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Summary.

A detailed analysis of the kink instability in finite length (inertially line-tied), cylindrically symmetric coro-
nal loops is presented. The correct line-tying boundary conditions within the framework of ideal and resistive
magnetohydrodynamics are discussed, and the growth rates of unstable modes and corresponding cigenfunctions
arc calculated. Resistive kink modes arc found to be unstable in configurations where the axial magnetic ficld
undergocs an inversion, resistive cffects being confined to a small region around the loop vertex.

1. Equilibriam and Linearized Equations.

We model coronal loops as axially symmeltric, finite length, plasma columns, negleciing the toroidal curva-
ture ( which introduces stabilising effccts that are second order in the inverse of the loop aspect ratio). Introducing
cylindrical coordinates and unit veclors ¢,, g, e,, the magnetic ficld may be written as

B = By(r)es + B,(r)e,, (n

and satisfics the static MHD equilibrium condition

d B? B;
—_— - —— | = - 2
é)r(p1 87r> 4qr’ ()

A fairly realistic family of equilibrium models is that proposed by Chiuderi ¢t al. ( 1930 ), in which a force-
free system of currents is continuously matched to an external potential ficld. The radial structure of the current
density j may be described by

. cl
j= a(T)Z-ﬂ—_ (3)
where o 7) F:d the form
g ifr < ro;
a(r) = %‘l(l + COS "j'(r—'ro)) o <r<r+6; €))
0 ifro+6<m;

50 that the trunsition from a force-free (o potential configuration is continuous, and no surface currents are prescnt
at the boundarics. The photosphere is located at z = —L and z = L, a natural measure of the loop length being
[ = 2ap L. Two limiting cxample casces that we will discus< in detail arc shown in figure 1. The normalized
radius of the current channel is g (ro +8) = a = §; for equilibrium (4) apro = 0.1, ap b = 4 .9, for cquilibrium
(b) acgro = 2.0, pd = 3.0. In case (a), there is no inversion in the axial component of the magnetic ficld,
which becomes a very small constant outside the current channel. Lincarizing about the static equilibrium, and
introducing unit vectors ¢ = B/B and e, = (B,e3 — Bye,)/B and small perturbations of the form Z(r, t) =
E(r)exp(qt), the lincarized MHD equations become, in terms of the components £ = £-¢,, &1 = ¢1.§ = ¢,

Brv Ba» Bz'
2ByBy

T

drpyE = (% (4 w-ggé +47y,pV-€ — ByBy ~ B,B,) +B.VB, — (5)
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dnpy € =e, A, pV€) + (e 3‘: + ng )b OB" aB (6)
Anpt = cl,‘vmngl:h 47y,pV-€) + <e”-%l—:- + %)Bh (7)

B, =8 v&f%(vw,—%%i—"—%), (8)

B, = -—U(Sg‘) - 1;01(3 rE) + :V"B,, (10)

where 4y, 15 the tatio ol the specific heats. In the Tollowing, only incompressible modes will be considered. In
s case 4oy, pV-€ = € is determined by the additional condition V-€ = 0.
2. Boundary Conditions.
In previous work on the line-tying cllect., to sets of boundary conditions have most commonly been used:the
(low-throuph boundary conditons

E(L) =E(-L) =0,
E.(L)=E.(~L)

Ei(L) = Ey(~L), E‘( )=05‘

0,

It

(~L), (11)

which are compatible with considering incompressible perturbations, and the rigid wall boundary conditions,
according to which the parallel component of the perturbed displacement must vanish as well. Although the
flow-through boundary conditions have been the subject of some criticism (Low, 1985, Cargill et al., 1986),
because they require a strong correlation of what should be arbitrary perturbations across the large distances
separating the pairs of tootpoints, they give the same results for stability in the case of force-free ficlds, and result
in a noticcable mathematical simplification, so we will use them in the following.

The above boundary conditions are strictly valid only within the framework of idcal MHD, arising from the
condition that the jump of the perturbed electric field across the boundary must vanish (which in general, gives
tise to a surtuce current flowing along the boundary). When resistivity is taken into account, the jump in the
pertarbed magnetic ficld must vanish as well. However the ideal boundary conditions imay still be applied if the
distance the surface current diffuses over the ume-scule of the instability is much smaller than the loop length
scale, a condition which is always satistied provided the resistive instability grows faster than ordinary diffusion.
Henee, we may use (11) for studying both the ideal and resistive situations.

3. Eigenvalue Equations
To obrain an cigenvalue equation from (5)-(10), we expand €.£, and E” in a general Fourier serics:

o0 o0

E=Re Y S Guurexplilmd+ mn(z/L+ 1)), (12)

=00 M= -0C

E.=Re Y ) Cun(r)expli(m0 + nn(z/L + 1)) + im/2) (13)

£, = Re E ST i (rexpli(mb + un(z/L + 1) + in/2) (14)
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where n, mare integers. Boundary conditions (11) imply that the Fourier coeflicicins have to satisly the con-
straints

Db =0, Y () =0, (15)

for all m. Siace the boundury constraints (15) are d-invariant, and therefore do not cause coupling of the ha-
monics in the angular coordinate, we may restrict consideration to the m = 1 kink mode. We then multiply
the cquations of motion by the phase factor exp| —i1(0 + nn(z/L 4 1) | and integrate in 0 and z. Although the
displucement is a periodic function in the axial dircction, the line-tying boundary conditions exclude peridicity
ol its derivatives, so that on integration by parts unknown surface terms arise through which (15) may be applied
( details may be found in Velli, Einaudi and Hood, 1988). An infinite sct of coupled ditferential equations in the
components &, (wlong the radial direcnon) is obtained, which when truncated 1o N harmonics takes the form (
for simplicity we write the ideal MEID cquations only, the resistive equations may be found in the above paper;
a prime denotes differentiation with respect to r):

(( v% + 4 "9‘72

B(g 2 BG gnkn '
e AL

)(7A€n)l> _(f:% +41rp72)£,,——< 5

2 . a2
7 r By

2,2 ! 2 :
4Biky o, g2y _ <BgnA \ 2BBak, ) (16)

+ 1 A4 ;
r2F2(1+ 242 F27Y) e el
for each n,

Son (g (r€,)' + —Hhb——¢ )

Brid (1 B4)
A= — ZN | » , (17)
» r';‘(n‘—'?’-)

fa» gn arc defined from the usual cylindrical pinch analysis (k, = nw/L) as

fo= EBO + kyB:, gn= Z:r_‘.Bz -k, By. (18)

T

and F2 = '—"‘;— + k2 is the square of the total wave-vector. To solve, we climinale £y = — }:nN : &, and A, by
subtracting the N cquation (rom the remaining N-1. We then select a central wavenumber kg, corresponding 1o
the lasiest growing mode in the infinite pinch, and add sidebands until the solution has sufficicntly converged. In
practice, S modes are sufficient (convergence with increasing N is guarantced by the propertics of the kink mode
in the infinite pinch,i.c., that wavenumbers not in a range 0 < |k| < k. are stable).
4. Results and Conclusion

In Figure 2 we show the growth rate of ideal kink modcs as a funclion of inverse loop length for cquilibria (a)
and (b) described above. The growth rates (which are normalized 1o the typical Alfvénitime 7, = 4 7rp/(a(2, Bg)),
depends very sensitively on the length of the loop, and once the critical Iengthis exceeded grows rapidly to
~7. ~ 1072, In Figure 3 ((a) and (b)) the corresponditiy radial components of the marginal cigenfunctions arc
plotted as a function of r and z. Although the coupled equations are no longer singular, we find that in casc
(b), the perturbed magnetic ficld vanishes along a ring of constant radius r, at the loop vertex (2=0). In this
region resistive elfects are important, and we find that, 4 marginal stability, a resistive kink mode with a scaling
Y1, ~ (1/1,)* where o =~ 1/3 isexcited. Equilibria of type (b) are also unstable to m=0 tearing modes, and do
not appear to be a realistic model [or quasi-static coronal loops. However our results indicate that the interaction
of loops could play an important role in the initiation of flares, by providing a region where the ficld component
connecting to the photosphere undergoes an inversion. Results from a more detailed analysis will be preseated
clsewhere.
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