,α in detail. Here, we assume that 0 < α ≤ 1 and m is
sufficiently large. Denote Uj the blocks of length m which contain exactly [mα] + ξj ones, j = 1, 2, . . .,
that is

Uj =
{

u = (ε1ε2 . . . εm) ∈ {0, 1}m :
m∑

k=1

εk = [mα] + ξj

}
.
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Then, for each j, the collection Uj contains Dj = C[mα]+ξj
m elements, where Ck

n are binomial coefficients.
So the first level of the Cantor structure of Em,α is

S1 = {Im(u1) : u1 ∈ U1}, S1 =
⋃

u1∈U1

Im(u1).

The second level is

S2 =
⋃

Im(u1)∈S1

{
I2m(u1u2) : u2 ∈ U2

}
=

{
I2m(u1u2) : u1 ∈ U1, u2 ∈ U2

}
,

S2 =
⋃

u1∈U1

⋃
u2∈U2

I2m(u1u2),

and by induction, the level-j of the Cantor structure of Em,α is

Sj = {Ijm(u1u2 . . . uj) : u1 ∈ U1, u2 ∈ U2, . . . , uj ∈ Uj},

Sj =
⋃

u1∈U1

⋃
u2∈U2

. . .
⋃
uj∈Uj

Ijm(u1u2 . . . uj).

Then, we have that
∞⋂

j=1

Sj = {x = (u1u2 . . . )2 : u1 ∈ U1, u2 ∈ U2 . . .} = Em,α.

Now we compute the lower bound of the Hausdorff dimension of Em,α. We have to deal with some
binomial coefficients later, so here we simplify it by using Stirling formula.

Lemma 3.2. Let {dm}m≥1 be a sequence of integers with dm ≤ m for all m ≥ 1 and

lim sup
m→∞

dm

m
= α.

Then

lim sup
m→∞

1

m
log2 Cdm

m = −α log2 α − (1 − α) log2(1 − α).

Proof. Write m′ = dm. By Stirling formula,

Cm′
m = m!

m′!(m − m′)!

=
√

2πm( m
e )meO( 1

m )

√
2πm′( m′

e )m′eO( 1
m′ )√2π (m − m′)( m−m′

e )m−m′eO( 1
m−m′ )

=
(

m

m − m′

)m (
m − m′

m′

)m′

O
(

m− 1
2

)
.

So we have

lim sup
m→∞

1

m
log2 Cm′

m = lim sup
m→∞

(
log2

1

1 − m′
m

+ m′

m
log2

1 − m′
m

m′
m

+ O

(
log2 m

m

))

= log2

1

1 − α
+ α log2

1 − α

α

= −α log2 α − (1 − α) log2(1 − α).
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Lemma 3.3. For any 0 < α ≤ 1 and m > [ 100
α

] + 100, we have

dimHEm,α ≥ lim inf
j→∞

log2

∏j
k=1 Dk

jm
.

Proof. Define a measure μ supported on Em,α. Let μ([0, 1)) = 1. For all j > 0 and every element
I ∈ Sj, we set

μ(I) =
( j∏

k=1

Dk

)−1

,

and μ(E) = 0 for all E ∩ Sj = ∅. Then, one can see that the set function μ satisfies Kolmogorov’s
consistency condition, that is, for any j ≥ 1 and I ∈ Sj,∑

Ĩ∈Sj+1,Ĩ⊂I

μ(Ĩ) = μ(I).

Thus, it can be extended into a mass distribution supported on Em,α [5]. So for any ball B(x, r) centered
at x ∈ [0, 1) with radius r < 1, there is an integer j such that 2−(j+1)m ≤ r < 2−jm. It follows that the ball
intersects at most 2 elements in Sj, then we have

log2 μ(B(x, r))

log2 r
≥ log2(2 · (

∏j
k=1 Dk)−1)

log2 r

= − log2

∏j
k=1 Dk

log2 r
+ O

(
1

log2 r

)

≥ − log2

∏j
k=1 Dk

−(j + 1)m
+ O

(
1

log2 r

)
.

Thus

lim inf
r→0

log μ(B(x, r))

log r
≥ lim inf

j→∞
log2

∏j
k=1 Dk

jm
,

and the lemma holds by mass distribution principle.

Remark 1. For the case α = 0 and m ∈N, the result in Lemma 3.3 is trivial since Em,0 is a set of a single
point, and Dj = 1 for all j ∈N.

Proof. (Proof of Theorem 1.2) As Lemmas 3.1 and 3.3 hold for m sufficiently large, we can take the
limit supremum of dimHEm,α as m → ∞. Let ξ(m,α) be a number in {−1, 0, 1, 2} such that C[mα]+ξ(m,α)

m is the
smallest one among

C[mα]−1
m , C[mα]

m , C[mα]+1
m , C[mα]+2

m ,

and take m′ = [mα] + ξ(m,α). Then, we have

dimHGα ≥ lim sup
m→∞

dimHEm,α

= lim sup
m→∞

lim inf
j→∞

log2

∏j
k=1 Dk

jm

≥ lim sup
m→∞

lim inf
j→∞

log2

∏j
k=1 C[mα]+ξ(m,α)

m

jm
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= lim sup
m→∞

1

m
log2 Cm′

m

= −α log2 α − (1 − α) log2(1 − α)

where the last equality follows from Lemma 3.2 since lim supm→∞
m′
m

= α.

Usachev [8] also posed a potential method to attach the case when α is irrational. Define a sequence
of rationals { pi

qi
}∞

i=1 which converges to α, and construct a set that consists of numbers with such binary
expansions. It requests that among the positions in[ i−1∑

k=1

qkm + 1,
i−1∑
k=1

qkm + qim

]
,

the binary expansion sequences have exactly pim many ones. Although we do have

1

n

a+n−1∑
k=a

xk −→ α as n → ∞

for every positive integer a, the convergence may not be uniform as mentioned in [8], that in every block
of length qim, all the ones appear at first and then the zeros follow.

So ensure the convergence is uniform, it is necessary to pose suitable restrictions on the distribution
of ones, for example, asking zeros and ones appear regularly. Here, we cut the sequence into blocks of
the same length, and there is only a little difference about the quantity of ones in different blocks. It
avoids the problem caused by qi going to infinity and ones being separated from zeros.
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