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Abstract
We derive an asymptotic expansion for the critical percolation density of the random connection model
as the dimension of the encapsulating space tends to infinity. We calculate rigorously the first expan-
sion terms for the Gilbert disk model, the hyper-cubic model, the Gaussian connection kernel, and a
coordinate-wise Cauchy kernel.

Keywords: Continuum percolation; random connection model; critical threshold; asymptotic series; lace expansion

2020 MSC Codes: Primary: 60K35, 82B43; Secondary: 60G55

1. Introduction
1.1 Motivation
We study percolative systems, and address the question:What is the value of the critical percolation
threshold? A specific answer is only possible in very exceptional cases. We are pursuing a differ-
ent route instead, namely an asymptotic expression of the critical threshold as a function of the
dimension d of the encapsulating space in the d → ∞ limit. This has been solved for percolation
on the hyper-cubic lattice Zd: for bond percolation on the hyper-cubic lattice it is known that

pbondc (Zd)= 1
2d

+ 1(
2d
)2 + 7

2
1(
2d
)3 +O

(
1
d4

)
as d → ∞, (1.1)

cf. [HS95, HS05], whereas for hyper-cubic site percolation on Z
d it is

psitec (Zd)= 1
2d

+ 5
2

1(
2d
)2 + 31

4
1(
2d
)3 +O

(
1
d4

)
as d → ∞, (1.2)

cf. [HM22]. Mertens and Moore [MM18] use involved numerical enumeration to identify a
few more terms (without a rigorous bound on the error). In the present work, we address
a corresponding question for continuum percolation. Interestingly, our analysis establishes an
exponentially decaying series rather than an algebraic decay as on lattices. We shall discuss this
point further in the discussion section.
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2 M. Dickson and M. Heydenreich

1.2 Themodel
To this end, we are considering the random connection model (henceforth abbreviated RCM), a
spatial random graph model whose points are given as a homogeneous Poison process η on R

d

with intensity measure λ Leb, and we refer to λ> 0 as the intensity of the model. Each pair of
vertices x, y in the support of η are connected independently with probability ϕ(x− y), where

ϕ : Rd → [0, 1]

is integrable and symmetric (i.e. ϕ(x)= ϕ(−x) for all x ∈R
d). The classical example is the Gilbert

disk model [Gil61] or hyper-sphere random connection model with

ϕ(x)= 1{|x|<R}

for some R> 0: two vertices are connected whenever their (Euclidean) distance is at most R.
We are interested in the percolation phase transition of the RCM, that is, the critical intensity

λc given as the infimum of those values of λ such that the resulting random graph has an infinite
connected component:

λc = inf{λ | the RCM with intensity λ has an infinite component}.
See [[HHLM22], Section 2] for a more formal definition.

Penrose [Pen91] uses the ‘method of generations’ to show that for all dimensions d ≥ 1 the
critical intensity is strictly positive. In particular he derives the lower bound

qϕλc ≥ 1, (1.3)

where qϕ = ∫
ϕ(x)dx. He also uses a coarse-graining argument to show that for d ≥ 2 the critical

intensity is finite if qϕ > 0. Meester, Penrose and Sarkar [MPS97] prove the 0th order asymptotics
of λc for radial non-increasing ϕ (with uniform bounds on the variance of the jumps taken by
random walk with jump intensity proportional to ϕ). Specifically they prove that for such models

qϕλc → 1 (1.4)

as d → ∞. In the present work we significantly expand their result by identifying several
additional terms.

1.3 Results
We shall now make a couple of assumptions before formulating our main result. Throughout this
paper we will denote the convolution of two non-negative functions f , g : Rd →R≥0 to be

f � g(x) :=
∫

f (x− u)g(u)du, (1.5)

and f �n(x) to be the convolution of n copies of f . In particular, f �1 ≡ f . We will also denote the
Fourier transform of an integrable function f : Rd →R by

f̂ (k) :=
∫

eik·xf (x)dx, (1.6)

for all k ∈R
d.

Our first set of assumptions are exactly those that allow us to use the results relating to lace
expansion arguments.
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Assumption A. We require ϕ to satisfy the following two properties:

(A.1) There exists a function g : N→R≥0 with the following three properties. Firstly, that g(d)→ 0
as d → ∞. Secondly, that for m≥ 3, the m-fold convolution ϕ�m of ϕ satisfies

1
qm−1
ϕ

sup
x∈Rd

ϕ�m(x)≤ g(d). (1.7)

Thirdly, that the Lebesgue volume
1
qϕ

∣∣∣∣{x ∈R
d :

1
qϕ
ϕ � ϕ(x)> g

(
d
)}∣∣∣∣≤ g(d). (1.8)

(A.2) There are constants b, c1, c2 > 0 (independent of d) such that the Fourier transform ϕ̂

satisfies

inf
0<|k|≤b

1
|k|2

(
1− 1

qϕ
ϕ̂(k)

)
> c1, inf

|k|>b

(
1− 1

qϕ
ϕ̂(k)

)
> c2. (1.9)

Remark 1.1. We believe that the condition (1.8) is not necessary for our results. In [DH22] it was
required by the lace expansion argument to provide the skeleton of an argument that would work
for ‘spread out’ models in dimensions d = 7, 8 (in addition to d ≥ 9). However, we are concerned
here with taking d → ∞, and so it should not be required. 	

It will sometimes be more natural to work with a parameter β(d) that is related to g(d). From
[DH22] it is defined by

β(d) :=
⎧⎨⎩g(d)

1
4− 3

2d d− 3
2 : limd→∞ g(d)ρ−d�

(
d
2 + 1

)2 = 0 ∀ρ > 0,

g(d)
1
4 : otherwise.

(1.10)

Note that the Assumption (B.1) below implies that β(d)= g(d)
1
4 .

Our second set of assumptions allow us to keep suitable control of asymptotic properties. Let
us define h : N→R≥0 and N : N→N by

h(d) := 1
q5ϕ
ϕ�6 (0)+ 1

q4ϕ

∫
ϕ(x)ϕ�2(x)ϕ�3(x)dx+ 1

q4ϕ

∫ (
ϕ�2(x)

)3 dx, (1.11)

N(d) :=
⌈
log h(d)
log β(d)

⌉
. (1.12)

Assumption B. We require that:

(B.1) There exists ρ > 0 such that lim infd→∞ ρ−dq−5
ϕ ϕ

�6 (0) > 0.
(B.2) lim supd→∞ N(d)<∞.

Mind that Assumption (B.2) is in practice a lower bound on h(d) because β(d)< 1 for large d.

Remark 1.2. The factor ϕ�6 (0) appears in Assumption (B.1) only because ϕ�6 (0) is the precision
at which we stop our expansion. If we wished to proceed up to the ϕ�m (0) term, then we would
need a version of (B.1) with ϕ�m (0) replacing ϕ�6 (0). Assumption (B.1) appears in our proof via
Lemma 2.4. A close inspection of the proof would reveal that it is a slightly stronger condition
than is needed there. However the version presented is more concise and sufficient for the models
we consider here.

The requirement that (B.2) holds becomes apparent through Proposition 3.4. We take great
care in describing the asymptotics of the first few terms in the expansion of 	̂λc(0) because they
dictate the behaviour of λc that we are interested in. On the other hand we can utilise pre-existing
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4 M. Dickson and M. Heydenreich

bounds for the tail of the expansion to show that it can be neglected in our calculations. If we fix a
cut-off N ≥ 1 in this expansion then these pre-existing bounds are of order βN . Assumption (B.2)
ensures that we can choose a fixedN such that this tail error is smaller than the error terms arising
elsewhere in the expansion. If this was not the case, we may try to let N → ∞ as d → ∞, but then
we would be summing a diverging number of ‘small’ terms prior to the cut-off and we would not
have a good control on this. 	
Definition 1.3. In addition to using the convolution operation to combine two non-negative
functions f , g : Rd →R≥0, we will also find it convenient to use f · g to denote the pointwise
multiplication of f and g:

f · g(x) := f (x)g(x). (1.13)
Furthermore, for n1, n2, n3 ≥ 1, we will denote

ϕ�n1�n2·n3 (0) := ϕ�n1 �
(
ϕ�n2 · ϕ�n3) (0)= ∫

ϕ�n1 (x)ϕ�n2 (x)ϕ�n3 (x)dx. (1.14)

This expression shows that ϕ�n1�n2·n3 (0) is invariant under the permutation of n1, n2, and n3.

Theorem 1.4. Suppose Assumptions A and B are satisfied. Then as d → ∞,

λc = 1
qϕ

+ 1
q3ϕ
ϕ�3 (0)+ 3

2
1
q4ϕ
ϕ�4 (0)+ 2

1
q5ϕ
ϕ�5 (0)− 5

2
1
q4ϕ
ϕ�1�2·2 (0)+ 2

1
q5ϕ

(
ϕ�3 (0)

)2
+O

(
1
q6ϕ
ϕ�3 (0) ϕ�4 (0)+ 1

q7ϕ

(
ϕ�3 (0)

)3 + 1
q6ϕ
ϕ�6 (0)+ 1

q5ϕ
ϕ�2�2·2 (0)+ 1

q5ϕ
ϕ�1�2·3 (0)

)
.

(1.15)

Remarks on graphical notation. It will often be convenient and clearer to represent the objects
like ϕ�n (0) and ϕ�n1�n2·n3 (0) pictorially. By expanding out the convolutions in these expressions it
is clear that they are integrals over some finite set of points with functions associating pairs of these
points (and sometimes the origin). We are therefore able to represent these integrals pictorially
as rooted graphs. In these we represent the spatial origin 0 ∈R

d with the root vertex ◦, and an
integral of some x ∈R

d with the vertex •. If we can interpret a ϕ function to be ‘connecting’ two
R
d values, then we draw a line −−−−−− between the vertices corresponding to the two Rd values.

For example, this allows us to graphically represent objects such as

ϕ�3 (0) =
∫

ϕ(x)ϕ(y)ϕ(x − y)dxdy = , (1.16)

ϕ�1�2·2 (0) =
∫

ϕ(x)ϕ(y)ϕ(z)ϕ(x − z)ϕ(z − y)dxdydz = . (1.17)

Observe that convolution is a commutative binary relation. This means for example that vari-
ous diagrams the position of the root vertex ◦ is not important. The most common example of this
in our arguments will relate to ϕ�1�2·2 (0). By first recalling that ϕ�n1�n2·n3 (0) is invariant under
the permutation of n1, n2 and n3, and then using the commutativity property of convolution, we
find

= ϕ � ϕ�2 · ϕ�2
)
(0) = ϕ�2 � ϕ · ϕ�2

)
(0) = ϕ � ϕ · ϕ�2

)
� ϕ (0) = .

(1.18)
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We will tend to prefer over , as we find the former slightly easier to read.
This graphical notation allows us to write the expansion of Theorem 1.4 in a form that is much

easier to read. By a rescaling argument (see [[HHLM22], Section 5.1] for the details), we may
assume without loss of generality that

qϕ =
∫
ϕ(x)dx= 1, (1.19)

and we shall silently make this assumption in our analysis. Under this scaling choice, the
expansion (1.15) is represented pictorially by

λc = 1 + +
3
2

+ 2 − 5
2

+ 2
( )2

+ O
(

× +
( )3

+ + +

)
.

(1.20)
For some calculations, we will want to integrate a τλ function instead of a ϕ (τλ is defined below

at (2.1)).We will also sometimes find it convenient to write the sum of two integrals as one integral
by using 1− ϕ to associate two Rd values. When we can interpret a τλ function to be ‘connecting’
two Rd values, then we draw a blue line between the vertices corresponding to the two Rd

values, and similarly we draw a red line when a 1− ϕ connects two values. As examples,
we can use these to represent the following two integrals:

∫
ϕ(y)τλ(x)τλ(x − y)dxdy = , (1.21)

∫
ϕ(x)ϕ(y)ϕ(z − x)ϕ(z − y) (1 − ϕ(z)) dxdydz = . (1.22)

1.4 Applications
The result of Theorem 1.4 is very general in that the Assumptions A and B apply to very many
models. We now apply it to a number of examples.

1.4.1 The Gilbert disk model resp. the hyper-sphere RCM
For R> 0, the hyper-sphere RCM is defined by having

ϕ(x)= 1{|x|<R}. (1.23)
This is the classical model for Boolean percolation studied by Gilbert in 1961 [Gil61]. Figure
1 shows a representation of part of such a model. Writing B

(
x; a, b

)= ∫ x
0 ta−1 (1− t)b−1 dt for

the incomplete Beta function and �(x)= ∫∞
0 tx−1e−tdt is the Gamma function, we obtain the

following expansion of the critical intensity:

Corollary 1.5. For the hyper-sphere RCM with radius R= R(d)> 0,

π
d
2

�
(
d
2 + 1

)Rdλc = 1+ 3
2
√
π

�
(
d
2 + 1

)
�
(
d
2 + 1

2

)B(3
4
;
d
2

+ 1
2
,
1
2

)
+O

(
1√
d

(
16
27

) d
2
)
. (1.24)
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6 M. Dickson and M. Heydenreich

Figure 1. Left: the hyper-sphere RCM – two Poisson points are connected whenever the circles of radius R/2 overlap. Right:
the hyper-cube RCM – two Poisson points are connected whenever the cubes of side length L/2 overlap.

Remark 1.6. Here we only expand as far as the ϕ�3 (0) term, and our error is the asymptotic size of
the ϕ�4 (0) term. This is because these are the only terms for which we have rigorous closed-form
expressions for their asymptotic size. Conjecture A.8 gives the expected terms in the expansion
based on numerical estimates of their asymptotic behaviour. 	

1.4.2 The hyper-cube RCM
While the hyper-sphere model is a good example showing that the numerical integration of the
various convolutions of the adjacency function in (1.15) can get fairly involved, the calculations
simplify significantly for the hyper-cubic RCM given by

ϕ(x)=
d∏

j=1
1{|xj|≤L/2}, (1.25)

where x= (x1, . . . , xd) ∈R
d and L> 0 is a parameter. Figure 1 shows a representation of part of

such a hyper-cube RCM.

Corollary 1.7. For the hyper-cubic RCM with side length L= L(d)> 0, as d → ∞

Ldλc = 1+
(
3
4

)d
+ 3

2

(
2
3

)d
+ 2

(
115
192

)d
− 5

2

(
7
12

)d
+ 2

(
9
16

)d
+O

((
11
20

)d
)
. (1.26)

1.4.3 The Gaussian RCM

For σ 2 > 0 and 0<A≤ (
2πσ 2) d

2 , the Gaussian RCM is defined by having

ϕ(x)= A(
2πσ 2

) d
2
exp

(
− 1
2σ 2 |x|2

)
. (1.27)

The parameter σ is a length-scale parameter while theA factor ensuresA= ∫
ϕ(x)dx. The upper

bound onA is only there to ensure ϕ is [0, 1]-valued. Then we have the following expansion:

Corollary 1.8. For the Gaussian RCM with A=A(d)> 0 and σ = σ (d)> 0 such that
lim infd→∞ ϕ(0)

1
d > 0, as d → ∞

Aλc = 1+A(6πσ 2)− d
2 + 3

2
A(8πσ 2)− d

2 + 2A(10πσ 2)− d
2 +O

(
A(12πσ 2)− d

2

)
. (1.28)
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In particular, if ϕ(0)=A(2πσ 2)− d
2 = 1, then

Aλc = 1+ 3− d
2 + 3

2
× 4− d

2 + 2× 5− d
2 +O(6− d

2
)
. (1.29)

1.4.4 The coordinate-wise Cauchy RCM
In a similar flavour to the previous example, let γ > 0 and 0<A≤ (γ π)d, and define the
Coordinate-Cauchy RCM through

ϕ(x)= A
(γ π)d

d∏
j=1

γ 2

γ 2 + x2j
, (1.30)

where x= (x1, . . . , xd) ∈R
d. Like for the Gaussian RCMwe have a length-scale parameter γ while

the A factor ensures A= ∫
ϕ(x)dx and the upper bound on A is only there to ensure ϕ is [0, 1]-

valued. Then the expansion of the critical intensity is as follows:

Corollary 1.9. For the Coordinate-Cauchy RCM with A=A(d)> 0 and γ = γ (d)> 0 such that
lim infd→∞ ϕ(0)

1
d > 0, as d → ∞

Aλc = 1+A(3γπ)−d + 3
2
A(4γπ)−d + 2A(5γπ)−d +O

(
A(6γπ)−d

)
. (1.31)

In particular, if ϕ(0)=A(γ π)−d = 1, then

Aλc = 1+ 3−d + 3
2

× 4−d + 2× 5−d +O(6−d). (1.32)

Remark 1.10. The condition on ϕ(0) appearing in Corollaries 1.8 and 1.9 is to ensure that (B.1)
is satisfied. If this were not imposed, then the terms in our expansion could be so small that extra
error terms arising from the volume of small balls of fixed radius could become significant and
dominate. 	

1.5 Discussion
Our results reveal a remarkable difference between continuum percolation models and lattice
percolation: while the expansion in (1.1) and (1.2) decays algebraically in d, we observe that the
expansions in Corollaries 1.5–1.9 decay exponentially in d. Interestingly, the expansion in (1.15)
resp. (1.20) is indeed algebraic, and it is the calculation of the convolutions of ϕ that transform
it to an exponentially decaying series. This is reflected in the observation that the hyper-cubic
lattice is a ’sparse’ graph in high dimensional Euclidean space. Indeed, the analysis in [HKS20]
suggests that we do have exponential decay on lattices that use the space more efficiently such as
the body-centred cubic lattice.

Torquato [Tor12] has provided an expansion for λc using exact calculations. Interestingly, for
the hyper-cubic Boolean model, we seem to get a slightly different expansion as the ϕ�5 (0) term
is absent from their expression.

It is clear that the value of λc is highly sensitive to the choice of the connectivity function ϕ. As
a result, we get fairly different expansions for the four models in Section 1.4. Jonasson [Jon01] has
shown that for Boolean models, λc is maximised for the hyper-sphere model, and minimised for
a certain triangular shape.

Our analysis is based on the lace expansion for the (plain) random connection model derived
in [HHLM22]. A key quantity in that expansion is the lace expansion coefficient 	λc(x) (defined
in Definition 3.2 below), see (3.6). The main insight is that

∫
	λc(x)dx encodes λc, see (3.17), and

we therefore need to investigate this integral as the dimension d increases. While the original lace
expansion only needs (fairly crude) upper bounds on the different terms that constitute 	λc(x),
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in the present work we need to improve and refine these bounds to get asymptotically matching
upper and lower bounds. This is the content of Section 3.

In our main expansion in (1.15), there are various terms appearing on the right-hand side.
Apart from the constant term qϕ−1, the main contribution is given by the single loop diagram
q−3
ϕ ϕ

�3 (0). However, the order of the further terms may depend on the particular form of ϕ, e.g.
compare Corollaries 1.7 and 1.8.

It is an open problem to extend this analysis to the marked random connection model, for
which the lace expansion has recently been derived in [DH22].

2. Preliminaries
Recall that η denotes the homogeneous Poisson point process on R

d that gives the vertex set of
the RCM. We then let ξ denote the vertex set and the edge set together – the whole random
graph. We also want to consider the augmented configurations ηx and ξ x. Here ηx is produced by
introducing an extra vertex at x ∈R

d, and ξ x then takes this augmented vertex set, copies the old
edges, and independently forms edges between the old vertices and the new vertex. This can also
be extended to get ηx,y and ξ x,y for x, y ∈R

d, or for any finite number of augmenting vertices. For
the full details of this construction see [[HHLM22], Section 2.2].

Recall that ϕ(x) returns the probability that a vertex at the origin and a vertex at x have a com-
mon edge, or are adjacent. Given two vertices x, y ∈R

d, we say that x and y are connected in ξ x,y,
or x←→ y in ξ x,y, if there exists a finite sequence of distinct vertices x= u0, u1, . . . , uk, uk+1 =
y ∈ ηx,y (with k ∈N0) such that ui ∼ ui+1 for all 0≤ i≤ k. We can then define the two-point (or
pair-connectedness) function τλ : Rd → [0, 1] by

τλ(x) := Pλ

(
0←→ x in ξ0,x

)
. (2.1)

Note that in general it is possible to have two different vertices at the same position, but that since η
is distributed as a Poisson point process with a non-atomic intensity measure, the position almost
surely defines the vertex for vertices in η. If we augment η with two vertices at the same position,
then these are indeed distinct vertices and not just the same vertex – i.e. ξ x,x �= ξ x. In particular,
this means that while we take the convention that a vertex is always connected to itself, τλ(0) is
the probability that two distinct vertices at the same position are connected, and is therefore not
guaranteed to be equal to 1 for all models.

Now we introduce two preliminary results that we will use on many occasions in this paper:
Mecke’s (multivariate) equation, and the BK inequality.

Mecke’s equation. Since our vertex set η is a Poisson point process, we will often rely on a result
called Mecke’s Equation to use integral expressions to describe the expected number of certain
configurations in our RCM. For a discussion of this result see [[LP18], Chapter 4]. Given m ∈N

and a measurable non-negative function f = f (ξ , �x), the Mecke equation for ξ states that

Eλ

⎡⎣ ∑
�x∈η(m)

f (ξ , �x)
⎤⎦= λm

∫
Eλ

[
f
(
ξ x1,...,xm , �x)] d�x, (2.2)

where �x= (x1, . . . , xm) and η(m) = {(x1, . . . , xm) : xi ∈ η, xi �= xj for i �= j}.
BK inequality. We give an overview here, but the full details can be found in [HHLM22]. Given
two increasing events E1 and E2, we define E1 ◦ E2 to be the event that E1 and E2 both occur, but
do so on disjoint subsets of the vertices η. Note that in the case of E1 = {

x←→ y in ξ x,y
}
and

E2 = {u←→ v in ξu,v}, E1 ◦ E2 can still occur if x ∈ {u, v} or y ∈ {u, v} – the intermediate vertices
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need to be disjoint. The BK inequality then gives us a simple upper bound on the probability of
this disjoint occurrence.

Theorem 2.1 (BK inequality). Let E1 and E2 be two increasing events that live on some bounded
measurable subset on R

d. Then

Pλ(E1 ◦ E2)≤ Pλ(E1) Pλ(E2) . (2.3)

Proof. See [[HHLM22], Theorem 2.1]. �
Definition 2.2. We make use of a bootstrap function also used in [HHLM22] (itself adapted from
an argument in [HHS08]). Recall that we are using the scaling choice that ϕ̂(0)= qϕ = 1. For λ≥ 0
and k, l ∈R

d, we define

μλ := 1− 1
τ̂λ(0)

(2.4)

Ĝμλ(k) :=
1

1−μλϕ̂(k)
. (2.5)

Note that Ĝμλ can be interpreted as the Fourier transform of the Green’s function of a random walk
with transition density μλϕ. We can define f : R≥0 →R≥0 with

f (λ) := sup
k∈Rd

|̂τλ(k)|
Ĝμλ(k)

. (2.6)

Proposition 2.3. Suppose Assumption A holds. Then for d sufficiently large, f (λ)≤ 2 for all λ ∈
[0, λc).

Proof. This is implied by [[HHLM22], Proposition 5.10]. �
Lemma 2.4. Suppose Assumption A holds and that there exists ρ > 0 such that
lim infd→∞ ρ−dϕ�m (0) > 0. Let d be sufficiently large, m≥ 1 be even, s≥ 1, and λ ∈ [0, λc].
Then there exists Ks <∞ independent of d, m, and λ such that

sup
x∈Rd

ϕ�m � τ�sλ (x)≤Ksϕ
�m (0) . (2.7)

This is a key lemma in our proof as it allows us to identify leading order decay for convolutions of
the adjacency function and the two-point function.

Proof. First let us consider λ< λc. We slightly adapt [[HHLM22], Lemma 5.4] for our purposes.
From the Fourier inverse formula,

sup
x∈Rd

ϕ�m � τ�sλ (x)≤ sup
x∈Rd

∫
e−ik·xϕ̂(k)mτ̂λ(k)s

dk
(2π)d

≤
∫
ϕ̂(k)m |̂τλ(k)|s dk

(2π)d
. (2.8)

We can omit |·| from around ϕ̂(k)m because ϕ̂(k) is real andm is even. From the definition of the
bootstrap function f (λ), we can bound |̂τλ(k)| with f (λ)Ĝμλ(k) and then use μλ ≤ 1 to get

sup
x∈Rd

ϕ�m � τ�sλ (x)≤ f (λ)s
∫

ϕ̂(k)m(
1−μλϕ̂(k)

)s dk
(2π)d

≤ f (λ)s
∫

ϕ̂(k)m(
1− ϕ̂(k)

)s dk
(2π)d

. (2.9)

Recall the parameter b> 0 arising from Assumption (A.2). We partition the integral on the right-
hand side of (2.9) into one integral over |k| ≤ b, and one integral over |k|> b. For |k| ≤ b, (A.2)
tells us that there exists c1 > 0 such that

(
1− ϕ̂(k)

)−1 ≤ c−1
1 |k|−2, and therefore∫

|k|≤b

ϕ̂(k)m(
1− ϕ̂(k)

)s dk
(2π)d

≤ 1
cs1

∫
|k|≤b

1
|k|2s

dk
(2π)d

= 1
cs1

Sd−1
d − 2s

bd−2s

(2π)d
, (2.10)

https://doi.org/10.1017/S0963548324000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000270
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where Sd−1 = dπ
d
2�

(
1+ d

2

)−1
is the surface area of a dimension d hyper-sphere with unit

radius. An application of Stirling’s formula tells us that for all ρ > 0 we have Sd−1
d−2s

bd−2s

(2π)d
≤ ρd for

sufficiently large d. Therefore this contribution is negligible for our purposes. For |k|> b, (A.2)
tells us that

(
1− ϕ̂(k)

)−1 ≤ c−1
2 , and therefore∫

|k|>b
ϕ̂(k)m(

1− ϕ̂(k)
)s dk
(2π)d

≤ 1
cs2

∫
ϕ̂(k)m

dk
(2π)d

= 1
cs2
ϕ�m (0) . (2.11)

In conjunction with (2.9) and Proposition 2.3, this proves the result for λ< λc.
To extend the result to λ≤ λc, we note that τλ(x) is monotone increasing in λ for all x ∈R

d.
Monotone convergence and the independence of the bound on λ then proves the full result. �
Definition 2.5. For n ∈N and x, y ∈R

d, x is connected to y in ξ x,y by a path of length exactly n if
there exists a sequence of vertices x= u0, u1, . . . , un−1, un = y such that ui ∼ ui+1 for 0≤ i≤ n− 1.
We then define

{
x =n←→ y in ξ x,y

}
as the event that x is connected to y in ξ x,y by a path of length

exactly n, but no path of length< n. For λ> 0 we denote

ϕ[n](x) := Pλ

(
0 =n←→ x in ξ0,x

)
. (2.12)

In particular, ϕ[1] ≡ ϕ.
Additionally define for finite A⊂R

d,

ϕ
[n]
〈A〉

(
x, y

)
:= Pλ

(
x =n←→ y in ξ x,y〈A〉

)
. (2.13)

That is, ϕ[n]〈A〉
(
x, y

)
is the probability that there exists a path of length n connecting x and y in ξ x,y,

but none of the interior vertices in this path (that is, not the endpoints x and y) are adjacent to any
vertices in A and there is no path connecting x and y in ξ x,y that is of length < n. A more formal
definition of ξ x,y〈A〉 can be found below in Definition 3.1.

Lemma 2.6. Let x, y ∈R
d be distinct, λ> 0, and A⊂R

d be a finite number of singletons. Then for
n≥ 1,

ϕ
[1]
〈A〉(x, y)= ϕ(x− y) (2.14)

ϕ
[n+1]
〈A〉 (x, y)= (

1− ϕ(x− y)
) (

1− exp

(
−λ

∫
ϕ(v− y)ϕ[n]〈A∪{y}〉(x, v)

∏
z∈A

(1− ϕ(v− z)) dv

))
(2.15)

ϕ[n+1](x)= (1− ϕ(x))
(
1− exp

(
−λ

∫
ϕ(v)ϕ[n]〈0〉(x, v)dv

))
. (2.16)

In particular,

ϕ[2](x)= (1− ϕ(x))
(
1− exp

(−λϕ�2(x))) (2.17)

ϕ[3](x)= (1− ϕ(x))
(
1− exp

(
−λ

∫
ϕ(v) (1− ϕ(x− v))

×
(
1− exp

(
−λ

∫
ϕ(w− v)ϕ(x−w) (1− ϕ(w)) dw

))
dv
))

.

(2.18)

Proof. To show (2.14), observe that if x∼ y in ξ x,y then there are no interior points on this path
to be adjacent to A. Therefore ϕ[1]〈A〉(x, y)= ϕ[1](x− y)= ϕ(x− y).
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For (2.15), we first note that the existence of a single edge connecting x and y is independent of
everything else. Since we cannot have this edge, we have a factor of 1− ϕ(x− y) outside everything
else. Let us now consider the neighbours of y in η. The event

{
x =n+1←→ y in ξ x,y〈A〉

}
occurs exactly

when x �∼ y and there exists a neighbour v of y that is not adjacent to any point in A and has a
path of length n from v to x that does not use any vertex adjacent to A or adjacent to y (otherwise
a ‘shortcut’ would exist). The existence of such a path is exactly the event

{
x =n←→ v in ξ x,v〈A∪{y}〉

}
.

Since η is a Poisson point process, the number of such vertices is a Poisson distributed random
variable with mean given by (via Mecke’s equation)

Eλ

[
#
{
v ∈ η : v∼ y, x =n←→ v in ξ x〈A∪{y}〉, v �∼ z for all z ∈A

}]
= λ

∫
ϕ(v− y)ϕ[n]〈A∪{y}〉(x, v)

∏
z∈A

(1− ϕ(v− z)) dv. (2.19)

If X is a Poisson random variable with mean M, then P(X ≥ 1)= 1− e−M . Since the number
#
{
v ∈ η : v∼ y, x =n←→ v in ξ x〈A∪{y}〉, v �∼ z for all z ∈A

}
is a Poisson random variable, this returns

the required second factor in (2.15).
To get (2.16), use (2.15) with A= ∅ and y= 0.
To calculate ϕ[2] and ϕ[3], we iteratively use (2.14), (2.15), and (2.16). For ϕ[2] we have

ϕ[2](x)= (1− ϕ(x))
(
1− exp

(
−λ

∫
ϕ(v)ϕ[1]〈0〉(x, v)dv

))
= (1− ϕ(x))

(
1− exp

(
−λ

∫
ϕ(v)ϕ(x− v)dv

))
= (1− ϕ(x))

(
1− exp

(−λϕ�2(x))) . (2.20)

Similarly, we find

ϕ
[2]
〈0〉(x, v)= (1− ϕ(x− v))

(
1− exp

(
−λ

∫
ϕ(w− v)ϕ(x−w) (1− ϕ(w)) dw

))
, (2.21)

and therefore

ϕ[3](x)= (1− ϕ(x))
(
1− exp

(
−λ

∫
ϕ(v)ϕ[2]〈0〉(x, v)dv

))
= (1− ϕ(x))

(
1− exp

(
−λ

∫
ϕ(v) (1− ϕ(x− v))

×
(
1− exp

(
−λ

∫
ϕ(w− v)ϕ(x−w) (1− ϕ(w)) dw

))
dv
))

. (2.22)
�

Lemma 2.7. For n≥ 1, λ> 0, and x ∈R
d,

ϕ[n](x)≤ λn−1ϕ�n(x). (2.23)

Proof. The expression ϕ[n](x) gives the probability that there exists at least one path from 0 to x
of length n, and no shorter paths. We can bound this by the probability that there exists at least
one path from 0 to x of length n. Then by Markov’s inequality this is bounded by the expected
number of paths from 0 to x of length n. By Mecke’s equation this is given by λn−1ϕ�n(x). �
Lemma 2.8. For m, n≥ 1, λ> 0, and x ∈R

d,
m∑
i=1

ϕ[i](x)≤ τλ(x)≤
n∑

i=1
ϕ[i](x)+ λnϕ�(n+1)(x)+ λn+1ϕ�(n+1) � τλ(x). (2.24)
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Proof. First note that the events
{{

0 =i←→ x in ξ0,x
}}

i∈N are pairwise disjoint. They are also all

contained in the event
{
0←→ x in ξ0,x

}
. Therefore

∑m
i=1 ϕ

[i](x)≤ τλ(x).
For the upper bound, the above comments imply that τλ(x)−∑n+1

i=1 ϕ
[i](x) is the probabil-

ity that 0 and x are connected in ξ0,x by some path of length n+ 2 or longer. We can then use
Markov’s inequality to bound this probability by the expected number of paths of length n+ 2 or
longer. By using Mecke’s equation, we get

τλ(x)−
n+1∑
i=1

ϕ[i](x)≤Eλ

⎡⎣∑
y∈η

1{
0 =n+1←→ y in ξ0

}
◦{y←→x in ξx}

⎤⎦
= λ

∫
Pλ

({
0 =n+1←→ y in ξ0,y

}
◦ {y←→ x in ξ y,x

})
dy

≤ λ
∫
ϕ[n+1](y)τλ(x− y)dy. (2.25)

In this last inequality we have used the BK inequality to bound the probability of the vertex-
disjoint occurrence. We therefore have

τλ(x)≤
n∑
i=1

ϕ[i](x)+ ϕ[n+1](x)+ λϕ[n+1] � τλ(x). (2.26)

Bounding ϕ[n+1](x)≤ λnϕ�(n+1)(x) (as shown in Lemma 2.7) in these last two terms then gives
the result. �
Lemma 2.9. If n1, n2, n3 ≥ 2, then∫

ϕ�n1 (x)ϕ�n2 (x)ϕ�n3 (x)dx≤
(∫

ϕ(x)dx
)n1+n2+n3−6 ∫ (

ϕ�2(x)
)3 dx. (2.27)

If n1, n2 ≥ 2 and n1 + n2 ≥ 6, then∫
ϕ�n1 (x)ϕ�n2 (x)ϕ(x)dx≤ ϕ�(n1+n2) (0)≤

(∫
ϕ(x)dx

)n1+n2−6
ϕ�6 (0) . (2.28)

Proof. Recall that the Fourier transform of the convolution of two functions equals the point-
wise product of their individual Fourier transforms, and the Fourier transform of the point-
wise product of two functions equals the convolution of their individual Fourier transforms.
Therefore ∫

ϕ�n1 (x)ϕ�n2 (x)ϕ�n3 (x)dx=
∫
ϕ̂(k)n1 ϕ̂(k− l)n2 ϕ̂(l)n3

dkdl
(2π)2d

. (2.29)

We then note that having ϕ(x)≥ 0 implies supk|ϕ̂(k)| = ϕ̂(0)= ∫
ϕ(x)dx. Therefore a supremum

bound implies∫
ϕ̂(k)n1 ϕ̂(k− l)n2 ϕ̂(l)n3

dkdl
(2π)2d

≤
(∫

ϕ(x)dx
)n1+n2+n3−6 ∫

|ϕ̂(k)|2|ϕ̂(k− l)|2|ϕ̂(l)|2 dkdl
(2π)2d

=
(∫

ϕ(x)dx
)n1+n2+n3−6 ∫

ϕ̂(k)2ϕ̂(k− l)2ϕ̂(l)2
dkdl
(2π)2d

=
(∫

ϕ(x)dx
)n1+n2+n3−6 ∫ (

ϕ�2(x)
)3 dx. (2.30)
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For the second inequality, we bound ϕ(x)≤ 1 to leave the convolution ϕ�n1 � ϕ�n2 (0)=
ϕ�(n1+n2) (0). Then like above we have

ϕ�(n1+n2) (0)=
∫
ϕ̂(k)n1+n2 dk

(2π)d

≤
(∫

ϕ(x)dx
)n1+n2−6 ∫

ϕ̂(k)6
dk
(2π)d

=
(∫

ϕ(x)dx
)n1+n2−6

ϕ�6 (0) . (2.31)
�

3. Lace expansion coefficients
The key to our proof is a decomposition of the lace expansion coefficients. In preparation for
defining them, we need a few more elementary definitions. The full definitions can be found in
[HHLM22].

Definition 3.1 (Thinnings and Pivotal Points). Let x, y ∈R
d and A⊂R

d be a locally finite set.

1. Let η be a vertex set. We produce a vertex set η〈A〉 by retaining each ω ∈ η with probability
ϕ(A,ω) :=∏

z∈A (1− ϕ(ω, z)). We call η〈A〉 an A thinning of η. A similar procedure can be
followed to define ηx〈A〉 from ηx.

2. Define
{
x A←→ y in ξ

}
to be the event that x, y ∈ η and x is connected to y in ξ , but that this

connection does not survive an A thinning of η \ {x}. In particular, the connection does not
survive if y is thinned out.

3. The vertex u ∈R
d is pivotal and u ∈ Piv(x, y, ξ ) if every path on ξ x,y that connects x to y uses

the vertex u. The end points x and y are never said to be pivotal.
4. Define

E
(
x, y;A, ξ

)
:=

{
x A←→ y in ξ

}
∩
{
� ∃w ∈ Piv(x, y; ξ ) : x A←→w in ξ

}
. (3.1)

If one considers the pivotal points from x to y in ξ in sequence, then this is the event that an
A thinning breaks the connection after the last pivotal point and not before.

5. Define {
x⇐⇒ y in ξ x,y

}
:= {

x←→ y in ξ x,y
} ◦ {x←→ y in ξ x,y

}
. (3.2)

Note that this is equal to the event that x and y are adjacent or there exist vertices u, v in η
that are adjacent to x and have disjoint paths to y that both do not contain x. Alternatively,
there are no pivotal points for the connection of x and y in ξ x,y.

We are now able to define the lace expansion coefficients, which will be the main objects of
study in the remainder of the paper.

Definition 3.2. For n ∈N, x ∈R
d, and λ ∈ [0, λc] we define

	
(0)
λ (x) := Pλ

(
0⇐⇒ x in ξ0,x

)− ϕ(x), (3.3)

	
(n)
λ (x) := λn

∫
Pλ

(
{0⇐⇒ u0 in ξ0,u00 } ∩

n⋂
i=1

E
(
ui−1, ui; Ci−1, ξ

ui−1,ui
i

))
d�u[0,n−1], (3.4)

where un = x, and {ξi}i≥0 are independent copies of ξ . We have also used Ci = C
(
ui−1, ξ

ui−1
i

)
to

denote the cluster of ui−1 in ξui−1
i for i≥ 1, and similarly C0 = C

(
0, ξ00

)
. The measure d�u[0,n−1]

denotes the Lebesgue product measure
∏n−1

i=0 dui on
(
R
d)n. Then we further define
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	λ(x)=
∞∑
n=0

(−1)n	(n)
λ (x). (3.5)

Note that [[HHLM22], Corollary 6.1] proves that	(n)
λc
(x)= limλ↗λc 	

(n)
λ (x), and (in the proof) that

	̂
(n)
λc
(0)= limλ↗λc 	̂

(n)
λ (0) and 	̂λc(0)= limλ↗λc 	̂λ(0).

Proposition 3.3. Suppose Assumption A holds and d is sufficiently large. Then for all λ≤ λc and
x ∈R

d

τλ(x)= ϕ(x)+	λ(x)+ λ(ϕ +	λ) � τλ(x). (3.6)

Proof. This is the Ornstein-Zernike equation for the random connection model, and it is proven
in [HHLM22]. The λ< λc result is in Corollary 5.3, and the λ= λc result is in Corollary 6.1. �

Our main result for this section is the following proposition.

Proposition 3.4. Suppose Assumptions A and (B.1) hold. Also let n0 ≥ 4 and N ≥ 1 be fixed. Then
as d → ∞,

λcΠ̂
(0)
λc

(0) =
1
2
λ3

c − 1
2
λ3

c + λ4
c

+ O
(

+ +
)

,
(3.7)

+ O
(

+ +
)

,

λcΠ̂
(1)
λc

(0) = λ2
c + 2λ3

c + 3λ4
c − 2λ3

c

(3.8)

λcΠ̂
(2)
λc

(0) = λ3
c + O

(
+ +

)
,

(3.9)

λcΠ̂
(3)
λc

(0) = O
(

+ +
)

,
(3.10)

λc

n0∑
n=4

(−1)n Π̂(n)
λc

(0) = O
( )

,
(3.11)

λc

∞∑
n=N

(−1)n 	̂(n)
λc
(0)=O(βN) . (3.12)

Note that when Assumption (B.2) holds we can choose a fixed finite N∗ such that

N∗ ≥
⌈

1
log β(d)

log
(

+ +
)⌉

(3.13)
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for all d ∈N. If we then let N =N∗ in (3.12), the bound becomes

λc

∞∑
n=N∗

(−1)n Π̂(n)
λc

(0) = O
(

+ +
)

.
(3.14)

Corollary 3.5. Suppose Assumptions A and B hold. Then as d → ∞,

λcΠ̂λc
(0) = −λ2

c − 3
2
λ3

c − 2λ4
c +

5
2
λ3

c

+ O
(

+ +
)

.

(3.15)

Proof. The corollary follows from 	̂λc(0)=
∑∞

n=0 (−1)n 	̂(n)
λc
(0) and the bounds in

Proposition 3.4. �
We prove Proposition 3.4 in the remainder of the section: (3.7) is proved in Section 3.1, (3.8)

is proved in Section 3.2, (3.9) is proved in Section 3.3, (3.10) and (3.11) are proven in Section 3.1.
But first we show how it implies our main result.

Proof of Theorem 1.4. By applying the Fourier transform to both sides of (3.6), we can rearrange
terms to find

τ̂λ(k)= ϕ̂(k)+ 	̂λ(k)
1− λ

(
ϕ̂(k)+ 	̂λ(k)

) (3.16)

for all k ∈R
d and λ≤ λc (where we interpret the right-hand side as = ∞ if the denominator

vanishes). Since Mecke’s equation implies χ(λ)= 1+ λτ̂λ(0), and λc = inf {λ> 0 : χ (λ)= ∞},
this tells us that λc satisfies

λc
(
1+ 	̂λc(0)

)= 1, (3.17)

where we have used ϕ̂(0)= 1. We now aim to use our expansion for 	̂λc(0) to get an expansion
for λc.

Let us denote a = , b = 3
2 − 5

2
, c = 2 , and

r = + + . Using Corollary 3.5, (3.17) becomes

λc − aλ2c − bλ3c − cλ4c +O(r)= 1. (3.18)

We can rearrange this to get

λc = 1+ aλ2c + bλ3c + cλ4c +O(r), (3.19)
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and by substituting this into itself produces

λc = 1+ a
(
1+ aλ2c + bλ3c + cλ4c +O(r))2 + b

(
1+ aλ2c + bλ3c + cλ4c +O(r))3

+ c
(
1+ aλ2c + bλ3c + cλ4c +O(r))4 +O(r)

= 1+ a+ 2a2λ2c +O(abλ3c + a3λ4c
)+ b+O(abλ2c )+ c+O(acλ2c )+O(r)

= 1+ a+ b+ c+ 2a2 +O(ab+ a3 + r
)
. (3.20)

Finally, note that b = O
( )

and so the last term is exactly as stated in our result.
�

3.1 Bounds on the zeroth lace expansion coefficient
In this subsection we prove (3.7).

Upper bound on 	̂(0)
λc
(0)

Lemma 3.6. Suppose Assumption A holds. Then as d → ∞,

λcΠ̂
(0)
λc

(0) ≤ 1
2
λ3

c − 1
2
λ3

c + λ4
c

+ O
(

+ +
)

.

(3.21)

Proof. We first consider Pλ
(
0⇐⇒ x in ξ0,x

)
. Since the existence of an edge between 0 and x is

independent of everything else,

Pλ

(
0⇐⇒ x in ξ0,x

)
= ϕ(x)+ (1− ϕ(x)) Pλ

(∃u, v ∈ η : 0∼ u, 0∼ v,
{
u←→ x in ξ x

} ◦ {v←→ x in ξ x
})

. (3.22)

Then note that the disjoint occurrence is a subset of the intersection of each occurrence:
{u←→ x in ξ x} ◦ {v←→ x in ξ x} ⊂ {u←→ x in ξ x} ∩ {v←→ x in ξ x}. Therefore

Pλ

(∃u, v ∈ η : u �= v, 0∼ u, 0∼ v,
{
u←→ x in ξ x

} ◦ {v←→ x in ξ x
})

≤ Pλ

(
#
{
u ∈ η : 0∼ u, u←→ x in ξ x

}≥ 2
)
. (3.23)

Since η is a Poisson point process, the number of such vertices is Poisson distributed and Mecke’s
equation tells us that the expected number of such vertices is given by

Eλ

[
#
{
u ∈ η : 0∼ u, u←→ x in ξ x

}]= λ

∫
ϕ(v)τλ(x− v)dv= λϕ � τλ(x). (3.24)

Therefore

Pλ(∃u, v ∈ η : u �= v, 0∼ u, 0∼ v,
{
u←→ x in ξ x

} ◦ {v←→ x in ξ x
})

≤ 1− Pλ

(
#
{
u ∈ η : 0∼ u, u←→ x in ξ x

}≤ 1
)

= 1− exp(−λϕ � τλ(x))− λϕ � τλ(x) exp(−λϕ � τλ(x)) . (3.25)
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Using this with 1− e−x − xe−x ≤ 1
2x

2 + 1
6x

3 for all x ∈R and (3.3), we can get

λ	̂
(0)
λ (0)≤ λ

∫
(1− ϕ(x))

(
1− exp(−λϕ � τλ(x))− λϕ � τλ(x) exp(−λϕ � τλ(x))

)
dx

≤ 1
2
λ

∫
(1− ϕ(x)) (λϕ � τλ(x))2 dx+ 1

6
λ

∫
(1− ϕ(x)) (λϕ � τλ(x))3 dx. (3.26)

By applying τλ(x)≤ ϕ(x)+ λϕ � τλ(x) iteratively, we get∫
(1− ϕ(x)) (ϕ � τλ(x))2 dx

≤
∫
(1− ϕ(x)) ϕ�2(x)2dx+ 2λ

∫
(1− ϕ(x)) ϕ�2(x)ϕ�3(x)dx

+ 2λ2
∫
(1− ϕ(x)) ϕ�2(x)ϕ�4(x)dx

+ 2λ3
∫
(1− ϕ(x)) ϕ�2(x)ϕ�4 � τλ(x)dx+ λ2

∫
(1− ϕ(x)) ϕ�3(x)2dx

+ 2λ3
∫
(1− ϕ(x)) ϕ�3(x)ϕ�3 � τλ(x)dx+ λ4

∫
(1− ϕ(x)) ϕ�3 � τλ(x)2dx

≤
∫
(1− ϕ(x)) ϕ�2(x)2dx+ 2λ

∫
(1− ϕ(x)) ϕ�2(x)ϕ�3(x)dx

+ 3λ2ϕ�6 (0)+ 4λ3ϕ�6 � τλ(0)+ λ4ϕ�6 � τ�2λ (0) . (3.27)

From Lemma 2.4, we know that for λ≤ λc these last three terms are all O(ϕ�6 (0)). By further
expanding the first two terms via the (1− ϕ(x)) factors, we find∫

(1− ϕ(x))
(
ϕ � τλc(x)

)2 dx= ϕ�4 (0)−
∫
ϕ(x)ϕ�2(x)2dx+ 2λcϕ�5 (0)

+O
(∫

ϕ(x)ϕ�2(x)ϕ�3(x)dx+ ϕ�6 (0)
)
. (3.28)

By the same approach, we find∫
(1− ϕ(x)) (ϕ � τλ(x))3 dx

≤
∫
(1− ϕ(x)) ϕ�2(x)3dx+ 3λ

∫
(1− ϕ(x)) ϕ�2(x)2ϕ�3(x)dx

+ 3λ2
∫
(1− ϕ(x)) ϕ�2(x)2ϕ�4(x)dx+ 3λ3

∫
(1− ϕ(x)) ϕ�2(x)2ϕ�4 � τλ(x)dx

+ 3λ2
∫
(1− ϕ(x)) ϕ�2(x)ϕ�3(x)2dx+ 6λ3

∫
(1− ϕ(x)) ϕ�2(x)ϕ�3(x)ϕ�4(x)dx

+ 6λ4
∫
(1− ϕ(x)) ϕ�2(x)ϕ�3(x)ϕ�4 � τλ(x)dx+ 3λ4

∫
(1− ϕ(x)) ϕ�2(x)ϕ�3 � τλ(x)2dx

+ λ3
∫
(1− ϕ(x)) ϕ�3(x)3dx+ 3λ4

∫
(1− ϕ(x)) ϕ�3(x)2ϕ�3 � τλ(x)dx

+ 3λ5
∫
(1− ϕ(x)) ϕ�3(x)ϕ�3 � τλ(x)2dx+ λ6

∫
(1− ϕ(x)) ϕ�3 � τλ(x)3dx
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18 M. Dickson and M. Heydenreich

≤
∫
ϕ�2(x)3dx+ 3λ

∫
ϕ�2(x)2ϕ�3(x)dx

+ 3λ2ϕ�6 (0)
∫
ϕ(v)dv+ 3λ3ϕ�6 � τλ(0)

∫
ϕ(v)dv

+ 3λ2ϕ�6 (0)
∫
ϕ(v)dv+ 6λ3ϕ�6 (0)

(∫
ϕ(v)dv

)2

+ 6λ4ϕ�6 � τλ(0)
(∫

ϕ(v)dv
)2

+ 3λ4ϕ�6 � τ�2λ (0)
∫
ϕ(v)dv

+ λ3ϕ�6 (0)
(∫

ϕ(v)dv
)2

+ 3λ4ϕ�6 � τλ(0)
(∫

ϕ(v)dv
)2

+ 3λ5ϕ�6 � τ�2λ (0)
(∫

ϕ(v)dv
)2

+ λ6ϕ�6 � τ�2λ (0)
(∫

ϕ(v)dv
)3

. (3.29)

Note that in this last inequality we first bound 1− ϕ(x)≤ 1 and then identify two paths that form
a loop – this contributes the terms ϕ�6 (0), ϕ�6 � τλ(0), etc. This leaves a third path from 0 to x.
We deal with this by bounding one of the steps in the convolution by 1 and the remaining steps
form a ‘loose’ integration. For example,∫

(1− ϕ(x)) ϕ�3 � τλ(x)3dx≤
∫
ϕ�3 � τλ(x)2

(∫
ϕ�3(u)τλ(x− u)du

)
dx

≤
∫
ϕ�3 � τλ(x)2

(∫
ϕ�3(u)du

)
dx= ϕ�6 � τ�2λ (0)

(∫
ϕ(v)dv

)3
. (3.30)

Recall that we have chosen the scaling
∫
ϕ(v)dv= 1 for our proof. Then through applications of

Lemma 2.4 and Lemma 2.9 we find that∫
(1− ϕ(x))

(
ϕ � τλc(x)

)3 dx=O
(∫

ϕ�2(x)3dx+ ϕ�6 (0)
)
. (3.31)

In summary, these bounds give us

λc	̂
(0)
λc
(0)≤ 1

2
λ3c

∫
ϕ�2(x)2dx− 1

2
λ3c

∫
ϕ(x)ϕ�2(x)2dx+ λ4c

∫
ϕ�2(x)ϕ�3(x)dx

+O
(∫

ϕ�2(x)3dx+
∫
ϕ(x)ϕ�2(x)ϕ�3(x)dx+ ϕ�6 (0)

)
(3.32)

as required. �
Lower bound on 	̂(0)

λc
(0)

Lemma 3.7.

λcΠ̂
(0)
λc

(0) ≥ 1
2
λ3

c − 1
2
λ3

c + λ4
c + O

(
+

)
.

(3.33)

Proof. We lower bound 	
(0)
λ (x) by identifying an appropriate subset of

{
0⇐⇒ x in ξ0,x

}
.

Consider F :=F1 ∪F2 ∪F3, where

F1 := {0∼ x} (3.34)
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F2 := {0 �∼ x} ∩ {# {u ∈ η : 0∼ u∼ x} ≥ 2} (3.35)

F3 := {0 �∼ x} ∩ {# {u ∈ η : 0∼ u∼ x} = 1} ∩
{
#
{
v ∈ η : 0∼ v in ξ0, v =2←→ x in ξ v,x〈0〉

}
≥ 1

}
.

(3.36)

In each, either 0 is adjacent to x or there exist two vertex-disjoint paths from 0 to x. Therefore
F ⊂ {

0⇐⇒ x in ξ0,x
}
. The components F1, F2, and F3 are also all disjoint by construction, so

Pλ

(
0⇐⇒ x in ξ0,x

)≥ Pλ(F1)+ Pλ(F2)+ Pλ(F3) . (3.37)

Firstly be definition we have

Pλ(F1)= ϕ(x). (3.38)

Since η is distributed as a Poisson point process on R
d with intensity λ, we can use Mecke’s

equation to get

Eλ[# {u ∈ η : 0∼ u∼ x}]= λ

∫
ϕ(x− u)ϕ(u)du= λϕ�2(x), (3.39)

which fully describes the distribution of the Poisson random variable # {u ∈ η : 0∼ u∼ x}. The
independence of this event from {0 �∼ x} then gives

Pλ(F2)= (1− ϕ(x))
(
1− exp

(−λϕ�2(x))− λϕ�2(x) exp
(−λϕ�2(x))) . (3.40)

For F3, we first define ηB := {u ∈ η : 0∼ u∼ x} (blue vertices), and ηR := η \ ηB (red vertices).
Observe that ηB is distributed as a Poisson point process on R

d with intensity measure λϕ(x−
u)ϕ(u)du. In particular, Eλ[#ηB]= λϕ�2(x)≤ λ ∫ ϕ(u)du<∞ and therefore Pλ(#ηB = 0) > 0.
We similarly define ξB and ξR, which retain the edges between vertices in their respective ver-
tex sets only. By the definition of Poisson point processes, ηB and ηR are independent and so ξB
and ξR are also independent. If we let A denote a measurable set of configurations, this gives

Pλ({#ηB = 1} ∩ {ξR ∈A})= Pλ(#ηB = 1) Pλ(ξR ∈A)

= Pλ(#ηB = 1)
Pλ(#ηB = 0) Pλ(ξR ∈A)

Pλ(#ηB = 0)
≥ Pλ(#ηB = 1) Pλ(#ηB = 0) Pλ(ξR ∈A)
= Pλ(#ηB = 1) Pλ({#ηB = 0} ∩ {ξR ∈A}) , (3.41)

where Pλ(#ηB = 1)= λϕ�2(x) exp
(−λϕ�2(x)). Now we fix

A=
{
#
{
v ∈ η : 0∼ v in ξ0, v =2←→ x in ξ v,x〈0〉

}
≥ 1

}
, (3.42)

or ‘x and 0 are connected by at least one path of length 3 that uses only one vertex adjacent to
0.’ We thus see that {0 �∼ x} ∩ {#ηB = 1} ∩ {ξR ∈A} =F3, and {0 �∼ x} ∩ {#ηB = 0} ∩ {ξR ∈A} ={
0 =3←→ x in ξ0,x

}
. The independence of everything else from {0 �∼ x} then gives

Pλ(F3)≥λϕ�2(x) exp
(−λϕ�2(x)) ϕ[3](x)

=λϕ�2(x) exp(−λϕ�2(x)) (1− ϕ(x))×
(
1− exp

(
−λ

∫
ϕ(v) (1− ϕ(x− v))(

1− exp
(

−λ
∫
ϕ(x−w) (1− ϕ(w)) ϕ(w− v)dw

))
dv
))

, (3.43)

where we have used our expression for ϕ[3](x) from Lemma 2.6.
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Therefore we now have

	̂
(0)
λc
(0)≥

∫ (
Pλc(F2)+ Pλc(F3)

)
dx, (3.44)

and we want to lower bound the integrals of Pλc(F2) and Pλc(F3).
By using 1− e−x − xe−x ≥ 1

2x
2 − 1

2x
3 for all x ∈R,

λ

∫
Pλ (F2) dx ≥ 1

2
λ3 − 1

2
λ4 =

1
2
λ3 − 1

2
λ3 + O

( )
.

(3.45)

We find our lower bound on λ
∫
Pλ(F3) dx in a few more steps. Since we have xe−x ≥ x− x2 for

all x ∈R,

λϕ�2(x) exp −λϕ�2(x)
)
(1 − ϕ(x)) ≥ λ

0

x

− λ2

0

x

. (3.46)

Since we have 1− e−x ≥ x− 1
2x

2 for all x ∈R,

1 − exp
(
−λ

∫
ϕ(x − w) (1 − ϕ(w)) ϕ(w − v)dw

)
≥ λ

0

v

x

− 1
2
λ2

0

v
x

, (3.47)

and

λ

∫
ϕ(v) (1 − ϕ(x − v))

(
1 − exp

(
−λ

∫
ϕ(x − w) (1 − ϕ(w)) ϕ(w − v)dw

))
dv

≥ λ2

0

x

− 1
2
λ3

0

x

.

(3.48)

Since x �→ 1− e−x is monotone increasing and 1− e−x ≥ x− 1
2x

2 for all x ∈R,

1 − exp
(
−λ

∫
ϕ(v) (1 − ϕ(x − v))

(
1 − exp

(
−λ

∫
ϕ(x − w) (1 − ϕ(w)) ϕ(w − v)dw

))
dv

)

≥ λ2

0

x

− 1
2
λ3

0

x

− 1
2
λ4

0

x

+
1
2
λ5

0

x

− 1
8
λ6

0

x

.

(3.49)

When we combine (3.46) and (3.49) and integrate over x, we can simplify many of the resulting
diagrams by bounding 1− ϕ ≤ 1. Suitably doing this for all but the ‘first’ diagram and applying
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Lemma 2.9 allows us to show that these are O
(

+
)
. As an example, the

diagram resulting from the first term in (3.46) and the second term in (3.49) becomes

≤ = ≤ = . (3.50)

Here in the first inequality we bounded the 1− ϕ ≤ 1, and in the equalities we have been able to
move the origin (the hollow node) because convolution is a commutative binary relation – like we
did in (1.18). The second inequality is a direct application of Lemma 2.9. Therefore

λ

∫
Pλ (F3) dx ≥ λ4 + O

(
+

)

= λ4 + O
(

+
)

,

(3.51)

where in the last equality we have expanded the 1− ϕ edges in the first diagram to produce two
diagrams for each such expanded edge. One such resulting diagram is the ϕ�5 (0) term, while we
can bound the others in the same way as above and put them in the error term.

We then have a lower bound on 	̂(0)
λ (0) for any λ> 0, and this gives the required result. �

3.2 Bounds on the first lace expansion coefficient
In this subsection we prove (3.8).

Upper bound on 	̂(1)
λc
(0)

Lemma 3.8. Suppose Assumption A holds. Then as d → ∞,

λcΠ̂
(1)
λc

(0) ≤ λ2
c + 2λ3

c + 3λ4
c − 2λ3

c

+ O
(

+ +

)
.

(3.52)

We borrow from [HHLM22] in bounding Pλ

(
{0⇐⇒ u in ξ0,u0 } ∩ E

(
u, x;C0, ξu,x1

))
, but we

need to make refinements so that our lower bound will match the upper bound at the precision we
are interested in.We begin by bounding {0⇐⇒ u in ξ0,u0 } ∩ E

(
u, x;C0, ξu,x1

)
by a slightly different

event.

Definition 3.9. Let ξ0, ξ1 be independent instances of the random graph with locally finite vertex
sets η0 and η1.

• Let {u� x in (ξ0, ξ1)} denote the event that u ∈ η0 and x ∈ η1, but that x does not survive
a C

(
u, ξu0

)
thinning of η1.
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• Let m ∈N and �x, �y ∈ (
R
d)m. We define ©↔

m ((xj, yj)1≤j≤m; ξ ) as the event that {xj ←→
yj in ξ} occurs for every 1≤ j≤m with the additional requirement that every point in η
is the interior vertex of at most one of the m paths, and none of the m paths contains an
interior vertex in the set

{
xj : j ∈ [m]

}∪ {
yj:j ∈ [m]

}
.

• Let ©�
m

(
(xj, yj)1≤j≤m; (ξ0, ξ1)

)
be the intersection of the following two events. Firstly, that

©↔
m−1

(
(xj, yj)1≤j<m; ξ0

)
occurs but no path uses xm or ym as an interior vertex. Secondly,

that {xm � ym in (ξ0[η0 \ {xi, yi}1≤i<m], ξ1)} occurs in such a way that at least one point z
in ξ0 that is responsible for thinning out ym is connected to xm by a path γ so that z as well as
all interior vertices of γ are not contained in any path of the ©↔

m−1((xj, yj)1≤j<m; ξ0) event.

Now let t, u,w, x, z ∈R
d. Then define

F(1)0 (w, u, z; ξ0, ξ1) := {0 �∼ u in ξ0} ∩ ©�
4 ((0, u) , (0,w) , (u,w) , (w, z) ; (ξ0, ξ1)) (3.53)

F(2)0 (w, u, z; ξ0, ξ1) := {w= 0} ∩ {0∼ u in ξ1} ∩ {w� z in (ξ0 \ {u}, ξ1)} (3.54)

F(1)1 (u, t, z, x; ξ1) := {# {t, z, x} = 3} ∩ ©↔
4 ((u, t) , (t, z) , (t, x) , (z, x) ; ξ1)∩ {t �∼ x in ξ1} (3.55)

F(2)1 (u, t, z, x; ξ1) := {t = z = x} ∩ {u←→ x in ξ1} . (3.56)

Also let F0 := F(1)0 ∪ F(2)0 and F1 := F(1)1 ∪ F(2)1 .

Lemma 3.10. Let x, u ∈R
d be distinct points. Then

1{0⇐⇒u in ξ0,u0

}1E(u,x;C0,ξu,x1 )
≤
∑
z∈ηx1

⎛⎜⎝∑
w∈η00

1F0
(
w,u,z; ξ0,u0 ,ξu,x1

)
⎞⎟⎠
⎛⎝∑

t∈ηu,x1

1F1(u,t,z,x; ξu,x1 )

⎞⎠ . (3.57)

Proof. We first prove that

1E(u,x;C0,ξu,x1 )
≤
∑
z∈ηx1

∑
t∈ηu,x1

1F1(u,t,z,x; ξu,x1 )
1{0�z in

(
ξ00 ,ξ

u,x
1

)}. (3.58)

Note that the event E
(
u, x;C0, ξu,x1

)
is contained in the event that u is connected to x and that this

connection fails after a C0 thinning of ηx1. There are two cases under which this can happen.
Case (a): The point x itself is thinned out. In this case

E
(
u, x; C0, ξu,x1

)⊂ {
u←→ x in ξu,x1

}∩ {
0� x in

(
ξ00 , ξ

u,x
1

)}
= F(2)1

(
u, x, x, x; ξu,x1

)∩ {
0� x in

(
ξ00 , ξ

u,x
1

)}
. (3.59)

Case (b): The point x is not thinned out. This implies that there is at least one interior point
on the path between u and x, and that at least one of these interior points is thinned out by C0.
Let t be the last pivotal point in Piv(u, x; ξu,x1 ), and set t = u if Piv(u, x; ξu,x1 )= ∅. Since t is the last
pivotal point (or there are no pivotal points), we have

{
t ⇐⇒ x in ξ x1

}
. The event E

(
u, x;C0, ξu,x1

)
implies that all the paths from t to x fail after a C0 thinning, but that t is not thinned out. We can
pick any thinned out point on a path from t to x to be our z, while noting that t and x cannot be
adjacent. Therefore this case corresponds to the possible occurrences of F(1)1 , and we have proven
(3.58).

Now it only remains to prove that

1{0⇐⇒u in ξ0,u0

}1{0�z in
(
ξ00 ,ξ

u,x
1

)} ≤
∑
w∈η00

1F0
(
w,u,z; ξ0,u0 ,ξu,x1

). (3.60)
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The event
{
0� z in

(
ξ00 , ξ

u,x
1

)}
implies that there exists at least one point in C0 that is responsi-

ble for thinning out z. Let γ denote a the path from 0 to this point in C0. We once again now have
two cases to consider.

Case (a): 0 �∼ u in ξ0,u0 . Then
{
0⇐⇒ u in ξ0,u0

}
implies that there exist two disjoint paths

(denoted γ ′ and γ ′′) from 0 to u. Both of these paths are necessarily of length greater than or
equal to 2. Let w denote the last vertex γ shares with either γ ′ or γ ′′ (allowing for the possibility
that w= 0). Requiring that γ , γ ′, and γ ′′ exist results precisely in the event F(1)0 .

Case (b): 0∼ u in ξ0,u0 . Now we fix w= 0 immediately. The existence of the path from 0 to the
thinning point implies the event F(2)0 . �
Definition 3.11 (The ψ functions). Let r, s, u,w, x, y ∈R

d and n≥ 1. We first set τ ◦
λ (x) :=

λ−1δx,0 + τλ(x) and τ (≥2)
λ (x) := Pλ

(
0 ≥2←→ x in ξ0,x

)
= τλ(x)− ϕ(x). Also define

ψ
(1)
0 (w, u) := λ2τ (≥2)

λ (u)τλ(u−w)τλ(w),

ψ
(2)
0 (w, u) := λ2δw,0τ

(≥2)
λ (u)

∫
τλ(u− t)τλ(t)dt,

ψ
(3)
0 (w, u) := λϕ(u)δw,0,

ψ (1)(w, u, r, s) := λ4τλ(w− u)
∫
τ ◦
λ (t − s)τλ(t −w)τλ(u− z)τλ(z − t)τλ(z − r)dzdt,

ψ (2)(w, u, r, s) := λ4τ ◦
λ (w− s)

∫
τλ(t − z)τλ(z − u)τλ(u− t)τ ◦

λ (t −w)τλ(z − r)dzdt,

ψ (3)(w, u, r, s) := λ2τλ(u−w)τλ(w− s)τλ(u− r),

ψ (4)(w, u, r, s) := λδw,sτλ(u−w)τλ(u− r),

ψ (1)
n (x, r, s) := λ3

∫
τ ◦
λ (t − s)τλ(z − r)τλ(t − z)τλ(z − x)τ (≥2)

λ (x− t)dzdt,

ψ (2)
n (x, r, s) := λτλ(x− s)τλ(x− r),

and set ψ0 :=ψ
(1)
0 +ψ

(2)
0 +ψ

(3)
0 , ψn :=ψ

(1)
n +ψ

(2)
n , and ψ :=ψ (1) +ψ (2) +ψ (3) +ψ (4). These

functions are represented as diagrams in Figure 2.

For our bounds on 	̂(1)
λc
(0) we will only require ψ0 and ψ1. Later we will also use ψ to bound

	̂
(n)
λc
(0) for n≥ 2.

Lemma 3.12.

λcΠ̂
(1)
λc

(0) ≤
∫

ψ0 (w, u) ψ1 (x, w, u) dudwdx

= λ2
c

∫
ϕ(u)τλc

(x)τλc
(u − x)dudx + O

(
+ +

)
.

(3.61)

Proof. The first inequality is proven in very nearly exactly the same way as [[HHLM22],
Proposition 7.2], but with the extra refinement of our Lemma 3.10. The first differ-
ence is that our event F(1)1 has the intersection with {t �∼ x in ξ1}. Since the event
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i)

Figure 2. Diagrams of theψ0,ψ , andψn functions.

©↔
4 ((u, t) , (t, z) , (t, x) , (z, x) ; ξ1) ensures that t and x are connected in ξ1, this means that the

event t ≥2←→ x in ξ1 occurs. This then manifests in the end result as the occurrence of a τ (≥2)
λ

function rather than a τλ function in the integral in ψ (1)
1 . Similarly, the event F(1)0 implies that

0 ≥2←→ u in ξ0, and this results in the τ (≥2)
λ (u) appearing rather than τλ(u) in ψ (1)

0 and ψ (2)
0 .

For the equality, we first note that∫
ψ

(3)
0 (w, u) ψ (2)

1 (x,w, u) dudwdx= λ2
∫
ϕ(u)τλ(x)τλ(u− x)dudx. (3.62)

Our task in then to show that all the other terms
∫
ψ

(j0)
0 (w, u) ψ (j1)

1 (x,w, u) dudwdx are
error terms. To make it clearer what we are trying to bound, we present the integral∫
ψ0 (w, u) ψ1(x,w, u) dudwdx diagrammatically:

λΠ̂(1)
λ (0) ≤ λ5

◦
≥

2 ≥ 2 + λ3 ≥
2 + λ5

◦≥
2

≥ 2

+ λ3

≥
2 + λ4

◦ ≥ 2 + λ2 .

(3.63)
The last of these six diagrams will be the only relevant one for our level of precision. To
demonstrate how we bound these other five, we examine the second:
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λ3 ≥
2 = λ3

∫
τ

(≥2)
λ (u)τλ(w)τλ(w − u)τλ(x − w)τλ(x − u)dudwdx. (3.64)

By using Lemma 2.8 (with n= 5) we can bound τ
(≥2)
λ (u) in terms of ϕ[i](x) (for i=

2, 3, 4, 5), ϕ�6(u), and ϕ�6 � τλ(u). Then we can further bound this by using Lemma 2.7 to get
τ
(≥2)
λ (u)≤ λϕ�2(u)+ λ2ϕ�3(u)+ λ3ϕ�4(u)+ λ4ϕ�5(u)+ λ5ϕ�6(u)+ λ6ϕ�6 � τλ(u). For the two
diagrams that result from the last two terms in this expansion, we can bound τλ(w− u)≤ 1
to get terms of the form λj+5ϕ�6 � τ

�j
λ (0) for j ∈ {3, 4}. From Lemma 2.4, both of these are

O(ϕ�6 (0)) when λ≤ λc. For the remaining diagrams we then bound τλ(w)≤ ϕ(w)+ λϕ�2(w)+
λ2ϕ�3(w)+ λ3ϕ�4(w)+ λ4ϕ�4 � τλ(w) and if the diagrams contain a loop of at least six ϕ func-
tions and maybe some τλ functions, we once again bound τλ(w− u)≤ 1 and use Lemma 2.4 to
show that they are O(ϕ�6 (0)). For the remaining diagrams we bound τλ(x−w)≤ ϕ(x−w)+
λϕ�2(x−w)+ λ2ϕ�3(x−w)+ λ3ϕ�3 � τλ(x−w). Again bounding τλ(w− u)≤ 1 allows us to use
Lemma 2.4 to show that some of these diagrams are O(ϕ�6 (0)). After bounding τλ(x− u)≤
ϕ(x− u)+ λϕ�2(x− u)+ λ2ϕ�2 � τλ(x− u) and showing that some terms are O(ϕ�6 (0)), we
arrive at

λ3
c

≥
2 ≤ λ4

c

∫
ϕ�2(u)ϕ(w)τλc(w − u)ϕ(x − w)ϕ(x − u)dudwdx + O ϕ�6 (0)

)
.

(3.65)

Then we bound τλ(w− u)≤ ϕ(w− u)+ λϕ�2(w− u)+ λ2ϕ�3(w− u)+ λ3ϕ�3 � τλ(w− u) to get

λ4
∫
ϕ�2(u)ϕ(w)τλ(w− u)ϕ(x−w)ϕ(x− u)dudwdx

≤ λ4
∫
ϕ�2(u)ϕ(w)ϕ(w− u)ϕ(x−w)ϕ(x− u)dudwdx

+ λ5
∫
ϕ�2(u)ϕ(w)ϕ�2(w− u)ϕ(x−w)ϕ(x− u)dudwdx

+ λ6
∫
ϕ�2(u)ϕ(w)ϕ�3(w− u)ϕ(x−w)ϕ(x− u)dudwdx

+ λ7
∫
ϕ�2(u)ϕ(w)ϕ�3 � τλ(w− u)ϕ(x−w)ϕ(x− u)dudwdx.

(3.66)
From the commutativity of convolution, observe that the first two terms are
O(∫ ϕ(x)ϕ�2(x)ϕ�3(x)dx). For the last two terms we bound

∫
ϕ(x−w)ϕ(x− u)dx≤∫

ϕ(x−w)dx= 1 for all u,w ∈R
d. Therefore we can apply Lemma 2.4 to show that these

diagrams areO(ϕ�6 (0)) when λ≤ λc. In summary, we have

λ3
c

≥
2 = O

(
+

)
. (3.67)
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Repeating these ideas for the other diagrams produces

λ5
c ◦

≥
2 ≥ 2 = O

( )
, (3.68)

λ5
c ◦≥

2

≥ 2 = O
( )

, (3.69)

λ3
c ≥

2 = O
(

+
)

, (3.70)

λ4
c ◦ ≥ 2 = O

(
+

)
. (3.71)

�

Lemma 3.13. Let x, u ∈R
d. Then

τλ(x)τλ(u− x)≤ ϕ(x)ϕ(u− x)+ ϕ(x)ϕ[2](u− x)+ ϕ[2](x)ϕ(u− x)+ ϕ(x)ϕ[3](u− x)

+ ϕ[3](x)ϕ(u− x)+ ϕ[2](x)ϕ[2](u− x)+ λ3ϕ(x)ϕ�4(u− x)

+ λ4ϕ(x)ϕ�4 � τλ(u− x)+ λ3ϕ�2(x)ϕ�3(u− x)+ λ4ϕ�2(x)ϕ�3 � τλ(u− x)

+ λ3ϕ�3(x)ϕ�2(u− x)+ λ4ϕ�3(x)ϕ�2 � τλ(u− x)+ λ3ϕ�4(x)ϕ(u− x)

+ λ4ϕ�4(x)ϕ � τλ(u− x)+ λ4ϕ�4 � τλ(x)ϕ(u− x)+ λ5ϕ�4 � τλ(x)ϕ � τλ(u− x).
(3.72)

Therefore

λ2
cϕ � τ�2

λc
(0) ≤ λ2

cϕ
�3 (0) + 2λ2

cϕ
�2 � ϕ[2] (0) + 2λ2

cϕ
�2 � ϕ[3] (0) + λ2

cϕ � ϕ[2] � ϕ[2] (0) + O ϕ�6 (0)
)

≤ λ2
c + 2λ3

c + 3λ4
c − 2λ3

c + O
(

+
)

.

(3.73)

Proof. For equation (3.72) we first expand τλ(x) using the upper bound from Lemma 2.8 with
n= 3. This produces

τλ(x)τλ(u− x)≤ ϕ(x)τλ(u− x)+ ϕ[2](x)τλ(u− x)+ ϕ[3](x)τλ(u− x)+ λ3ϕ�4(x)τλ(u− x)

+ λ4ϕ�4 � τλ(x)τλ(u− x). (3.74)
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We then expand the first τλ(u− x) using the upper bound from Lemma 2.8 with n= 3, the second
with n= 2, the third with n= 1, and the last two with n= 0. This produces

τλ(x)τλ(u− x)≤ ϕ(x)ϕ(u− x)+ ϕ(x)ϕ[2](u− x)+ ϕ(x)ϕ[3](u− x)+ λ3ϕ(x)ϕ�4(u− x)
+ λ4ϕ(x)ϕ�4 � τλ(u− x)+ ϕ[2](x)ϕ(u− x)+ ϕ[2](x)ϕ[2](u− x)
+ λ2ϕ[2](x)ϕ�3(u− x)+ λ3ϕ[2](x)ϕ�3 � τλ(u− x)+ ϕ[3](x)ϕ(u− x)
+ λϕ[3](x)ϕ�2(u− x)+ λ2ϕ[3](x)ϕ�2 � τλ(u− x)+ λ3ϕ�4(x)ϕ(u− x)
+ λ4ϕ�4(x)ϕ � τλ(u− x)+ λ4ϕ�4 � τλ(x)ϕ(u− x)+ λ5ϕ�4 � τλ(x)ϕ � τλ(u− x).

(3.75)

For the terms with 5 or more ‘factors of ϕ’, we then bound ϕ[m](x)≤ λm−1ϕ�m(x) as in Lemma 2.7
to get (3.72).

For the second part, we use (3.72) in conjunction with Lemma 2.4 to show that many
of the terms are O(ϕ�6 (0)) and produce the first inequality. We then immediately have

λ2ϕ�3 (0) = λ2 , and simply bounding ϕ[3] ≤ λ2ϕ�3 and ϕ[2] ≤ λϕ�2 gives

2λ2ϕ�2 � ϕ[3] (0) + λ2ϕ � ϕ[2] � ϕ[2] (0) ≤ 3λ4 . (3.76)

To bound 2λ2ϕ�2 � ϕ[2] (0) appropriately requires a little more care though. Recall from (2.17)
that ϕ[2](x)= (1− ϕ(x))

(
1− exp

(−λϕ�2(x))). Using 1− e−x ≤ x− 1
2x

2 + 1
6x

3 for all x ∈R then
gives

λ2ϕ�2 � ϕ[2] (0)≤ λ3
∫
(1− ϕ(x)) ϕ�2(x)2dx

− 1
2
λ4

∫
(1− ϕ(x)) ϕ�2(x)3dx+ 1

6
λ5

∫
(1− ϕ(x)) ϕ�2(x)4dx. (3.77)

The second term we can safely neglect, and for the third term we use 1− ϕ(x)≤ 1 and ϕ�2(x)≤∫
ϕ(x)dx= 1 for all x ∈R

d. This produces

λ2ϕ�2 � ϕ[2] (0) ≤ λ3

∫
(1 − ϕ(x)) ϕ�2(x)2dx +

1
6
λ5

∫
ϕ�2(x)3dx

= λ3 − λ3 + O
( )

,

(3.78)as required. �
This concludes the proof of Lemma 3.8.

Lower bound on 	̂(1)
λc
(0)

Lemma 3.14.

λcΠ̂
(1)
λc

(0) ≥ λ2
c + 2λ3

c + 3λ4
c − 2λ3

c + O
(

+
)

(3.79)
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Proof. Our strategy is to identify disjoint events contained in {0⇐⇒ u in ξ0,u0 } ∩ E
(
u, x;C0, ξu,x1

)
for each u, x ∈R

d, and show that the integral of their probabilities is equal to our upper bound to
the required precision. Our disjoint events are the following:

G1 :=
{
0∼ u in ξ0,u0

}
∩ {

u∼ x in ξu,x1
}∩

{
x /∈ ηu,x1,〈0〉

}
(3.80)

G2 :=
{
0∼ u in ξ0,u0

}
∩
{
u 2←→ x in ξu,x1

}
∩
{
x /∈ ηu,x1,〈0〉

}
(3.81)

G3 :=
{
0∼ u in ξ0,u0

}
∩ {

u∼ x in ξu,x1
}∩

{
x ∈ ηu,x1,〈0〉

}
∩
{
∃v ∈ η0 : 0∼ v in ξ00 , x /∈ ηu0,x1,〈v〉

}
(3.82)

G4 :=
{
0∼ u in ξ0,u0

}
∩
{
u 3←→ x in ξu,x1

}
∩
{
x /∈ ηu,x1,〈0〉

}
(3.83)

G5 :=
{
0∼ u in ξ0,u0

}
∩
{
u 2←→ x in ξu,x1

}
∩
{
x ∈ ηu,x1,〈0〉

}
∩
{
∃v ∈ η0 : 0∼ v in ξ00 , x /∈ ηu0,x1,〈v〉

}
(3.84)

G6 :=
{
0∼ u in ξ0,u0

}
∩ {

u∼ x in ξu,x1
}∩

{
x ∈ ηu,x1,〈0〉

}
∩
{
� ∃v ∈ η0 : 0∼ v in ξ00 , x ∈ ηu0,x1,〈v〉

}
∩
{
∃w ∈ η0 : 0 2←→w in ξ00 , x /∈ ηu0,x1,〈w〉

}
(3.85)

Observe that these events are indeed disjoint, and all are subsets of
{
0⇐⇒ u in ξ0,u0

}∩
E
(
u, x;C0, ξu,x1

)
. We now want to bound their probabilities from below. For G1, the events

{
0∼

u in ξ0,u0
}
and

{
u∼ x in ξu,x1

}
are clearly independent. The event

{
x /∈ ηu,x1,〈0〉

}
is also independent

of these previous two, because it uses a thinning random variable from η
u,x
1 . The probability that

x is thinned out by the single vertex 0 is also equal to the probability that an edge forms between
these vertices. Therefore Pλ(G1)= ϕ(u)ϕ(x− u)ϕ(x). The other events proceed similarly with a
few points to note. All the events that are intersected to compose the Gi are independent because
they use different (independent) edge random variables and thinning random variables. Also, the
events like

{
u n←→ x in ξu,x1

}
have probability given exactly by ϕ[n](x− u) by definition of that

function. The event
{
x ∈ ηu,x1,〈0〉

}∩ {∃v ∈ η0 : 0∼ v in ξ00 , x /∈ ηu0,x1,〈v〉
}
says that x is not thinned out

by 0, and that there exists a v that forms an edge with 0 and thins out x. This has probability equal
to that of the event that no edge forms between 0 and x, and that they have at least one mutual
neighbour. This is precisely the probability given by ϕ[2](x). Similar considerations allow us to
find factors of ϕ[2] and ϕ[3] in the probability of the remaining events. The lower bounds we use
are summarised here:

Pλ(G1)= ϕ(u)ϕ(x− u)ϕ(x), (3.86)

Pλ(G2)= ϕ(u)ϕ[2](x− u)ϕ(x)

≥ ϕ(u)ϕ(x) (1− ϕ(x− u))
(
λϕ�2(x− u)− 1

2
λ2ϕ�2(x− u)2

)
, (3.87)

Pλ(G3)= ϕ(u)ϕ(x− u)ϕ[2](x)

≥ ϕ(u)ϕ(x− u) (1− ϕ(x))
(
λϕ�2(x)− 1

2
λ2ϕ�2(x)2

)
, (3.88)
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Pλ(G4)= ϕ(u)ϕ[3](x− u)ϕ(x), (3.89)

Pλ(G5)= ϕ(u)ϕ[2](x− u)ϕ[2](x)

≥ ϕ(u) (1− ϕ(x− u)) (1− ϕ(x))
(
λ2ϕ�2(x− u)ϕ�2(x)− 1

2
λ3ϕ�2(x− u)2ϕ�2(x)

−1
2
λ3ϕ�2(x− u)ϕ�2(x)2 + 1

4
λ4ϕ�2(x− u)2ϕ�2(x)2

)
, (3.90)

Pλ(G6)= ϕ(u)ϕ(x− u)ϕ[3](x). (3.91)

For Pλ(G2), Pλ(G3), and Pλ(G5) we have used a lower bound on ϕ[2] by observing 1− e−x ≥
x− 1

2x
2 for all x ∈R and using this with the expression for ϕ[2] in (2.17).

From these we can bound

λ2

∫
Pλ (G1) dudx = λ2 , (3.92)

λ2

∫
Pλ (G2) dudx ≥ λ3 − 1

2
λ4

= λ3 − λ3 + O
( )

,

(3.93)

λ2

∫
Pλ (G3) dudx ≥ λ3 − 1

2
λ4

= λ3 − λ3 + O
( )

,

(3.94)

λ2

∫
Pλ (G5) dudx ≥ λ4 − 1

2
λ5 − 1

2
λ5 +

1
4
λ6

= λ4 + O
( )

.

(3.95)
To bound the integrals of Pλ(G4) and Pλ(G6), recall

ϕ[3](x) ≥ (1 − ϕ(x))×

⎛⎜⎜⎝λ2

0

x

− 1
2
λ3

0

x

− 1
2
λ4

0

x

+
1
2
λ5

0

x

− 1
8
λ6

0

x
⎞⎟⎟⎠ .

(3.96)
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Then

λ2

∫
Pλ (G4) ≥ λ4 − 1

2
λ5 − 1

2
λ6 +

1
2
λ7 − 1

8
λ8

= λ4 + O
( )

,

(3.97)

λ2

∫
Pλ (G6) ≥ λ4 − 1

2
λ5 − 1

2
λ6 +

1
2
λ7 − 1

8
λ8

= λ4 + O
( )

.

(3.98)
Summing the integrals of the probabilities of the Gi events gives us our desired lower bound for
any λ> 0, and in particular λ= λc. �

3.3 Bounds on the second lace expansion coefficient
We start with an upper bound, which we need both for n= 1 and also for n≥ 3 in the next
subsection.

Proposition 3.15. Let n≥ 1, x ∈R
d, and λ ∈ [0, λc]. Then

λ	
(n)
λ (x)≤

∫
ψn(x,wn−1, un−1)

(n−1∏
i=1

ψ(wi, ui,wi−1, ui−1)

)
ψ0(w0, u0)d

(
(�w, �u)[0,n−1]

)
.

(3.99)
Furthermore, for λ ∈ [0, λc] there exists c> 0 (independent of λ and d) such that

∞∑
n=N

	̂
(n)
λ (0)≤ cβN . (3.100)

Proof. As in Lemma 3.12, the first inequality is proven in very nearly exactly the same way as
[[HHLM22], Proposition 7.2]. The proof of [[HHLM22], Corollary 5.3] only needs to be slightly
adjusted to get the second part of our result for λ< λc, and a dominated convergence argument
like that appearing in the proof of [[HHLM22], Corollary 6.1] allows us to extend the result to
λ= λc. �
Upper bound on 	̂(2)

λc
(0)

Lemma 3.16. Suppose Assumption A holds. Then as d → ∞,

λcΠ̂
(2)
λc

(0) ≤
∫

ψ0(w0, u0)ψ(w1, u1, w0, u0)ψ2(x, w1, u1)dw0du0dw1du1dx

= λ3
c + O

(
+ +

)
.

(3.101)
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Proof. The first inequality is an application of (3.99). After expanding ψ0, ψ , and ψ2, we get∫
ψ0(w0, u0)ψ(w1, u1,w0, u0)ψ2(x,w1, u1)dw0du0dw1du1dx

=
3∑

j0=1

4∑
j1=1

2∑
j2=1

∫
ψ

(j0)
0 (w0, u0)ψ (j1)(w1, u1,w0, u0)ψ

(j2)
2 (x,w1, u1)dw0du0dw1du1dx. (3.102)

We can index the 3× 4× 2= 24 resulting diagrams by
(
j0, j1, j2

)
. For

(
j0, j1, j2

)
/∈

{(3, 2, 2) , (3, 3, 2) , (3, 4, 2)}, we can identify a cycle of length 6 or longer that visits each
vertex. For each factor of τλ that is not part of this cycle we can then bound by 1. For each factor
of τλ that is part of the cycle, we bound τλ ≤ ϕ + λϕ � τλ. For λ≤ λc, Lemma 2.4 then lets us
bound each of these diagrams byO(ϕ�6 (0)).

For the (3, 2, 2) diagram, we first expand out the τ ◦
λ edges. In many of the resulting diagrams

we can apply the above strategy of finding a cycle and bounding the excess edges to bound the
diagram byO(ϕ�6 (0)). The result is that for λ≤ λc we have∫
ψ

(3)
0 (w0, u0)ψ (2)(w1, u1,w0, u0)ψ (2)

2 (x,w1, u1)dw0du0dw1du1dx=

λ4
∫
ϕ(u0)τλ(z)τλ(z − u0)τλ(u1 − z)τλ(u1 − u0)τλ(x− u1)τλ(x− u0)du0du1dzdx+O (

ϕ�6 (0)
)
.

(3.103)

In this first integral we can bound τλ(u1 − u0)≤ 1, τλ(z − u0)≤ ϕ(z − u0)+ λ
∫
ϕ(x)dx, and the

other τλ ≤ ϕ + λϕ � τλ to find

λ4
c

∫
ϕ(u0)τλc(z)τλc(z − u0)τλc(u1 − z)τλc(u1 − u0)τλc(x − u1)τλc(x − u0)du0du1dzdx

= O
(

+
)

.

(3.104)

For the (3, 3, 2) diagram we bound τλ(u1 − z)≤ ϕ(u1 − z)+ λ
∫
ϕ(x)dx, and the other τλ ≤

ϕ + λϕ � τλ to find

λ4
c

∫
ϕ(u0)τλc(z − u0)τλc(u1)τλc(z − u1)τλc(x − u1)τλc(x − z)du0du1dzdx

= O
(

+
)

.

(3.105)

For the (3, 4, 2) diagram we bound τλ(u1 − u0)≤ ϕ(u1 − u0)+ λϕ�2(u1 − u0)+
λ2

(∫
ϕ(x)dx

)2, and the other τλ ≤ ϕ + λϕ � τλ to find

λ3
c

∫
ϕ(u0)τλc(u1)τλc(u1 − u0)τλc(x − u0)τλc(x − u1)du0du1dx

≤ λ3
c + O

(
+ +

)
.

(3.106)
�
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Lower bound on 	̂(2)
λc
(0)

Lemma 3.17.

λcΠ̂
(2)
λc

(0) ≥ λ3
c .

(3.107)

Proof. We begin by identifying a suitable event for each u0, u1, x ∈R
d that is contained in{

0⇐⇒ u in ξ0,u00

}
∩ E

(
u0, u1,C0, ξu0,u11

)∩ E
(
u1, x, C1, ξu1,x2

)
. We choose the following eventH1:

H1 =
{
0∼ u0 in ξ0,u00

}
∩ {

u0 ∼ u1 in ξu0,u11
}∩

{
u1 /∈ ηu0,u11,〈0〉

}
∩ {

u1 ∼ x in ξu1,x2
}∩

{
x /∈ ηu1,x2,〈u0〉

}
(3.108)

and note that λ	̂(2)
λ (0)≥ λ3 ∫ Pλ(H1) du0du1dx.

This event is constructed so that all the intersecting events are independent, and the probability
of each is easily calculated – once we recall that the probability that a singleton thins out a vertex
is equal to the probability that an edge forms between the singleton and the vertex. Therefore

Pλ(H1) := ϕ(u0)ϕ(u1 − u0)ϕ(u1)ϕ(x− u1)ϕ(x− u0). (3.109)

Integrating Pλ(H1) then gives a lower bound for λc	̂(2)
λc
(0). This lower bound is then

λ3

∫
Pλ (H1) du0du1dx = λ3 . (3.110)

This gives us our desired lower bound for any λ> 0, and in particular λ= λc. �

3.4 Bounds on later lace expansion coefficients
We first prove 3.10 and then 3.11.

Upper bound on 	̂(3)
λc
(0). We are first dealing with the case n= 3, which required a special

treatment, and subsequently with the general case n≥ 4.

Lemma 3.18. Suppose Assumption A holds. Then as d → ∞,

λcΠ̂
(3)
λc

(0) ≤ O
(

+
)

.
(3.111)

Proof. From (3.99) we have

λc	̂
(3)
λc
(0)≤

∫
ψ0(w0, u0)ψ(w1, u1,w0, u0)ψ(w2, u2,w1, u1)ψ3(x,w2, u2)dw0du0dw1du1dw2du2dx.

(3.112)

Then as in the proof of Lemma 3.16 we expand out the ψ0, ψ , and ψ3 functions. Then for each
integral we aim to identify a cycle of length 6 or longer that visits each vertex. For each factor
of τλc that is not part of this cycle we can then bound by 1. For each factor of τλc that is part of
the cycle, we bound τλc ≤ ϕ + λcϕ � τλc . Lemma 2.4 then lets us bound each of these diagrams by
O(ϕ�6 (0)).
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The only integral that we cannot perform this strategy for corresponds to the integral∫
ψ

(3)
0 (w0, u0)ψ (4)(w1, u1,w0, u0)ψ (4)(w2, u2,w1, u1)ψ (2)

3 (x,w2, u2)dw0du0dw1du1dw2du2dx

= λ4c

∫
ϕ(u0)τλc(u1)τλc(u1 − u0)τλc(u2 − u0)τλc(u2 − u1)τλc(x− u1)τλc(x− u2)du0du1du2dx.

(3.113)

If we bound τλc(u2 − u1)≤ ϕ(u2 − u1)+ λcϕ�2(u2 − u1)+ λ2cϕ
�3(u2 − u1)+ λ3c

(∫
ϕ(x)dx

)3,
and the other τλc ≤ ϕ + λcϕ � τλc we find that

λ4
c

∫
ϕ(u0)τλc(u1)τλc(u1 − u0)τλc(u2 − u0)τλc(u2 − u1)τλc(x − u1)τλc(x − u2)du0du1du2dx

= O
(

+
)

.

(3.114)
�

Upper bound on 	̂(n)
λc
(0) for n≥ 4

Lemma 3.19. Suppose Assumption A holds and n≥ 1. Then as d → ∞,

λc	̂
(n)
λc
(0)=

{O(ϕ�(n+2) (0)
)

: n is even,

O(ϕ�(n+1) (0)
)

: n is odd.
(3.115)

Proof. We begin this proof by using Proposition 3.15 to get an upper bound for λc	̂(n)
λc
(0) in

terms of a sum of integrals of ψ (j0)
0 , ψ (j), and ψ (jn)

n . Our strategy to bound each of these diagrams
is to identify a loop of length at least n+ 2 around each of these diagrams.

For eachψ function we provide an upper bound in aψ function, so that when they are applied
to our integral bounds we get terms of the form λm−1τ �mλ (0) for somem≥ n+ 1. We have

ψ
(1)
0 (w, u)≤ψ (1)

0 (w, u) := λ2τλ(u)τλ(w),

ψ
(2)
0 (w, u)≤ψ (2)

0 (w, u) := λ2δw,0

∫
τλ(u− t)τλ(t)dt,

ψ
(3)
0 (w, u)≤ψ (3)

0 (w, u) := λτλ(u)δw,0,

ψ (1)(w, u, r, s)≤ψ (1)(w, u, r, s) := λ4
∫
τ ◦
λ (t − s)τλ(w− t)dt

∫
τλ(u− z)τλ(z − r)dz,

ψ (2)(w, u, r, s)≤ψ (2)(w, u, r, s) := λ4τ ◦
λ (w− s)

∫
τλ(z − r)τλ(t − z)τλ(u− t)dzdt

+ λ3τ ◦
λ (w− s)

∫
τλ(z − r)τλ(u− z)dz,

ψ (3)(w, u, r, s)≤ψ (3)(w, u, r, s) := λ2τλ(w− s)τλ(u− r),

ψ (4)(w, u, r, s)≤ψ (4)(w, u, r, s) := λδw,sτλ(u− r),

ψ (1)
n (x, r, s)≤ψ (1)

n (w, r, s) := λ3
∫
τ ◦
λ (t − s)τλ(z − r)τλ(z − x)τλ(x− t)dzdt,

ψ (2)
n (x, r, s)=ψ

(2)
n (x, r, s) := λτλ(x− s)τλ(x− r).
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(a)

(d)

(h) (i)

(e) (f) (g)

(b) (c)

Figure 3. Diagrams of theψ0,ψ , andψn functions, which we use to bound theψ0,ψ , andψn functions.

We can also define ψ0, ψ , and ψn analogously to how we defined ψ0, ψ , and ψn. These functions
are represented as diagrams in Figure 3.

First off, we leave ψ (2)
n alone. For ψ (3)

0 we bound ϕ ≤ τλ. For most of the others, the bound is
achieved only by bounding τ (≥2)

λ ≤ τλ and τλ ≤ 1 in the appropriate places. The bound for ψ (2)

deserves a little more explanation. Here we first expand τ ◦
λ (t −w)= τλ(t −w)+ λ−1δt,w to get

two expressions. We then bound τλ ≤ 1 as for the others, but in different ways for each of the two
expressions.

We therefore find that ψ0 can contribute one or two factors of τλ, ψ can contribute one, two,
three, or four factors of τλ, and ψn can contribute two, three, or four factors of τλ. Our bound is
therefore a sum of terms of τ �mλ (0) where m is at least 1+ 1× (n− 1)+ 2= n+ 2 and at most
2+ 4× (n− 1)+ 4= 4n+ 2. Therefore

λc	̂
(n)
λc
(0)≤O

( 4n+2∑
m=n+2

τ �mλ (0)
)
. (3.116)

For each factor of τλ here we now bound τλ ≤ ϕ + λϕ � τλ to get

λc	̂
(n)
λc
(0)≤O

⎛⎝ 4n+2∑
m=n+2

4n+2∑
j=0

ϕ�m � τ
�j
λ (0)

⎞⎠ . (3.117)
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Ifm is odd and j≥ 1 then we bound ϕ�m � τ�jλ (0)≤
(∫
ϕ(x)dx

)
ϕ�(m−1) � τ

�j
λ (0). Then Lemma 2.4

gives us

λc	̂
(n)
λc
(0)≤

⎧⎨⎩O
(∑4n+2

m=n+2 ϕ
�m (0)

)
: n is even,

O
(∑4n+2

m=n+1 ϕ
�m (0)

)
: n is odd.

(3.118)

If n is even we bound ϕ�m (0)≤ (∫
ϕ(x)dx

)m−n−2
ϕ�(n+2) (0) to get our result, and if n is odd we

bound ϕ�m (0)≤ (∫
ϕ(x)dx

)m−n−1
ϕ�(n+1) (0) to get our result. �
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A. Calculations for Specific Models
We now provide details for the specific percolation models in Section 1.4. To this end, we need to
show that each of the four models satisfies Assumptions A and B and find the specific values of
the integrals of ϕ appearing in (1.15).

A.1 Hyper-sphere calculations
Recall that for radius R> 0, the hyper-sphere RCM is defined by having

ϕ(x)= 1{|x|<R}. (A.1)

Throughout this section we choose a scaling of Rd such that R= R(d) is the radius of the unit d -

volume ball. Therefore R(d)= π− 1
2�

(
d
2 + 1

) 1
d =

√
d

2πe (1+ o(1)) (by an application of Stirling’s
formula).

Lemma A.1. The hyper-sphere RCM satisfies Assumption A.

Proof. It is proven in [[HHLM22], Proposition 1.1] that the hyper-sphere RCM satisfies
Assumption A with g(d)= �d for some � ∈ (0, 1). �
Lemma A.2. The hyper-sphere RCM satisfies Assumption B.

Proof. In order to prove that (B.1) holds, we need to get a lower bound on ϕ�6 (0). We begin
using the Fourier inverse formula to get

ϕ�6 (0)=
∫
Rd
ϕ̂(k)6

dk
(2π)d

. (A.2)

Since ϕ is symmetric, ϕ̂(k) is real, and therefore we can get a lower bound on ϕ�6 (0) by getting a
lower bound on ϕ̂(k)6.

From [[Gra08], Appendix B.5], we can find that

ϕ̂(k)=
(
2πR(d)

|k|
) d

2
J d
2

(|k|R(d)), (A.3)

where J d
2
is the Bessel function of the first kind of order d

2 , and R(d) is the radius of the unit
volume ball in d dimensions. In Figure 4 we highlight three important values of |k| in the shape of
ϕ̂(k). The Bessel function J d

2
achieves its global maximum (in absolute value) at its first non-zero

stationary point, j′ d
2 ,1

. From [[AS64], p.371], we have j′ d
2 ,1

= d
2 + γ1

(
d
2

) 1
3 +O

(
d− 1

3
)
for a given

γ1 ≈ 0.81, and J d
2

(
j′ d

2 ,1

)
= �1d− 1

3 +O (
d−1), where �1 ≈ 0.54. Then J d

2
has its first zero at j d

2 ,1
>

j′ d
2 ,1

, where j d
2 ,1

= d
2 + γ2

(
d
2

) 1
3 +O

(
d− 1

3
)
and γ2 ≈ 1.86 (again, see [AS64]). From differential

inequalities relating Bessel functions (see [Gra08]), we have

d
d|k| ϕ̂(k)= −R(d)

(
2πR(d)

|k|
) d

2
J d
2+1

(|k|R(d)) . (A.4)

Therefore ϕ̂(k) is decreasing in |k| until |k|R(d)= j d
2+1,1 = d

2 + γ2
(
d
2

) 1
3 + 1+O

(
d− 1

3
)
. In par-

ticular, j d
2+1,1 > j d

2 ,1
.
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Figure 4. Sketch of ϕ̂(k) against |k|. It approaches its maximum quadratically as |k| → 0. The first local maximum of J d
2

occurs at j′ d
2 ,1

∼ d
2 + γ1( d2 )

1
3 . The first zero of ϕ̂(k) occurs at |k|R(d)= j d

2 ,1
∼ d

2 + γ2( d2 )
1
3 where γ2 > γ1. Furthermore, ϕ̂(k) is

strictly decreasing until |k|R(d)= j d
2 +1,1 ∼ d

2 + γ2( d2 )
1
3 + 1.

The significance of these points is that they allow us to bound

|ϕ̂(k)| ≥ ϕ̂
(
j′ d

2 ,1
/R(d)

)
1{

|k|≤j′ d
2 ,1
/R(d)

}. (A.5)

Since R(d) is the radius of the unit volume ball in d dimensions,

∫
Rd

1{
|k|≤j′ d

2 ,1
/R(d)

} dk
(2π)d

=
( j′ d

2 ,1

2πR(d)2

)d

. (A.6)

Therefore we can arrive at

ϕ�6 (0)≥
(
2πR(d)2

j′ d
2 ,1

)2d

J d
2

(
j′ d

2 ,1

)6 = �6
1
1
d2

(
2
e

+ o(1)
)2d

(1+ o(1)) . (A.7)

Here we have used the leading order asymptotics of R(d), j′ d
2 ,1

, and J d
2

(
j′ d

2 ,1

)
we described above.

From this lower bound, we know that ρ will satisfy the bound in (B.1) if ρ < 4e−2.
From the above argument we have an exponential lower bound on ϕ�6 (0) and therefore a

linear lower bound on h(d). It is proven in [[HHLM22], Proposition 1.1a] that g(d)= �d for some
� ∈ (0, 1), and therefore β(d)= �

d
4 . We can then bound N(d) to show (B.2) holds. �

Lemma A.3. For n≥ 3,

ϕ�n (0)= d2d(
n
2−1)�

(
d
2

+ 1
)n−2 ∫ ∞

0
x−1−d( n2−1)

(
J d
2
(x)

)n
dx. (A.8)
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In particular,

ϕ�3 (0)=
d�

(
d
2 + 1

)
�
( 1
2
)
�
(
d
2 + 1

2

) ∫ 1

0
xd−1B

(
1− x2

4
;
d
2

+ 1
2
,
1
2

)
dx

= 3
2

�
(
d
2 + 1

)
�
( 1
2
)
�
(
d
2 + 1

2

)B(3
4
;
d
2

+ 1
2
,
1
2

)
, (A.9)

ϕ�4 (0)=
d�

(
d
2 + 1

)2
�
( 1
2
)2
�
(
d
2 + 1

2

)2 ∫ 2

0
xd−1B

(
1− x2

4
;
d
2

+ 1
2
,
1
2

)2
dx, (A.10)

ϕ�5 (0)=
d2d�

(
d
2 + 1

)3
�
( 1
2
)
�
(
d
2 + 1

2

) ∫ 2

0
x
d
2 B
(
1− x2

4
;
d
2

+ 1
2
,
1
2

)(∫ ∞

0
k−d

(
J d
2
(k)

)3
J d
2−1(kx)dk

)
dx,

(A.11)

ϕ�6 (0)=
d2

3d
2 �

(
d
2 + 1

)4
�
( 1
2
)
�
(
d
2 + 1

2

) ∫ 2

0
x
d
2 B
(
1− x2

4
;
d
2

+ 1
2
,
1
2

)(∫ ∞

0
k− 3d

2
(
J d
2
(k)

)4
J d
2−1(kx)dk

)
dx.

(A.12)

Furthermore,

ϕ�1�2·2 (0)=
d�

(
d
2 + 1

)2
�
( 1
2
)2
�
(
d
2 + 1

2

)2 ∫ 1

0
xd−1B

(
1− x2

4
;
d
2

+ 1
2
,
1
2

)2
dx, (A.13)

ϕ�2�2·2 (0)=
d�

(
d
2 + 1

)3
�
( 1
2
)3
�
(
d
2 + 1

2

)3 ∫ 2

0
xd−1B

(
1− x2

4
;
d
2

+ 1
2
,
1
2

)3
dx, (A.14)

ϕ�1�2·3 (0)=
d2d�

(
d
2 + 1

)3
�
( 1
2
)
�
(
d
2 + 1

2

) ∫ 1

0
x
d
2 B
(
1− x2

4
;
d
2

+ 1
2
,
1
2

)(∫ ∞

0
k−d

(
J d
2
(k)

)3
J d
2−1(kx)dk

)
dx.

(A.15)

Proof. Let R= R(d) denote the radius of the unit volume d -dimensional Euclidean ball, i.e.

R(d)= 1√
π
�
(
d
2 + 1

) 1
d . In particular, note the relation

1=Sd−1

∫ R

0
rd−1dr = Sd−1

d
Rd, (A.16)

whereSd−1 = dπ
d
2

�
(
d
2+1

) is the surface area of the unit radius d -dimensional Euclidean ball.
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The general formula (A.8) follows from a Fourier decomposition. By the Fourier inversion
formula,

ϕ�n(x)= 1
(2π)d

∫
ϕ̂(k)ndk. (A.17)

Recall the expression (A.3) for the Fourier transform ϕ̂(k). Then

ϕ�n (0)= 1
(2π)d

(2π)
d
2 n R

d
2 nSd−1

∫ ∞

0
kd−1− d

2 n
(
J d
2

(
Rk
))n

dk

= (2π)d(
n
2−1) RdSd−1

∫ ∞

0
x−1−d( n2−1)

(
J d
2
(x)

)n
dx. (A.18)

Then observing that RdSd−1 = d produces the result.
In the cases n= 3, 4, a more geometric approach may be taken. First note that ϕ�2(x) can be

interpreted as the d -volume of the intersection of a hyper-sphere of radius R at the origin with a
hyper-sphere of radius R at the position x. An expression for this volume is given by [Li11] using
incomplete Beta functions:

ϕ�2(x)=
�
(
d
2 + 1

)
�
( 1
2
)
�
(
d
2 + 1

2

)B(1− |x|2
4R2

;
d
2

+ 1
2
,
1
2

)
, for |x| ≤ 2R. (A.19)

Clearly ϕ�2(x)= 0 for |x|> 2R. It then follows that

ϕ�3 (0)=
∫
ϕ(x)ϕ�2(x)dx=

�
(
d
2 + 1

)
�
( 1
2
)
�
(
d
2 + 1

2

)Sd−1

∫ R

0
rd−1B

(
1− r2

4R2
;
d
2

+ 1
2
,
1
2

)
dr

=
�
(
d
2 + 1

)
�
( 1
2
)
�
(
d
2 + 1

2

)Sd−1Rd
∫ 1

0
xd−1B

(
1− x2

4
;
d
2

+ 1
2
,
1
2

)
dx. (A.20)

Again, noting that RdSd−1 = d produces the required first equality in (A.9). It was noted in
[Tor12] that for the hyper-sphere model we have ϕ�3 (0)= 3

2ϕ
�2(x̃), where |x̃| = R. This can be

proven by writing out the incomplete Beta function as an integral to get a double integral, parti-
tioning the domain appropriately, and using a suitable trigonometric substitution on each part of
the domain. We omit the details here. This relation allows us to get the second equality in (A.9).

For the specific form of ϕ�4 (0), we do a similar calculation to that above:

ϕ�4 (0)=
∫
ϕ�2(x)2dx=

�
(
d
2 + 1

)2
�
( 1
2
)2
�
(
d
2 + 1

2

)2Sd−1

∫ 2R

0
rd−1B

(
1− r2

4R2
;
d
2

+ 1
2
,
1
2

)2
dr

=
�
(
d
2 + 1

)2
�
( 1
2
)2
�
(
d
2 + 1

2

)2Sd−1Rd
∫ 2

0
xd−1B

(
1− x2

4
;
d
2

+ 1
2
,
1
2

)2
dx. (A.21)

Using RdSd−1 = d gives the result.
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For ϕ�1�2·2 (0) and ϕ�2�2·1 (0) this approach also works. We find

ϕ�1�2·2 (0)=
∫
ϕ(x)ϕ�2(x)2dx=

�
(
d
2 + 1

)2
�
( 1
2
)2
�
(
d
2 + 1

2

)2Sd−1

∫ R

0
rd−1B

(
1− r2

4R2
;
d
2

+ 1
2
,
1
2

)2
dr

=
�
(
d
2 + 1

)2
�
( 1
2
)2
�
(
d
2 + 1

2

)2Sd−1Rd
∫ 1

0
xd−1B

(
1− x2

4
;
d
2

+ 1
2
,
1
2

)2
dx,

(A.22)

ϕ�2�2·2 (0)=
∫
ϕ�2(x)3dx=

�
(
d
2 + 1

)3
�
( 1
2
)3
�
(
d
2 + 1

2

)3Sd−1

∫ 2R

0
rd−1B

(
1− r2

4R2
;
d
2

+ 1
2
,
1
2

)3
dr

=
�
(
d
2 + 1

)3
�
( 1
2
)3
�
(
d
2 + 1

2

)3Sd−1Rd
∫ 2

0
xd−1B

(
1− x2

4
;
d
2

+ 1
2
,
1
2

)3
dx.

(A.23)

As before, using RdSd−1 = d gives the result.
Evaluating ϕ�5 (0), ϕ�6 (0), and ϕ�1�2·3 (0) is more challenging than the above expressions

because we don’t have such a nice expression for ϕ�3(x) as we did for ϕ�2(x). We can nevertheless
use Fourier transforms to get an expression. Using the well-known expression

Jν(x)= xν

2ν�
( 1
2
)
�
(
ν + 1

2
) ∫ π

0
eix cos θ (sin θ)2ν dθ , Re ν ≥ −1

2
(A.24)

from [[AS64], p.360, Eqn.(9.1.20)], we can write

ϕ�3(x)= Sd−2

(2π)d

∫ ∞

0
kd−1ϕ̂(k)3

(∫ π

0
eik|x| cos θ (sin θ)d−2 dθ

)
dk

= (2π)d R
3
2 d|x|1− d

2

∫ ∞

0
k−d

(
J d
2

(
kR
))3

J d
2−1

(
k|x|) dk. (A.25)

Using this expression with the expression for ϕ�2(x) used previously then gives the result:

ϕ�1�2·3 (0)=
∫
ϕ(x)ϕ�2(x)ϕ�3(x)dx

=
�
(
d
2 + 1

)
�
( 1
2
)
�
(
d
2 + 1

2

) (2π)d R 3
2 dSd−1

∫ R

0
rd−1r1−

d
2 B
(
1− r2

4R2
;
d
2

+ 1
2
,
1
2

)

×
(∫ ∞

0
k−d

(
J d
2

(
kR
))3

J d
2−1

(
kr
)
dk
)
dr

= d2d
�
(
d
2 + 1

)3
�
( 1
2
)
�
(
d
2 + 1

2

)∫ 1

0
x
d
2 B
(
1− x2

4
;
d
2

+ 1
2
,
1
2

)(∫ ∞

0
k−d

(
J d
2
(k)

)3
J d
2−1(kx)dk

)
dx,

(A.26)

where we explicitly use Rd = π− d
2�

(
d
2 + 1

)
. Writing ϕ�5 (0)= ∫

ϕ�2(x)ϕ�3(x)dx and using the
same strategy gives its result.
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Getting the expression for ϕ�6 (0) requires an expression for ϕ�4 (x). Using the same strategy
as for ϕ�3 (x) above, we get

ϕ�4(x)= Sd−2

(2π)d

∫ ∞

0
kd−1ϕ̂(k)4

(∫ π

0
eik|x| cos θ (sin θ)d−2 dθ

)
dk

= (2π)
3
2 d R2d|x|1− d

2

∫ ∞

0
k− 3

2 d
(
J d
2

(
kR
))4

J d
2−1

(
k|x|) dk. (A.27)

Using this with ϕ�6 (0)= ∫
ϕ�2(x)ϕ�4(x)dx then gives the required expression. �

We now turn towards asymptotic values of the terms appearing in Lemma A.3. For the terms
ϕ�3 (0) and ϕ�4 (0), the asymptotics have already been worked out.

Lemma A.4. For the hyper-sphere RCM,

ϕ�3 (0)∼
(

27
2πd

) 1
2
(
3
4

) d
2
, (A.28)

ϕ�4 (0)∼
(

32
3πd

) 1
2
(
16
27

) d
2
. (A.29)

Proof. These follow from the calculations in [LB82, Jos82]. �
Remark A.5. These asymptotics naturally also give the asymptotics of ϕ�3 (0)2, ϕ�3 (0)3, and
ϕ�3 (0) ϕ�4 (0). For ϕ�5 (0), ϕ�6 (0), ϕ�1�2·2 (0), ϕ�2�2·2 (0), and ϕ�1�2·3 (0) we don’t have any rig-
orous description of their asymptotic behaviour. Nevertheless we can use our expressions from
Lemma A.3 and numerical integration to calculate their values for a range of dimensions. Figure 5
presents the results of these calculations. Here we usedMATLAB to plot 1

d log (·) (where log is the
natural logarithm) for each of our diagrams against the dimension d. We chose this function of the
diagrams because if a diagram was of the form A(d)�d for some constant � > 0 and some slowly
varying A(d), then our plot should approach log � as d → ∞. The data in Figure 5a are consistent
with this behaviour (indeed we know it to be true for ϕ�3 (0), ϕ�4 (0) and ϕ�3 (0)2). We only plot
the data up to d = 50 because the calculations of ϕ�5 (0) and ϕ�1�2�3 (0) fail for d> 54 – we com-
ment on this more later. The data in Figure 5b appear a little less definitive, but the authors argue
these are still consistent with the hypothesised behaviour (we know it to be true for ϕ�3 (0) ϕ�4 (0)
and ϕ�3 (0)3). Note that the vertical scale is over a much narrower range than in Figure 5a, which
gives the false impression that the plots are increasing with d faster than they indeed are. We are
also further restricting the domain of d to d ≤ 36. This is because the calculation of ϕ�6 (0) fails
for d> 36.

Remark A.6. We comment here on our choices of the range of dimensions d presented in the
data in Figure 5. We found that the limiting factor in our ability to calculate the expressions in
Lemma A.3 were the prefactors of powers of 2 and gamma functions. If we wanted to use (A.8)

to calculate ϕ�6 (0) for d = 25 we would have to deal with d22d�
(
d
2 + 1

)4 ≈ 2.41× 1053, while
ϕ�6 (0)≈ 5.34× 10−6. Fortunately MATLAB has the function betainc(x,a,b), which calculates
the (normalised) incomplete beta function

�
(
a+ b

)
�(a)�(b)

∫ x

0
ta−1 (1− t)b−1 dt = �

(
a+ b

)
�(a)�(b)

B
(
x; a, b

)
. (A.30)

This betainc function is more efficient at dealing with the different sizes of the prefactor and
integral than our naïve attempts, and this is why we put the extra effort in Lemma A.3 to
include factors of B

(
x; a, b

)
. In particular, this makes ϕ�3 (0) very easy to calculate: MATLAB
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(a)

(b)

Figure 5. Plots of 1
d log ( · ) for each of the diagrams for the hyper-sphere RCM. For comparison, 1d log ϕ�1�2·3(0) is rep-

resented in both plots – it is the smallest of the larger diagrams and the largest of the smaller diagrams in the higher
dimensions.

got to over d = 5000 before it produced an error (for d = 5000, ϕ�3 (0)≈ 1.32× 10−314). We can
also calculate our expressions for ϕ�4 (0), ϕ�1�2·2 (0), and ϕ�2�2·2 (0) over dimension d = 1000.
Unfortunately the use of betainc does not deal with the whole prefactor for ϕ�5 (0), ϕ�6 (0), and
ϕ�1�2·3 (0), and this affects the dimension we can run up to. For ϕ�5 (0) and ϕ�1�2·3 (0)we can run
up to d = 54 (where they are ≈ 9.06× 10−10 and ≈ 2.29× 10−11 respectively). For ϕ�6 (0) we can
only run to d = 36, where find ϕ�6 (0)≈ 3.58× 10−8. 	
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(a)

(b)

Figure 6. Plots of the ratio of diagrams of similar sizes for the hyper-sphere RCM.

Remark A.7. Upon inspecting Figure 5a, the plots of ϕ�1�2·2 (0) and ϕ�3 (0)2 appear very close
together. The plots of ϕ�1�2·3 (0) and ϕ�3 (0) ϕ�4 (0) in Figure 5b also appear to be tracking closely
together. In Figure 6 we plot how the ratio of these similar terms vary with dimension.

Since we are able to evaluate ϕ�1�2·2 (0) and ϕ�3 (0)2 to relatively high dimensions, we are able
to plot their ratio all the way up to d = 2500 in Figure 6a. From this plot it is very tempting to sug-
gest that their ratio is approaching a finite and positive limit. In fact, since ϕ�1�2·2 (0)/ϕ�3 (0)2 ≈
1.329 at d = 2500, it is tempting to suggest that the ratio approaches 4

3 as d → ∞. Since we
rigorously have the asymptotics of ϕ�3 (0), this would imply the asymptotics of ϕ�1�2·2 (0).

We are not able to evaluate ϕ�1�2·3 (0) to similarly high dimensions – we can only reach d = 54.
Nevertheless, the slope of the plot in Figure 6b is shallowing and it is tempting to suggest that the
ratio ϕ�1�2·2 (0)/ϕ�3 (0) ϕ�4 (0) approaches a finite and positive limit. While we don’t conjecture
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(a)

(b)

Figure 7. Plots relating ϕ�6(0), ϕ�2�2·2(0), and ϕ�3(0)3 for the hyper-sphere RCM. These suggest the possibility that these
three terms only differ by a polynomial factor in d.

a value for the limit here, the existence of such a limit would allow us to find the asymptotic scale
of ϕ�1�2·3 (0).

If we look at the ratio of the other pairs of diagrams it is usually very clear that one is far
larger than the other, with the ratio apparently growing at an exponential rate. The only excep-
tions are the trio of ϕ�6 (0), ϕ�2�2·2 (0), and ϕ�3 (0)3. While the ratios appear to be growing for
each pair in this trio, the rate seems to be slowing. If ϕ�2�2·2 (0) and ϕ�3 (0)3 were both decay-
ing at the same exponential rate but had different polynomial corrections, then we would have(
log ϕ�2�2·2 (0)− 3 log ϕ�3 (0)

)
/log d approaching a non-zero limit as d → ∞. In Figure 7 we plot

this comparison for the two independent pairs in the trio, and it indeed seems plausible that the
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plots are approaching a non-zero limit. Nevertheless, these three terms look to be far smaller than
the ϕ�1�2·3 (0) and ϕ�3 (0) ϕ�4 (0) terms, and so will both be negligible for our discussion. 	

The observations made in Remarks A.5–A.7 and the plots in Figures 5 and 6 allow us to make
the following conjecture. We use the notation f ! g to indicate f (d)

g(d) → ∞, and f " g to indicate
f (d)
g(d) and

g(d)
f (d) are both bounded as d → ∞.

Conjecture A.8. For the hyper-sphere RCM, as d → ∞,

ϕ�3 (0)! ϕ�4 (0)! ϕ�1�2·2 (0)" (
ϕ�3 (0)

)2 ! ϕ�5 (0)! ϕ�1�2·3 (0)" ϕ�3 (0) ϕ�4 (0) , (A.31)

and
ϕ�6 (0)+ ϕ�2�2·2 (0)+ (

ϕ�3 (0)
)3 =O(ϕ�3 (0) ϕ�4 (0)) . (A.32)

Therefore

qϕλc = 1+ 1
q2ϕ
ϕ�3 (0)+ 3

2
1
q3ϕ
ϕ�4 (0)− 5

2
1
q3ϕ
ϕ�1�2·2 (0)+ 2

1
q4ϕ

(
ϕ�3 (0)

)2 + 2
1
q4ϕ
ϕ�5 (0)

+O
(
1
d

(
2
3

)d
)
. (A.33)

Note that this would be a different order of terms than that we found for the hyper-cube RCM
in Corollary 1.7.

A.2 Hyper-cube calculations
Recall that for side length L> 0, the hyper-cubic RCM is defined by having

ϕ(x)=
d∏

j=1
1{|xj|≤L/2}, (A.34)

where x= (x1, . . . , xd) ∈R
d. Throughout this section we choose a scaling of Rd such that L= 1.

Lemma A.9. For the hyper-cube RCM with side length L= 1,

ϕ�3 (0)=
(
3
4

)d
= (0.75)d , (A.35)

ϕ�4 (0)=
(
2
3

)d
≈ (0.66667)d , (A.36)

ϕ�5 (0)=
(
115
192

)d
≈ (0.59896)d , (A.37)

ϕ�1�2·2 (0)=
(

7
12

)d
≈ (0.58333)d , (A.38)

ϕ�3 (0)2 =
(

9
16

)d
= (0.5625)d , (A.39)

ϕ�6 (0)=
(
11
20

)d
= (0.55)d , (A.40)
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ϕ�7 (0)=
(

5887
11520

)d
≈ (0.51102)d , (A.41)

ϕ�1�2·3 (0)=
(
49
96

)d
≈ (0.51042)d , (A.42)

ϕ�2�2·2 (0)=
(
1
2

)d
= (0.5)d , (A.43)

ϕ�3 (0) ϕ�4 (0)=
(
1
2

)d
= (0.5)d , (A.44)

ϕ�8 (0)=
(
151
315

)d
≈ (0.47937)d , (A.45)

ϕ�3 (0)3 =
(
27
64

)d
≈ (0.42188)d . (A.46)

Proof. First note that the hyper-cubic adjacency function factorises into the d dimensions:

ϕ(x)=
d∏

i=1
1{|xi|< 1

2

}, (A.47)

where x= (x1, x2, . . . , xd). Therefore to find the desired expressions, we only need to evaluate
them for dimension 1, and then take the result to the power d to get the result for dimension d.
Let us denote the 1 -dimensional adjacency function ϕ1 : R→ [0, 1],

ϕ1(x)=
{
1 : |x|< 1

2

0 : |x| ≥ 1
2 .

(A.48)

By direct calculation (these can be easily verified by Mathematica, for example), one finds

ϕ�21 (x)=
{
1− |x| : |x|< 1
0 : |x| ≥ 1,

(A.49)

ϕ�31 (x)=

⎧⎪⎪⎨⎪⎪⎩
1
4
(
3− 4x2

)
: |x|< 1

2
1
8 (3− 2|x|)2 : 1

2 ≤ |x|< 3
2

0 : |x| ≥ 3
2 ,

(A.50)

ϕ�41 (x)=

⎧⎪⎪⎨⎪⎪⎩
1
6
(
4− 6x2 + 3|x|3) : |x|< 1

1
6 (2− |x|)3 : 1≤ |x|< 2

0 : |x| ≥ 2.

(A.51)

In particular, this means ϕ�31 (0)= 3
4 and ϕ�41 (0)= 2

3 . Taking these to the power d returns the
required results for ϕ�3 (0) and ϕ�4 (0). These also give the results for ϕ�3 (0)2, ϕ�3 (0)3 and
ϕ�3 (0) ϕ�4 (0).
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Then let us observe and calculate

ϕ�51 (0)=
∫ 1

−1
ϕ�21 (x)ϕ�31 (x)dx= 115

192
≈ 0.59896, (A.52)

ϕ�61 (0)=
∫ 3

2

− 3
2

ϕ�31 (x)ϕ�31 (x)dx= 11
20

= 0.55, (A.53)

ϕ�71 (0)=
∫ 3

2

− 3
2

ϕ�31 (x)ϕ�41 (x)dx= 5887
11520

≈ 0.51102, (A.54)

ϕ�81 (0)=
∫ 2

−2
ϕ�41 (x)ϕ�41 (x)dx= 151

315
≈ 0.47937. (A.55)

Similarly, we find

ϕ�1�2·21 (0)=
∫ 1

2

− 1
2

ϕ�21 (x)2dx= 7
12

≈ 0.58333 (A.56)

ϕ�2�2·21 (0)=
∫ 1

−1
ϕ�21 (x)3dx= 1

2
= 0.5 (A.57)

ϕ�1�2·31 (0)=
∫ 1

2

− 1
2

ϕ�21 (x)ϕ�31 (x)dx= 49
96

≈ 0.51042. (A.58)

Finally taking these values to the dth power gives the required results. �
Lemma A.10. The hyper-cube RCM satisfies Assumptions A and B.

Proof. For Assumption (A.1), recall that

ϕ�2(x)=
d∏

i=1
(1− |xi|) 1{|xi|≤1}, (A.59)

where x= (x1, x2, . . . , xd). In conjunction with Lemma A.9, we see that Assumption (A.1) is
satisfied with g(d)= ( 3

4
)d.

For (A.2) we note that

ϕ̂(k)=
d∏

i=1

(
2
ki

sin
ki
2

)
, (A.60)

where k= (
k1, k2, . . . , kd

)
. Since sin x≤ x− 1

6x
3 + 1

120x
5 for all x ∈R,

ϕ̂(k)≤
d∏

i=1

(
1− 1

24
k2i + 1

1920
k4i
)
. (A.61)

https://doi.org/10.1017/S0963548324000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000270


48 M. Dickson and M. Heydenreich

Therefore for maxi|ki| ≤ 3 we have

ϕ̂(k)≤
d∏

i=1

(
1− 71

1920
k2i
)

= 1− 71
1920

|k|2 +
(

71
1920

)2 d∑
i,j=1
i<j

k2i k
2
j −

(
71
1920

)3 d∑
i,j,l=1
i<j<l

k2i k
2
j k

2
l + . . .±

(
71
1920

)d
k21 . . . k

2
d

≤ 1− 71
1920

|k|2 +
(

71
1920

)2
|k|4 + 0+

(
71
1920

)4
|k|8 + 0+ . . .

+
⎧⎨⎩
( 71
1920

)d |k|2d : d is even( 71
1920

)d−1 |k|2d−2 : d is odd.
(A.62)

Here we have bounded the later negative terms above by 0, and bounded the positive terms above
by powers of |k|4. Therefore if |k|2 < 1920

71 then we have

ϕ̂(k)≤ 1− 71
1920

|k|2 +
∞∑
n=1

(
71
1920

)2n
|k|4n = 1− 71

1920
|k|2

+
(

71
1920

)2
|k|4

(
1−

(
71
1920

)2
|k|4

)−1

. (A.63)

Note that |k| ≤ 3 =⇒ maxi|ki| ≤ 3, and therefore |k| ≤ 3 also implies

ϕ̂(k)≤ 1− 71
1920

|k|2
⎛⎝1− 213

640

(
1−

(
213
640

)2
)−1

⎞⎠≤ 1− 5
8

× 71
1920

|k|2, (A.64)

where we have used 213
640 <

1
3 . Therefore we have constants b, c1 > 0 such that |k| ≤ b implies that

ϕ̂(k)≤ 1− c1|k|2.
From (A.60) it is clear that ϕ̂(k) is radially decreasing and non-negative on the set{

k ∈R
d : maxi|ki| ≤ 2π

}
. On the other hand if there exists i∗ ∈ {

1, 2, . . . , d
}
such that |ki∗ |> 2π ,

then |ϕ̂(k)|< 1
π
. Therefore if |k|> 3 we can bound

ϕ̂(k)≤ 1− 5
3

× 71
1920

× 32 <
1
2
. (A.65)

We have therefore proven that (A.2) holds with b= 3, c1 = 5
3 × 71

1920 , and c2 = 1
2 .

LemmaA.9 and our above observation that we can have g(d)= ( 3
4
)d ensures that Assumption B

holds. �

A.3 Gaussian calculations

Recall that for σ 2 > 0 and 0<A≤ (
2πσ 2) d

2 , the Gaussian RCM is defined by having

ϕ (x)= A(
2πσ 2

) d
2
exp

(
− 1
2σ 2 |x|2

)
. (A.66)

https://doi.org/10.1017/S0963548324000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000270


Combinatorics, Probability and Computing 49

Lemma A.11. For the Gaussian RCM,

ϕ�n (0)=An (2nπσ 2)− d
2 ∀n≥ 1, (A.67)

ϕ�n1�n2·n3 (0)=An1+n2+n3
(
(n1n2 + n1n3 + n2n3)

(
2πσ 2)2)− d

2 ∀n1, n2, n3 ≥ 1. (A.68)

In particular,

ϕ�1�2·2 (0)=A5 (32π2σ 4)− d
2 =A5

(
8× (

2πσ 2)2)− d
2 (A.69)

ϕ�1�2·3 (0)=A6 (44π2σ 4)− d
2 =A6

(
11× (

2πσ 2)2)− d
2 (A.70)

ϕ�2�2·2 (0)=A6 (48π2σ 4)− d
2 =A6

(
12× (

2πσ 2)2)− d
2 . (A.71)

Proof. Without loss of generality, we scale space so that qϕ =A= 1.
First we note that the convolution of two unit-mass Gaussian functions is itself a unit-mass

Gaussian function whose ‘variance’ parameter is the sum of the variance parameters of the two
initial Gaussian functions:∫

Rd

1(
2πσ 2

1
) d
2
exp

(
− 1
2σ 2

1
|x− y|2

)
1(

2πσ 2
2
) d
2
exp

(
− 1
2σ 2

2
|y|2

)
dy

= 1(
2π

(
σ 2
1 + σ 2

2
)) d

2
exp

(
− 1
2
(
σ 2
1 + σ 2

2
) |x|2) . (A.72)

It therefore follows that

ϕ�n(x)= 1(
2πnσ 2

) d
2
exp

(
− 1
2nσ 2 |x|2

)
, (A.73)

and ϕ�n (0)= (
2πnσ 2)− d

2 .
For the remaining expressions we write the pointwise product of two unit-mass Gaussian

functions as a constant multiple of a unit-mass Gaussian function:

1(
2πσ 2

1
) d
2
exp

(
− 1
2σ 2

1
|x|2

)
1(

2πσ 2
2
) d
2
exp

(
− 1
2σ 2

2
|x|2

)
= 1(

4π2σ 2
1 σ

2
2
) d
2
exp

(
−σ

2
1 + σ 2

2
2σ 2

1 σ
2
2

|x|2
)

= 1(
2π

(
σ 2
1 + σ 2

2
)) d

2

(
σ 2
1 + σ 2

2
2πσ 2

1 σ
2
2

) d
2

exp

(
−σ

2
1 + σ 2

2
2σ 2

1 σ
2
2

|x|2
)
. (A.74)

Using this expression, we find

ϕ�n1�n2·n3 (0)= (
2πσ 2 (n2 + n3)

)− d
2

(
2πσ 2

(
n1 + n2n3

n2 + n3

))− d
2

= (
4π2σ 4 (n1n2 + n1n3 + n2n3)

)− d
2 . (A.75)

This produces the results. �
Lemma A.12. The Gaussian RCM with lim infd→∞ ϕ(0)

1
d > 0 satisfies Assumptions A and B.
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Proof. For this proof we make the scaling choice that the total mass of the adjacency function in
each dimension is set to be equal to 1. Clearly this mapsA �→ Ã≡ 1, but since ϕ(0)=A(2πσ 2)− d

2

is left invariant, we also have σ �→ σ̃ = σA− 1
d . The condition that lim inf ϕ(0)

1
d > 0 now means

that lim sup σ̃ <∞, and the trivial condition that ϕ(0)≤ 1 means that σ̃ 2 ≥ 1/2π .
The results of Lemma A.11 proves that (A.1) holds with the choice g(d)= (

4πσ̃ 2)− d
2 =

2− d
2 ϕ(0) and therefore β(d)= 2− d

8 ϕ(0)
1
4 (here we use lim sup σ̃ <∞ to get the appropriate form

of β from (1.10)). Now observe that the Fourier transform of ϕ(x) is given by

ϕ̂(k)= exp
(

−1
2
σ̃ 2‖k‖22

)
≤ exp

(
− 1
4π

‖k‖22
)
, (A.76)

where the inequality follows from σ̃ 2 ≥ 1/2π . Therefore (A.2) holds.
For Assumption B, we first use Lemma A.11 to see that ϕ�6 (0)= 6− d

2 q5ϕϕ(0). Therefore (B.1)
can be seen to hold with ρ = 6− 1

2 lim inf ϕ(0)
1
d > 0. This also provides a lower bound on h(d).

After noting that log β(d)< 0, we have

log h(d)
log β(d)

≤ − d
2 log 6+ log ϕ(0)

− d
8 log 2+ 1

4 log ϕ(0)
≤ 4 log 6− 8 log ϕ(0)

1
d

log 2− 2 log ϕ(0)
1
d
. (A.77)

Note that log ϕ(0)
1
d ≤ 0. By taking the derivative of the map x �→ 4 log 6−8x

log 2−2x for x≤ 0 we can find
that it is maximised at x= 0. Therefore

log h(d)
log β(d)

≤ 4
log 6
log 2

= 4 log2 6. (A.78)

Since this is finite, we have proven Assumption (B.2). �

A.4 Coordinate-Cauchy calculations
Recall that for γ > 0 and 0<A≤ (γ π)d, the Coordinate-Cauchy RCM is defined by having

ϕ(x)= A
(γ π)d

d∏
j=1

γ 2

γ 2 + x2j
, (A.79)

where x= (x1, . . . , xd) ∈R
d.

Lemma A.13. For the Coordinate-Cauchy RCM,

ϕ�n (0)=An
(

1
nγπ

)d
, ∀n≥ 1, (A.80)

ϕ�n1�n2·n3 (0)=An1+n2+n3
(

n1 + n2 + n3
(n1 + n2) (n1 + n3) (n2 + n3) γ 2π2

)d
, ∀n1, n2, n3 ≥ 1.

(A.81)

In particular,

ϕ�1�2·2 (0)=A5
(

5
36γ 2π2

)d
, ϕ�1�2·3 (0)=A6

(
1

10γ 2π2

)d
, ϕ�2�2·2 (0)=A6

(
3

32γ 2π2

)d
.

(A.82)

Proof. We begin with the simplification that qϕ =A is set to be equal to 1 (by a spatial scaling
choice).
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Like for the hyper-cubic model, the factorisable structure of the adjacency function means that
we only need to evaluate the answers for the 1 -dimensional model, and then we can take the
result to the power d to get the d -dimensional answer. Let the 1 -dimensional adjacency function
be denoted

ϕ1(x)= γ

π
(
γ 2 + x2

) . (A.83)

By well-known complex analysis techniques, the Fourier transform of this function is given by

ϕ̂1(k)= e−γ |k| (A.84)

for k ∈R. Then by the Fourier inversion formula, for n≥ 1,

ϕ�n1 (0)= 1
2π

∫ ∞

−∞
e−nγ |k|dk= 1

γπ

∫ ∞

0
e−nkdk= 1

nγπ
. (A.85)

The calculation is a little more complicated for the remaining objects. For n1, n2, n3 ≥ 1,

ϕ
�n1�n2·n3
1 (0)= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−n1γ |k|−n2γ |k−l|−n3γ |l|dkdl

= 1
(2γπ)2

∫ ∞

−∞

∫ ∞

−∞
e−n1|k|−n2|k−l|−n3|l|dkdl. (A.86)

For l≥ 0, the k -integral can then be partitioned as∫ ∞

−∞
e−n1|k|−n2|k−l|dk=

∫ ∞

l
e−n1k−n2k+n2ldk+

∫ l

0
e−n1k+n2k−n2ldk+

∫ 0

−∞
en1k+n2k−n2ldk

= 1
n1 + n2

(
e−n1l + e−n2l

)
+
{
le−n1l : n1 = n2

1
n1−n2

(
e−n2l − e−n1l

)
: n1 �= n2

=
⎧⎨⎩
(

1
n1 + l

)
e−n1l : n1 = n2

2n1
n21−n22

e−n2l − 2n2
n21−n22

e−n1l : n1 �= n2.
(A.87)

The calculation is performed similarly for l< 0, and we get

∫ ∞

−∞
e−n1|k|−n2|k−l|dk=

⎧⎨⎩
(

1
n1 + |l|

)
e−n1|l| : n1 = n2

2n1
n21−n22

e−n2|l| − 2n2
n21−n22

e−n1|l| : n1 �= n2
(A.88)

for all l ∈R.
For n1 = n2 we then get

ϕ
�n1�n1·n3
1 (0)= 1

4γ 2π2

∫ ∞

−∞

(
1
n1

+ |l|
)
e−(n1+n3)|l|dl

= 1
2γ 2π2

(
1

n1 (n1 + n3)
+ 1
(n1 + n3)2

)
= 2n1 + n3

2n1 (n1 + n3)2
1

γ 2π2 . (A.89)

Using n1 = n2 = 2 and n3 = 1, and n1 = n2 = 2 and n3 = 2 gives us two of our desired results. We
are only left with ϕ�1�2·3 (0).
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For n1 �= n2 we get

1
(2γπ)2

∫ ∞

−∞

∫ ∞

−∞
e−n1|k|−n2|k−l|−n3|l|dkdl= 1

2γ 2π2

∫ ∞

0

(
2n1

n21 − n22
e−n2l − 2n2

n21 − n22
e−n1l

)
e−n3ldl

= 1
γ 2π2

(
n1(

n21 − n22
)
(n2 + n3)

− n2(
n21 − n22

)
(n1 + n3)

)

= n1 + n2 + n3
(n1 + n2) (n1 + n3) (n2 + n3)

1
γ 2π2 . (A.90)

Note that this expression reduces to the case (A.89) if n1 = n2. �
Lemma A.14. The Coordinate-Cauchy RCM with lim infd→∞ ϕ (0)

1
d > 0 satisfies Assumptions A

and B.

Proof. For simplicity we scale space so that qϕ =A= 1. As argued analogously for the Gaussian
RCM in Lemma A.12, the condition lim inf ϕ (0)

1
d > 0 then becomes lim sup γ <∞, and ϕ(0)≤

1 becomes γ ≥ 1/π .
Since ϕ̂(k)= e−γ ‖k‖1 ≥ 0, we know that ess supx∈Rdϕ�m(x)= ϕ�m (0) for allm≥ 1. Therefore

ess supx∈Rdϕ
�m(x)= (mγπ)−d . (A.91)

Since γπ ≥ 1, this approaches zero for all m≥ 2. Therefore (A.1) holds with the choice g(d)=
(2γπ)−d = 2−dϕ(0) and β(d)= 2− d

4 ϕ(0)
1
4 (here we use lim sup γ <∞ to get the appropriate

form of β from (1.10)). Furthermore, γ cannot approach 0 and therefore our expression for ϕ̂(k)
implies (A.2) holds too.

From our prior calculations we have ϕ�6 (0)= 6−dq5ϕϕ(0) and therefore (B.1) can be seen to
hold with ρ = 6−1 lim inf ϕ(0)

1
d > 0. It also allows us to lower bound h(d). Noting that log β(d)<

0, this implies that

log h(d)
log β(d)

≤ −d log 6+ log ϕ(0)
− d

4 log 2+ 1
4 log ϕ(0)

≤ 4 log 6− 4 log ϕ(0)
1
d

log 2− log ϕ(0)
1
d

. (A.92)

Note that log ϕ(0)
1
d ≤ 0. By taking the derivative of the map x �→ 4 log 6−4x

log 2−x for x≤ 0 we can find
that it is maximised at x= 0. Therefore

log h(d)
log β(d)

≤ 4
log 6
log 2

= 4 log2 6. (A.93)

Since this is finite, we have proven Assumption (B.2). �
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