
12          doi:10.1017/S1551929520000279� www.microscopy-today.com • 2020 March

Abstract: Order, in the sense of arrangement, structure, coordination, 
or sequence, arises in many fields and at all scales. It is found with 
varying degrees of perfection in many if not most subjects for micros-
copy, can take many forms, and can be challenging to recognize or 
to measure. A variety of examples are provided that are intended to 
make the reader more aware of the possibilities.
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Introduction
Humans like to say we crave order. We ask our children to 

“keep their rooms in order,” order is demanded in courtrooms, 
and we definitely frown on disorderly conduct. But, in fact, perfect 
order is perfectly boring. In the sense of regularity, it means that 
observing one part of something means we know all about it, and 
there is nothing more to learn. The painting Red Square by Kazi-
mir Malevich (Figure 1a) is perhaps an extreme of perfect order. 
Intended as an avant-garde statement of the ultimate supremacy 
of pure feeling removed from any representational content, it does 
not cause the eye to linger or search for (nonexistent) details.

Another abstract expressionist artist, Jackson Pollock, cre-
ated much more interesting paintings (Figure 1b) in which there 
are multiple colors and shapes. The swirls and blobs are not ran-
dom, although they may appear so at first. His paintings have 
in fact been shown to be fractal [1], one of the recurring ways 
that nature often organizes things. This makes Pollock’s work 
much more interesting to view than simply a collection of ran-
domly placed and sized paint drops in random colors (that is, 
complete disorder). Groupings and structures that are interme-
diate between perfect order and complete disorder are the most 
interesting. The concepts of arrangement, proportion, and pat-
tern arise in many fields, and not just those that involve aesthet-
ics such as flower arranging (ikebana). This is especially true 
in applications that include microscopy, and several are worth 
examining to better understand the possible types of order and 
the available measurement tools.

Atomic Structure
Atoms, and groups of atoms, gen-

erally form bonds that produce very 
regular three-dimensional arrange-
ments. Even in liquids, there is generally 
some preferential local arrangement 
of atoms. Water, for example, has two 
hydrogen atoms bonded to the oxygen 
atom at the tetragonal angle of 104.5°, 
and the weak Van der Waals bonds 
from the dangling hydrogen atoms 
lead to a preferred arrangement of 
local molecules that is hexagonal. This 

accounts for the stability of the liquid, as other similar chemicals 
such as hydrogen sulfide are not bent, and are gases at room tem-
perature. When water freezes, the bent molecules become lined 
up in the hexagonal 120° arrangement seen in snowflakes.

There are 14 Bravais lattices that are possible for long-range 
order. Other possibilities exist: non-periodic arrangements of 
regions with atomic lattices that cannot extend to fill  space 
have been found in both man-made and natural materials (read 
The Second Kind of Impossible by Paul Steinhardt for a highly 
entertaining and scientifically sound background). It is possible 
using the TEM or AFM to visualize the atomic positions (Fig-
ure 2a, 2b). The bonds between atoms are very strong, and sin-
gle perfect crystals have important mechanical and electronic 
properties, but most materials are quite imperfect. Even a 0/0/0 
diamond (highest quality cut, color, and clarity) has locations 
in the lattice where an atom is missing (vacancy) or some atom 
other than carbon, for example, hydrogen, has squeezed in 
among the atoms (interstitial). Modern solid-state electronics 
depend on highly perfect silicon single crystals that are inten-
tionally doped with atoms that replace silicon (substitution) 
and modify the electronic structure to create semiconductors.

In addition to these local defects in crystal structure, most 
crystalline materials consist of multiple crystals that have dif-
ferent orientations. The places where these grains meet (Figure 
2c) are grain boundaries that strongly affect the overall prop-
erties (and make materials orders of magnitude weaker than 
a perfect single crystal). In addition, dislocations within the 
grains are atomic-scale offsets in the regular lattice that can 
shift position relatively easily and so cause deformation of the 
grain and cumulatively of the bulk material.

Max von Laue used X-ray diffraction to reveal the periodic-
ity of atomic spacing in crystals (for which he received the 1914 
Nobel Prize in physics). Electron diffraction is commonly used 
to reveal the structure of specimens in the TEM and can be used 
to measure the atomic spacing as shown in Figure 3.
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Figure 1:  Abstract paintings: (a) Kazimir Malevich, Red Square; (b) Jackson Pollock, Number 8.
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Many common materials, especially metals, are produced 
with controlled microstructures that seek to optimize the 
grain structure and dislocation density to provide the desired 
mechanical properties. Figure 4a shows the grain structure of 
a metal as it appears when polished and etched to reveal the 
grain boundaries. Generally the smaller and more uniform 
the grains the better the strength and ductility. Measuring the 

“grain size” is usually done by super-
imposing a circular grid and count-
ing intersections with the boundaries, 
which measures the surface area of 
grain boundaries per unit volume [2]. 
This method is useful for an equilib-
rium grain structure, but depending 
on heat treatment and mechanical 
deformation a duplex arrangement of 
different populations of grains may 
develop, in which case the “grain size” 
number can be misleading. Rolling 
the metal to a thin sheet (Figure 4b) 
or drawing it into a wire squeezes the 
grains into a distorted shape with 

many more dislocations, which tangle and increase the hard-
ness but decrease the ductility. Counting the number of inter-
sections of a grid of lines with the boundaries as a function of 
direction is a commonly used method of assessing the degree of 
elongation and anisotropy.

Some macroscopic man-made objects show uniform regular-
ity. A brick wall (Figure 5a) or hexagonal bathroom tile floor have 
minor variations that do not attract much attention. A parquet 
floor (Figure 5b) uses different wood grains and orientations that 
create more interest, and the elaborate tiling in the Alhambra (Fig-
ure 5c) are regular and periodic but with enough variations and 
symmetries to engage the viewer. Even large man-made structures 
often exhibit regularity and symmetry along with complexity and 
unique design elements. Many cities have a regular array of streets 
(sometimes with unimaginative names like 42nd Street and 6th 
Avenue), which is convenient but not interesting.

One way to measure the tendency toward regular or self-
avoiding spacing and its opposite, clustering, is to measure the 
neighbor distances. For a random distribution, such as a view 
of stars in the night sky (in spite of the human desire to impose 
order in the form of imagined constellations), the mean nearest 
neighbor distance is just 0.5•(Area/Number)1/2. As illustrated 
in Figure 6, a self-avoiding arrangement has a greater mean 
neighbor distance, giving a ratio to the value for random spac-
ing greater than 1, while a clustered one has a smaller ratio 
value. Fourier transforms (or diffraction spots) may also be 
useful if the intensity profile of the peaks can be measured to 
represent the variations in spacing.

Partial Order
A marching column of soldiers is 

expected to show a perfect order with 
regular spacing, but in nature things are 
less perfect (Figure 7). Still, in a flock of 
birds or school of fish there is a degree of 
regularity that becomes apparent upon 
careful examination. Rather than a 
global regularity, each individual seeks 
to maintain the same approximate dis-
tances from nearby neighbors as they 
move in coordination.

The characterization of partial 
order is important in many materials 
that are examined microscopically. 

Figure 2:  Atomic lattices: a) TEM image of a gold nanoparticle; b) AFM image of the surface of graphite; (c) TEM 
image of a grain boundary in gold foil.

Figure 3:  Measuring atomic spacings using a selected area diffraction pattern 
(d-spacing • radius = constant).

Figure 4:  Metal grain structures: (a) equiaxed; (b) elongated by cold-rolling.
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Precipitate particles are generally self-
avoiding, since their formation depletes 
the surrounding matrix of some 
element(s). Particulates that tend to 
cluster or agglomerate because of some 
attractive property, such as static electri-
cal charge on their surfaces, may cause 
difficulties in application to substrates. 
Nonuniformity must be controlled in 
spraying, electrodeposition, 3D printing, 
painting, and even the forming of particle 
board. Uniformity of size and dispersal of 
second-phase regions in mixed polymers 
is important for their properties [3]. A 
molecular strategy produces self-avoid-
ance in patterning axons and dendrites 
in both vertebrates and invertebrates 
[4,5]. Partial regularity characterizes the 
spacing of leopard spots and zebra stripes 
[6]. Topological analysis of clusters and 
cluster boundaries arises in fields from 
astronomy to genetics [7]. All of these, 
and more, are cases in which uniformity 
is rarely perfect but must be monitored 
and characterized.

Another aspect of partial order 
involves the need to find repetitions of a 
pattern that may be partially obscured or 
have minor variations, and may occur in 
non-regular positions. Cross-correlation 
is a useful tool for this, as illustrated in 
Figure 8. The process can be envisioned as 
sliding the target pattern over the search 
area and calculating the degree of match. 
The result shows peaks that locate and 
measure the degree of matches.

Fractal Structures
Another way that many natural 

structures are formed involves fractal 
geometry. The principle is a self-similar 
repetitive arrangement at many different 
dimensions. In erosion or turbulence, for 
example, processes operate in similar ways 
at both large and small scales. Figure  9 
illustrates a strictly repetitive geomet-
ric operation that produces a Sierpinski 
gasket: the initial triangle has its central 
triangular section removed, leaving four 
identical smaller triangles. The same pro-
cedure is applied to each of them, and this 
is repeated ad infinitum leaving as an end 
limit a structure with an infinite bound-
ary length and zero area.

Branching structures are a common 
phenomenon, and these can also be cre-
ated by a repetitive scaling as shown in 
Figure 10a. Small changes in the origi-
nal pattern produce different results [8]. 

Figure 6:  Examples of neighbor distance with the measured ratio of mean value to the expected value 
for a random distribution calculated from area and number: (a) precipitate particles in a magnesium alloy 
(self-avoiding); (b) deposited PLGA nanoparticles (random); (c) oil droplets in an emulsion (clustered).

Figure 5:  Macroscopic man-made objects that show uniform regularity as described in the text.

Figure 7:  Military formation vs. a flock of birds.

Figure 8:  Cross-correlation analysis to identify structural patterns: (a) SEM image of a leaf surface; (b) target 
(enlarged to show pixels); (c) results showing peaks at matched (red) and partially matched (green) locations.
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Using several structural elements with associated 
probabilities of occurrence produces a family of 
recognizably related but individual forms (Figure 
10b). It requires very few rules, which can be com-
pactly encoded genetically, to distinguish maple 
trees from oaks, for example. Figure 11a shows 
tree-like branching with characteristic angles 
defined by atomic structure in growth of dendritic 
crystals. Fractal dendritic crystal growth is a prob-
lem that results in shorting of rechargeable batter-
ies, but it also produces the infinite variations of 
snow crystals.

Figure 11 also shows the branching patterns 
in neurons and in the airways in the human lung. 
Many anatomical structures, such as the human 
vascular system, are fractal, and differences in 
the dimensions often distinguish healthy from 
abnormal conditions [9]. A fractional dimen-
sion for these branching patterns relates the total 
measured length to the resolution of ever-smaller 
branches or tributaries. A cumulative log-log 
plot of total length as a function of the length of 
included skeleton branches provides a measure of 
the fractal dimension.

When Mandelbrot [10] introduced the term 
“fractal” to describe structures that have more and 
more detail present at ever finer scales, one exam-
ple was the length of the coast of Britain. Plotting 
the measured length as a function of the ruler used 
for measurement [11] produces a straight line plot 
on log-log scales, whose slope gives the fractional 
dimension. There are more convenient ways to 
determine the dimension, one of which is shown 

Figure 9:  Creation of a Sierpinski gasket as described in the text.

Figure 10:  Iterating a branching shape forms a tree: (a) varying the rules alters the resulting 
tree shape; (b) using probabilities for different branch patterns produces a family of different but 
recognizably related forms.

Figure 11:  Natural branching shapes: (a) growth of copper dendrites; (b) neurons in the brain; (c) 3D reconstruction of airways in the human lung.
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in Figure 12 using the coastline of Australia. Measuring the 
area of a ribbon centered on the coast as a function of the rib-
bon width is quickly done by plotting the cumulative values 
in the Euclidean distance map, which assigns each pixel in the 
image a value representing its distance from the edge. Similar 
measurements show, for example, that the Hawaiian Islands 
generally have an increase in fractal dimension with age, with 
the youngest being the smoothest [12].

Measurement of the border of tumors shows that higher 
fractal dimension indicates a greater likelihood of malignancy. 

The fractal dimension of sur-
faces arising from some types of 
fracture or wear correlates with 
the energy absorbed in the pro-
cess [13]. Wear on archaic stone 
tools produces fractal surfaces 
that indicate the use of the tool 
(scraping, cutting, etc.). Surface 
fractal dimension determines 
how well surface contacts can 
transmit heat or electricity [14]. 
Figure 13 shows SEM images 
of fractal surfaces in 3 dimen-
sions formed by erosion and by 
growth.

Fiber Arrangements 
in Two and Three 
Dimensions

One very important field 
where random, self-avoiding, 
and highly regular arrange-
ments are used for their contri-
bution to specific properties is 
in textiles, both woven and non-
woven. Materials constructed of 
fibers are often thin and essen-
tially two-dimensional, such as 
cloth and paper, and may have 
a high degree of order, be par-
tially ordered, or be highly dis-
ordered. The simplest form of 
woven cloth consists of orthog-

onal fibers; the interlacing of these fibers usually follows one of 
several common weave patterns (Figure 14). The intermixing 
of different colored threads introduces patterns in the cloth, 
and advanced techniques, such as Jacquard weaving that com-
bine multiple patterns and colors, can produce extremely com-
plex designs. Basic weaving has been performed by humans for 
at least 8,000 years.

As shown in Figure 15, fibers oriented in different 
directions, either by design or accident, may introduce 
more irregularity to the pattern. Woven fabrics may have 

Figure 12:  Measuring the fractal dimension of Australia based on the Euclidean distance map.

Figure 13:  SEM images of 3D fractal structures: (a) sponge; (b) weathered granite.

Figure 14:  Some common regular weave patterns, with horizontal weft and vertical warp: (a) plain; (b) basket; (c) twill; (d) herringbone.
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complex patterns but are still primarily regular with rep-
etitious structural arrangement. Nonwoven materials are 
assuming increasing importance because of their properties. 
Nonwovens such as paper may have partial isotropy, substan-
tial anisotropy, or approach randomness. It is important to 
understand that extreme anisotropy may not produce ran-
domness in local areas. Arrangements, even locally, in which 
fibers are predominantly aligned may produce higher den-
sity (lower permeability and porosity) and weaker transverse 
strength. Fiber orientation, determined using analysis of 
images from light or electron microscopy in 2D or microCT 
in 3D can provide measurements of local fiber orientations, 
which are typically represented by polar plots of the orienta-
tion distribution function.

In three dimensions things become more complicated. 
Even if the third (thickness) dimension is relatively small 
compared to lateral extent, the orientation of fibers can vary 
greatly and this strongly affects properties such as permeability 

(for example, filters). A fully 3D arrangement 
of “randomized” fibers (Figure 16) generally 
shows strong preferred orientations and can-
not achieve high density because the fibers 
interfere with each other. With either straight 
or flexible fibers, this increases pore space and 
fluid retention, important for absorption of flu-
ids (for example, diapers).

Randomness may be treated as either 
a particular form of order or the absence of 
order. Questions of randomness are very dif-
ficult to answer [15]. For example, biochemists 
have puzzled whether proteins are the result of 
historic stepwise construction or are random 
sequences of individual peptides that have 
been selected by evolution. Intuition often fails 
in attempting to define or detect true random-
ness in a sequence, although at any point it may 
be impossible to predict the next value [16]. 
Statistical analysis shows that each of the digits 
in the value of pi (3.1415926…) has the same 
overall frequency of occurrence, but there is 
no pattern of regularity, repeats, or order in 
the sequence. Yet it can hardly be called ran-
dom since it is entirely determined by a simple 
mathematical constant.

Conclusion
There are a variety of methods that can be used to char-

acterize the regularity of patterns, including diffraction and 
various measurement techniques. These are applicable at any 
scale, from atomic to real-world dimensions. As arrangements 
depart from perfect order, the measurements that can mean-
ingfully describe them become increasingly difficult and vary 
from one application to another. Finally, determining that a 
pattern is truly random is extremely difficult; the statistical 
tests required are complex and not very satisfying. Relying on 
human vision to assess a degree of order or randomness is gen-
erally insufficient.
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