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Abstract

We show that if G is a group and A ⊂ G is a finite set with |A2
| ≤ K |A|, then there is a symmetric

neighbourhood of the identity S such that Sk
⊂ A2 A−2 and |S| ≥ exp(−K O(k))|A|.

2000 Mathematics subject classification: primary 11B13; secondary 11P99, 20F05, 20F99, 20P99.

Keywords and phrases: Balog–Szemerédi–Gowers lemma, nonabelian groups, noncommutative groups,
approximate group, Katz–Koester trick, induction on doubling, Freı̆man’s theorem.

Suppose that G is a group and A ⊂ G is a finite set with doubling K , that is,
|A2
| ≤ K |A|. Clearly if A is a collection of free generators then K = |A|, but if K

is much smaller then it tells us that there must be quite a lot of overlap in the products
aa′ with a, a′ ∈ A. The extreme instance of this is when K = 1 and A is necessarily
a coset of a subgroup of A. We are interested in the extent to which some sort of
structure persists when K is slightly larger than 1, say O(1) as |A| →∞.

If G is abelian then the structure of A is comprehensively described by the Green–
Ruzsa–Freı̆man theorem [GR07], but in the nonabelian case no analogue is known.
A number of remarkable results have been established (see [BG09a, BG09b, FKP09,
Hru09, Tao09] for details of these), but a clear description has not yet emerged. The
interested reader may wish to consult [Gre09] for a discussion of the state of affairs.

Freı̆man-type theorems for abelian groups are applied to great effect throughout
additive combinatorics, and many of these applications can make do with a
considerably less detailed description of the set A. Moreover, additive combinatorics is
now beginning to explore many nonabelian questions and so naturally a Freı̆man-type
theorem in this setting would be very useful. This is the motivation behind our present
work: we wish to trade in some of the strength of the description of A in exchange
for the increased generality of working in arbitrary groups. Tao proved a result in this
direction in [Tao09] for which we require a short definition. A set S in a (discrete)
group G is a symmetric neighbourhood of the identity if 1G ∈ S and S = S−1.
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THEOREM 1.1 [Tao09, Proposition C.3]. Suppose that G is a group, A ⊂ G is a
finite nonempty set such that |AA−1

| ≤ K |A|, and k ∈ N and ε ∈ (0, 1] are a pair of
parameters. Then there is a symmetric neighbourhood of the identity S ⊂ AA−1 with
|S| =�K ,k,ε(|A|) such that for all l ≤ k,

P(a1 · · · al ∈ AA−1
| a1, . . . , al ∈ S)≥ 1− ε.

The proof uses the celebrated regularity lemma of Szemerédi and so the resulting
bounds are of tower type.

One would like to remove the ε-dependence in Tao’s result, but this cannot be done
(even in the abelian case; see [Ruz91]) if we are only prepared to accept containment
in the twofold product set AA−1. We shall prove the following ε-free result.

THEOREM 1.2. Suppose that G is a group, A ⊂ G is a finite nonempty set such that
|A2
| ≤ K |A|, and k ∈ N is a parameter. Then there is a symmetric neighbourhood of

the identity S such that

Sk
⊂ A2 A−2 and |S| ≥ exp(−K O(k))|A|.

It should be remarked that in the abelian setting the result follows from Green–Ruzsa
modelling and Bogolioùboff’s lemma. Indeed, this essentially amounts to following
the proof of the Green–Ruzsa–Freı̆man theorem and stopping before the covering
argument. The resulting bound has significantly better k dependence, as it gives
|S| ≥ k−K O(1)

|A|.
One of the main applications of Theorem 1.2 is to produce pairs of sets that are

‘almost invariant’. Indeed, if |A3
| = O(|A|) then one can apply the theorem to get a

large set S such that
A ⊂ Sk A ⊂ A2 A−2 A.

By the nonabelian Plünnecke–Ruzsa inequalities of Tao [Tao08], we have that
|A2 A−2 A| = O(|A|) and hence by the pigeon-hole principle there is some l ≤ k − 1
such that

|SSl A| ≤ (1+ O(1/k))|A| ≤ (1+ O(1/k))|Sl A|.

Writing A′ := Sl A, we see that the pair (S, A′) is almost invariant in the sense that
S A′ ≈ A′ with the accuracy of approximation increasing as k increases.

Exactly this argument is given as a ‘cheat’ argument for the proof of [Tao09,
Proposition 5.1] where Tao applies [Tao09, Proposition C.3] and first sketches a proof
assuming ε = 0. In view of the above that ‘cheat’ is now sufficient. (In fact this entails
a very slight weakening of the conclusion, but the resulting proposition is still more
than sufficient for its intended use.) A similar pigeon-holing argument, but this time
on multiple scales, is also used in [San09] on the way to proving a weak nonabelian
Freı̆man-type theorem for so-called multiplicative pairs.

We turn now to the proof of Theorem 1.2 which uses symmetry sets, popularized
in the abelian setting by the book [TV06]. Suppose that G is a group. Recall that the
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convolution of two functions f, g ∈ `1(G) is defined by

f ∗ g(x)=
∑
y∈G

f (y)g(y−1x),

so that if A, B ⊂ G then

supp 1A ∗ 1B = AB and 1A ∗ 1B(x)= |A ∩ x B−1
|.

Given η ∈ (0, 1], the symmetry set of A at threshold η is

Symη(A) := {x ∈ G : 1A ∗ 1A−1(x)≥ η|A|}.

It is immediate that Symη(A) is a symmetric neighbourhood of the identity contained
in AA−1, and that we have the nesting property

Symη(A)⊂ Symη′(A) whenever η ≥ η′.

A straightforward pigeon-hole argument shows that they also enjoy the following
useful submultiplicativity property:

Sym1−ε(A) · Sym1−ε′ ⊂ Sym1−(ε+ε′)(A)

for all ε, ε′ ∈ [0, 1) with ε + ε′ < 1. See [TV06, Lemma 2.33] for the abelian details,
which are exactly the same.

Our main result provides a plentiful supply of large symmetry sets with threshold
close to 1.

PROPOSITION 1.3. Suppose that G is a group, A is a nonempty subset of G with
|A2
| ≤ K |A|, and ε ∈ (0, 1] is a parameter. Then there is a nonempty set A′ ⊂ A such

that
|Sym1−ε(A

′A)| ≥ exp(−K O(1/log(1/(1−ε)))log K )|A|.

One perhaps expects ε to be close to 0, where 1/log(1/(1− ε))= O(ε−1) is a
strong estimate and would simplify the expression above. However, Tao has pointed
out that the result already has content for ε = 1− K−η and this has been used in the
abelian setting in [San10].

With this in hand the proof of our main theorem is immediate.

PROOF OF THEOREM 1.2. We apply Proposition 1.3 with parameter ε := 1/(k + 1)
to get a nonempty set A′ ⊂ A such that

|Sym1−ε(A
′A)| ≥ exp(−K O(k))|A|.

However, by the submultiplicativity property of symmetry sets,

Sym1−ε(A
′A)k ⊂ Sym1−k/(k+1)(A

′A)⊂ A′A(A′A)−1
⊂ A2 A−2.

The result follows on setting S := Sym1−ε(A
′A). 2

The proof of the proposition involves iterating the following lemma.
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LEMMA 1.4. Suppose that G is a group, A ⊂ G is nonempty and finite, A′ ⊂ A has
|A′| ≥ c|A| and |A′A| ≤ K |A|, and ε ∈ (0, 1] is a parameter. Then at least one of the
following is true:

(i) there is a subset A′′ ⊂ A′ ⊂ A such that

|A′′| ≥ c4
|A|/2K and |A′′A| ≤ K (1− ε)|A|;

(ii) we have the bound
|Sym1−ε(A

′A)| ≥ c3
|A|/2K .

PROOF. Since A′ ⊂ A we have that |A′A′| ≤ |A′A| and∑
x∈G

1A ∗ 1A′(x)
2
≥

∑
x∈G

1A′ ∗ 1A′(x)
2.

Now, the Cauchy–Schwarz inequality can be used to bound the right-hand side:∑
x∈G

1A′ ∗ 1A′(x)
2
≥

1

|A′2|

(∑
x∈G

1A′ ∗ 1A′(x)

)2

.

However, ∑
x∈G

1A′ ∗ 1A′(x)= |A
′
× A′| = |A′|2

and so ∑
x∈G

1A′ ∗ 1A′(x)
2
≥ |A′|4/|A′A|.

On the other hand, for arbitrary sets B, C, D, E ⊂ G,

〈1B ∗ 1C , 1D ∗ 1E 〉`2(G) = |{(b, c, d, e) ∈ B × C × D × E : bc = de}|,

and bc = de if and only if d−1b = ec−1, whence

〈1A ∗ 1A′, 1A ∗ 1A′〉`2(G) = 〈1A−1 ∗ 1A, 1A′ ∗ 1A′−1〉`2(G).

For t ∈ G write A′t := A′ ∩ (t A′) and define

L := {t ∈ G : |A′t | ≥ |A
′
|
4/(2|A′A||A|2)}.

It is easy to check that

|L||A||A′| +
|A′|4

2|A′A||A|2
· |A|2 ≥

∑
x∈G

1A ∗ 1A′(x)
2,

from which it follows that

|L| ≥ |A′|3/2|A′A||A| ≥ c3
|A|/2K

since |A′A| ≤ K |A| and |A′| ≥ c|A|.
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Now, if there is some t ∈ L such that |A′t A| ≤ (1− ε)|A′A|, then we terminate in
the first case of the lemma with A′′ = A′t : simply note that A′′ = A′t ⊂ A′ ⊂ A ⊂ G,

|A′′| = |A′t | ≥
|A′|4

2|A′A||A|2
≥

c4

2K
|A|,

since |A′A| ≤ K |A| and |A′| ≥ c|A|, and

|A′′A| ≤ (1− ε)|A′A| ≤ K (1− ε)|A|.

In light of this we may assume that there is no such t ∈ L , that is,

|A′t A| ≥ (1− ε)|A′A| ∀t ∈ L .

However, A′t A = (A′ ∩ t A′)A ⊂ (A′A) ∩ t (A′A), whence

1A′A ∗ 1(A′A)−1(t)≥ (1− ε)|A′A| ∀t ∈ L ,

and we are in the second case in view of the lower bound on the size of L . 2

PROOF OF PROPOSITION 1.3. We apply Lemma 1.4 iteratively to get a sequence of
nonempty sets (A′i )i satisfying

A′i+1 ⊂ A, |A′i+1| ≥ |A|/(2K )(4
i
−1)/3 and |A′i A| ≤ (1− ε)i K |A|.

First A′0 := A. Suppose that we are at stage i of the iteration and apply Lemma 1.4 to
the pair (A′i , A). If we are in the first case of the lemma then we get a set A′i+1 ⊂ A
with

|A′i+1| ≥ (1/(2K )(4
i
−1)/3)4|A|/2K = |A|/(2K )(4

i+1
−1)/3

and
|A′i+1 A| ≤ (1− ε)|A′i A| ≤ (1− ε)i+1K |A|.

The sequence (A′i )i has the desired properties and in light of the last one the iteration
certainly terminates at some stage i0 with i0 ≤ dlog K/−log(1− ε)e since A′i is
nonempty so |A′i A| ≥ |A|.

When the iteration terminates we put A′ := A′i and since we are in the second case
of Lemma 1.4 we have the desired result. 2

It is worth making a number of remarks. First, a lower bound for |A′| may also be
read out of the proof, although in applications it is not clear how useful this information
is. The driving observation in the proof of Lemma 1.4 is that

(A′ ∩ t A′)A ⊂ (A′A) ∩ (t A′A),

so if the left-hand side is close to |A′A| in size then t ∈ Sym1−o(1)(A
′A). This rather

cute idea comes from the work of Katz and Koester [KK08], who use it in abelian
groups to show that if a set has doubling K then there is a correlating set with larger
additive energy than the trivial Cauchy–Schwarz lower bound.
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Finally, at about the same time as this paper was produced, Croot and Sisask [CS09]
developed a different method for analysing sumsets, which turns out to also work for
sets of small doubling in nonabelian groups. Their argument gives a better bound in
Theorem 1.2 showing that one may take |S| ≥ exp(−O(k2K log K ))|A|.
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