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Abstract

This note is devoted to the question of deciding whether or not a subring of a finite-dimensional
algebra over the rationals, with additive group a Butler group, is the endomorphism ring of a Butler
group (a Butler group is a pure subgroup of a finite direct sum of rank-1 torsion-free abelian groups).
A complete answer is given for subrings of division algebras. Several applications are included.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 K 15.

A. L. S. Comer, in 1963, proved that each reduced subring of a finite-dimensional
g-algebra is isomorphic to the endomorphism ring of a finite-rank torsion-free
abelian group, where Q denotes the field of rationals. M. C. R. Butler, in 1965,
defined a class of finite-rank torsion-free abelian groups, subsequently called
Butler groups. This class is the smallest class that contains all rank-1 torsion-free
abelian groups and is closed under pure subgroups, torsion-free homomorphic
images, and finite direct sums ([6]).

In 1965, S. Brenner and M. C. R. Butler showed that each finite-dimensional
Q-algebra is isomorphic to the quasi-endomorphism ring of a Butler group, where
the quasi-endomorphism ring of G is the tensor product of Q, over Z, with the
endomorphism ring of G. Furthermore, the additive group of the endomorphism
ring of a Butler group is again a Butler group ([6]). A partial converse to the latter
result is:

THEOREM I. Assume that R is a subring of K = QR, a finite-dimensional
Q-algebra and that the additive group ofR is a Butler group.

(a) / / R is p-reduced for at least 5 primes of Z, then there is a Butler group G
with endomorphism ring isomorphic to R.
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(b) The group G may be chosen with rank = 2mrank(R), where m — 1 is the
cardinality of a set of Q-algebra generators ofK containing lK.

A Butler group G is a 2?0-group (called torsionless in [6]) if G*(T) is a pure
subgroup of G for each type T, where G*(r) is the subgroup of G generated by
{x e G|typeG(x) > T}. Among the class of almost completely decomposable
groups, the 2?0-groups are precisely the completely decomposable groups. Thus,
the endomorphism ring of an indecomposable, almost completely decomposable
Butler group of rank > 1 cannot be isomorpbic to the endomorphism ring of a
2?0-group in this restricted class. On the other hand, if the endomorphism ring of a
Butler group is a subring of a division algebra, then the following theorem shows
that the ring is also the endomorphism ring of a fi0-group.

THEOREM II. Assume that R is a subring of K = QR, a finite-dimensional
division Q-algebra. The following statements are equivalent:

(a) R is isomorphic to the endomorphism ring of a Butler group;
(b) R is isomorphic to the endomorphism ring of a B0-group;
(c) R is a free S-module for some rank-\ torsion-free ring S; if R is p-reduced for

at most 4 primes ofZ, then K = Q(y) for some y; and ifR is p-reduced for at most
3 primes ofZ, then K = Q.

As a consequence of Theorem II, not every subring of a finite-dimensional
Q-algebra, with additive group a Butler group, is isomorphic to the endomor-
phism ring of a Butler group. For example, R = H(Zp), the ring of Hamiltonian
quaternions over the integers localized at a prime p fails to satisfy Theorem II (c).
Applications of Theorem II are given in Examples 2 and 3.

If G is a Butler group, then typeset(G) is finite and <G*(T) )* /G*(T) is finite
for each type T, where (G*(r))^ is the pure subgroup of G generated by G*(T)
([6]). It is conjectured in [6], that each Butler group contains a 2?0-group as a
subgroup of finite index. This conjecture is resolved, in the negative, by Example
4.

Notation and terminology are, unless otherwise noted, as in [1] and [2]. We
write M" for the direct sum of n copies of M and EndR(M) for the ring of
/t-endomorphisms of an .R-module M. If S Q M, then RS denotes the .R-sub-
module of M generated by S.

A torsion-free abelian group is completely decomposable (of finite rank) if it is
isomorphic to a finite direct sum of subgroups of Q and almost completely
decomposable if it contains a completely decomposable group as a subgroup of
finite index.
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Let G be a torsion-free abelian group of finite rank. Then G is p-reduced for a
prime p of Z if G contains no elements of infinite ^-height. If r is a type, then
G(T) = [x e G|typeG(jc) > r) is a pure fully invariant subgroup of G. Thus,
G*(T) is the subgroup of G generated by {G(o)\o > T} . Define typeset(G) =
(typeG(x) |0 # x e G}. The group G is homogeneous if typeset(G) has cardinal-
ity 1.

LEMMA 1 (BRENNER [4]). Let K be a finite-dimensional Q-algebra and let m - 1
be the cardinality of a set of Q-algebra generators for K that contains \K.

(a) There are five left K-submodules of K2m such that K is isomorphic to the
algebra of Q-endomorphisms ofK2m that leave each of the submodules invariant.

(b) / / m — 1 = 2, then there are four left K-submodules of K2 such that K is
isomorphic to the algebra of Q-endomorphisms of K2 that leave each of the
submodules invariant.

PROOF. An explicit construction of these submodules is given for later refer-
ence.

(a) Define m X 2m matrices as follows: Mx = (10), M2 = (O/), M3 = (//),
M4 = (IJ), and M5 = (IM), where / is an m X m identity matrix, O is an
m X m zero matrix, J is an m X m Jordan matrix with ones on the superdiago-
nal and zeros elsewhere, M is an m X m matrix of the form

M =

(0
1
72

0

0
0

0
0
1

73

0
0

0 •••
0 •••
0 •••
1 •••

0 •••
0 •••

0
0
0
0

1
7m-1

0
0
0
0

0
1

01
0
0
0

0

and r = {yj = l ,7 2 ' - 'Vm-i} is a set of Q-algebra generators of K. Define AT,
to be the /C-submodule of K2m generated by the rows of Mt.

Note that left multiplication induces a well-defined algebra injection from K to

{ / e Kn&Q{K2'")\f(Ki) c Kt,\ < / < 5}.

Next, let / e Ende(A"2m) with / ( ^ j c ^ for each i. Represent / as a
2m X 2m matrix with entries in Endg(J^), say,

/ =
N2

N4
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Nx = N4, since f(K3) c K3; A^ is a lower triangular matrix with equal diagonal
elements and equal subdiagonal elements, since f(K4) c K4; Nx is a diagonal
matrix with equal diagonal elements, since / sends the first row of M5 into K5;
and there is k e K with / acting as left multiplication by k, since f(K5) c K5

and F is a set of g-algebra generators for K. For the latter statement, observe
that if / = al2mx2m for some a e EndQ(K), then a(kyt) = a(fc)y, for each
k e K, 2 < / < / M — 1, since f(K5) c K5. Therefore, / is left multiplication by
a( l ) , as desired.

(b) Let T = {1,7}, xx = (1,0), x2 = (0,1), x3 = (1,1), and x4 = (1, y). Define
Kt to be the /T — submodule of K2 generated by x,. Then, as in the proof of (a),
left multiplication induces an isomorphism K -* { / e E n d e ( ^ 2 ) | / ( ^ T , ) c Kt,
1 < J < 4}.

PROOF OF THEOREM I. Choose distinct primes px, p2, p3, p4, p5 such that R is
/7,-reduced. Let Xj be the subgroup of Q\K c K generated by { l^ /p f |1 < i =t j
< 5,fc = 1 , 2 , . . . } . Define B = (Zj/?)"1 © ••• ©(X5jR)m c A"5m. Then 5 is a
Butler group, since R is a Butler group, noting that XXR = Xx ®ZR and A^ is a
flat Z-module.

Next, define G = Imaged n 5 , where $ : A^2"1 -» A^5"1 is given by $ ( * , j ) =
(y, x, y - x, y - xa, y - xy), y e Km, x = ( x l 5 . . . , xm) e Km, xa =
(0, xlf x2,..., xm_1), xy = (x2 + x3y2, x3 + x4y2, ...,xm, 0), and T = (1 =
yx,y2,...,ym_i} c R is a set of g-algebra generators for K = QR. Then G is a
Butler group, being a pure subgroup of B. Moreover, rank(G) = dime(Image0)
= 2m dime(K) = 2wrank(JR), since QB = A"5m, $ is an injection, and £R = K.

It is sufficient to prove that left multiplication induces an isomorphism /x:
R -* End(G). Note that RB = B and /i is a well-defined ring injection. The
strategy is to first prove that if / e End(G), then / is left multiplication by some
k G K and then to prove that k e R.

Define Tj = type(Xj*S) for each 1 <y < 5, where S is the pure subgroup of R
generated by 1R = 1*, and X* = D{ X,, 11 < i * j < 5} = Z[\/Pj\ • \K. Since G
is a pure subgroup of B, then G(T,) = G n B(T;), is a fully invariant subgroup of
G. In fact, B(TJ) = ® {(XiR)m\l < / ±j < 5}, since if i *j then T7 < type(x)
for each x e XfR while Ty ^ type(x) for each non-zero x in ^ . / i . Consequently,

TJ) = * (^ 7 ) , where ^ is defined as in Lemma l.a, since <&(Kj) =
, >») \(x, y) e AT2m and the yth coordinate of $(x, y) = 0}.

Now let / e End(G). Then / (G(T 7 ) ) C G(Ty), whence f(QG(Tj)) c ^G(T^), for
each 1 <y < 5. Therefore, by Lemma 1 and the fact that <b(Kj) = QG(TJ), f is
left multiplication by some k ^ K.

To prove that k e #, let x = j = ( l , 0 , . . . , 0 ) e r . Then O(0, j ) e G(T2),

/ (*(0, >-)) = Ar*(O, ^) = (ky,0, ky, ky, ky) e G(T2) C B, and k & X,R n X3R
n ^Z? n X5R. Similarly, k<S>(x,0) e G(TX) implies that A: e A'j/?. Thus, k e
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D{ XtR 11 < / < 5} = R, since Z • 1K = f){ X,; | 1 < i < 5}. Consequently, fce/i,
as desired.

PROOF OF THEOREM II. (b) => (a) is clear.
(a) =» (c). Assume that R = End(G) for some Butler group G. Then R is a free

S-module, where S is the pure subgroup of R generated by 1^, by [2], Corollary
5.2. Note that if p is a prime, then R is /7-reduced if and only if R is not
/>-divisible, whence R is />-reduced if and only if G is not p-divisible.

It is now sufficient to prove that if R is divisible by all but four, respectively
three, primes, then there are four, respectively three, (7R-submodules of QG such
that QR is the algebra of g-endomorphisms of QG that leave each of these
submodules invariant. In this case, QR = Q(y), respectively QR = Q, as a
consequence of [4], Proposition 5 and Section 7.

The case that G is divisible by all but four primes, say pr, p2, p^, />4, is proved
and the other case, having an analogous proof, is left to the reader.

The four desired submodules of QG are L, = £>G(T,) for 1 < i < 4, where
Tj = inf{o, 11 < i # 7 < 4}, a, = typ^Z^.), and Zpi is the localization of Z at />,.
To see this is indeed the case, first note that typeset(G) c T, the finite sublattice
of the lattice of all types generated by alt o2, o3, o4. Then T1; T2, T3, T4 are
minimal elements of r \ { T 0 } , where T0 = 01^^,02,03,04}, and av o2, o3, o4

are maximal elements of T\ (type(<2)}-

Since typeset(G) c T, G is a pure subgroup of C = Ct ® • • • ®Cn, with
C, c 2 and type(C,) e r([6]). For each 1 < 1 < 4, typeset(C(o,)) c {o,, type<<2)}
so that GiOj) is a summand of 0(0^ ([1], Exercise 5.7), hence of G. Therefore,
G(o,) = 0, since Q End(G) = K, a division algebra, implies that G is indecom-
posable. It now follows that typeset(G) c {T0, T1; T2, T 3 , T 4 , T ' 7 | 1 < / ¥= j < 4},
where T ' 7 = sup{r,,T7} = inf{ak,a,} , and {i,j,k,l} = {1,2,3,4}.

Finally, assume that / e E n d e ( g G ) , with /(L,-) c L, for each 1 < / < 4. Then
f(QG(rij)) c QG(T'J), for each 1 < / #> < 4, noting that QG(T'J) = QG(T;) n
QG(TJ) for each T e typeset(G). Therefore, / e g End(G) by [2], Theorem 1.5.
Consequently, left multiplication induces an isomorphism QR -* {/ e
Ende(gG) I /(L,) c L,, 1 < J < 4}, as desired.

(c) =» (b). If R is ^-reduced for at most 3 primes, then K = Q, by hypothesis.
In this case, the additive group of R is a 50-group with endomorphism ring R.

The next case considered is that R is /^-reduced for at least 5 primes. The
construction of Theorem I yields a Butler group G = Image 4> n B with i? =
End(G), where B = (X^)"1 © ••• <B(X5R)m c tf5m and T = {1 =
Ji, • • •, Ym_i} is a set of g-algebra generators of A", which may be asssumed to be
a subset of R since K = QR. We prove that G is a 50-group.
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Since R is a free S-module, XtR is homogeneous completely decomposable
with type = o, = type(Ar

I5). Recall, from the proof of Theorem I, that Xf =
n { * , | l < / # ; < 5}, Tj = typ^XfS), and *(A}) = QG(TJ), where Kj is as
defined in Lemma l.a.

A routine calculation shows that if 1 < / =£ j < 5, then Kt n Kj = 0, unless
{i, j} = {1,4} or {1,5}. Consequently, typeset(G) c { T0, TX, T2, T3, T4, T5, T

14, T15 },
where type(S) = T0 = inf{ T1; T2, T3, T4, T5 } and T'-' = sup{ T', T> }.

It is now sufficient to prove that G*(T0} = G and that G*(TJ) is pure in G, in
which case G must be a 50-group. In fact, G*(TX) = G(T 1 4 ) + G(T 1 5 ) is pure in
G, since KtnK4 = <S>~1QG{T1*) = Q(0,0,...,0,1,0,0,...,0) and ^ n # 5 =

Note that G*(T0) = G(TX) + G(T2) + G(T3) + G(T4) + G(T5). TO see that
G*(T0) = G, it is sufficient to prove that if p is a prime, then Zp ®z G = Gp c
G(T!)P + • • • + G ( T 5 ) , , in which case, G = fl^G, c G*(T0) = n^G^To),. Let
a = (y,x,y- x,y-xa,y- xy) e Gp c ( X ^ ) ; e • • • ®(^5i?)™. If /> «
{/>3>/'4./'5}5 then >; e (^ /? )J = (X2*/{)™ and x e (X2/«); = (Zf/?);. Hence,
a = $(x, ^) = $(0, y) + $(x, 0) e GCT,^ + G(Tl),. Similarly, if p = p3,
then a = $(0, j> - x) + $(x, x) e GC^)^ 4- GCTJ)^; if p = />4, then a =
$(0, y - xa) + $(x, xa) G GC^)^ + G(r4)p; and if /> = />5, then a =
$(0, j> - xy) + $(x, xy) e G(T2)P + G(r5)p. Consequently, G*(T0) = G, as de-
sired.

The final case is that R is /^-reduced for exactly four primes. The proof, using
Lemma l.b in place of Lemma l.a, is similar, but easier, and thus is omitted.

EXAMPLE 2. There is a 50-group A with End(^) = Z ® 2Zi c Q(i), where
i2 = - 1 . In particular, End(^4) is not integrally closed in its quotient field Q(i).

Example 2 and Theorem II are a partial resolution of Problem 6.5, [2]. The
following example is a counterexample to Conjecture 6.2, [2].

EXAMPLE 3. There are 50-groups A and B such that A and B are nearly
isomorphic but not isomorphic.

PROOF. Let S = Z[^5], a Dedekind domain that is not a principal ideal
domain. By Theorem II, there is a U0-group A with End(^4) - c T "* J be a
non-principal ideal of S. Then B = I A is a subgroup of finite index in A, A and
B are nearly isomorphic, but A and B are not isomorphic (as in [1], Example
12.11).

EXAMPLE 4. There is a rank-4 Butler group that does not contain a 2?0-group as
a subgroup of finite index.
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PROOF. Let V = Qv1 0 Qv2 © Qv3 ffi Qv4 and let {Pi,...,p9} be a set of

distinct primes. Denote by Z[\/pt) the subring of Q generated by 1/p,, and
define Z'J = Z[l/pt] + Z[\/pj] whenever 1 < i ± j < 9. Let G be the subgroup
of V generated by {AV...,A6}, where A1 = Z15vx, A2 = Z25v2, A3 = Z36v3,
A4 = Z 4 6 ^ , A5 — Z79(v1 + v2 + p9v3), and A6 — Z89(v3 + v4 + p9vx). Then each
Ai is a pure rank-1 subgroup of G and typeset(G) = { T 1 5 . . . , T 6 , T , T 1 2 ) T 3 4 , T 5 6 } ,

where T, = type(v4,), T = type(Z) and T,7 = inf{T,, ry} (see [2], Theorems 0.1 and
1.7).

Note that G(T , ) = At, G * ( T 1 2 ) = A1 + A2, and G*(T 3 4 ) = A3 + A4. Since
G ( T 1 2 ) n G ( T 3 4 ) = 0, G ( T 1 2 ) = (Qv, e e«2) n G = Ax + A2 + Z(Vl + v2)/p

and G ( T 3 4 ) = A3 + A4 + Z ( D 3 + vA)/p, where p = p9. Similarly, G*(T5 6) =
G ( T 5 6 ) .

Suppose that H is a subgroup of finite index in G and that H is a 50-group.
Then typeset(7/) = typeset(G), so there exist non-zero integers mt, such that
H = mxAx + ••• +m6A6 and miAi = i/(r,), since # ( T , ) = H n G(T, ) = # n ^,.
([2], Theorem 2.2).

Furthermore, mlAl + w2^42 = H*(T12) — H(T12) = H C\ G ( T 1 2 ) and, simi-
larly, m3A3 + m4A4 = H n G ( T 3 4 ) . In particular, (w3yl3 + m4A4 + m5A5 +
m6A6) D G(T 1 2 ) C m1A1 + m2A2 and (m1A1 + w2^42 + msA5 + m6A6) n
G(T3 4)c«i3v43 + m4^44. Localizing the first containment at p = p9 yields
(pe™Zpv3 + P

e(4)Zpv4 + Qv5 + Qv6)n(ZpVl + Zpv2 + Zp(Vl + v2)/p) c
pe(1)Zpv1 + pe(1)Zpv2, where e(i) = p-height(m,) in Z, u5 = (^i + v2 + pv3)/p,
and u6 = (t>3 + u4 + pvx)/p.

Note that us - v3 = (yx + u2)/p. Thus, -pe(3)v3 + pH3)v5 = pe(3)~\vl + j;2)
e /?e(1)Zi,j;1 + pe(2)Zpv2. Hence, e(3) - 1 > e(l). However, by a similar argument
on the localization of the second containment and the equation v6 - vx =
(v3 + v4)/p, e{\) — 1 > e(3). This contradiction completes the proof.
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