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PLANE CURVES WITH NODES 

ROBERT TREGER 

A smooth algebraic curve is birationally equivalent to a nodal plane curve. 
One of the main problems in the theory of plane curves is to describe the 
situation of nodes of an irreducible nodal plane curve (see [16, Art. 45], [10], 
[7, Book IV, Chapter I, §5], [12, p. 584], and [3]). 

Let n denote the degree of a nodal curve and d the number of nodes. The 
case (AZ, d) — (6,9) has been analyzed by Halphen [10]. It follows from Lemma 
3.5 and Proposition 3.6 that this is an exceptional case. The case d ^ «(« + 3)/6, 
d ^ (n — \){n — 2)/2, and («, d) ^ (6,9) was investigated by Arbarello and 
Cornalba [3]. We present a simpler proof (Corollary 3.8). 

We consider the main case which is particularly important due to its appli­
cations to the moduli variety of curves, compare [19, Chapter VIII, Section 4]. 
Let Vnj be the variety of irreducible curves of degree n with d nodes and no 
other singularities such that each curve of Vn^ can be degenerated into n lines 
in general position (see [17]). For n(n + 3)/6 ^ d ^ (n — \){n — 2)/2 and 
(n,d)^ (6,9), we prove that the map 

Vn4 —> SynAP2), 

sending a curve to the set of its nodes, is a birational morphism onto its image 
(Theorem 3.9 (i)) and give a rough description of the image (Propositions 3.1 
and 2.1 and Corollary 3.12) and of the generic curve of Vnj 

Recently, J. Harris proved that any plane nodal curve can be degenerated to 
a union of lines in general position. We do not use his result. Our results were 
announced at the A.M.S. Summer Institute on Algebraic Geometry (Bowdoin 
College, 1985) and the 75th Ontario Mathematics Meeting (Hamilton, February, 
1986). 

We now outline the main ideas of the proof. We assume 

n(n + 3)/6 é d ^ (n - l)(n - 2)/2 and (n, d) ^ (6,9). 

A plane curve has d distinct singular points provided the coefficients of the 
corresponding polynomial satisfy 3d equations (see 1.1). We then obtain a curve 
which may however by reducible or nonreduced. It follows from Proposition 2.1 
that if a reduced curve B with d assigned nodes is not a specialization of an 
irreducible curve with d assigned nodes, then the set of the assigned nodes of B 
does not belong to the dense stratum of HilbJ. (We stratify the Hilbert scheme 
by the Hilbert function.) On the other hand, the set of nodes of a general 
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194 ROBERT TREGER 

curve of Vnj belongs to the dense stratum (Proposition 3.1). The nonreduced 
curves are treated in Proposition 3.6 which is the main technical result of the 
paper. In particular, we obtain a family of irreducible nodal curves which maps 
birationally onto its image in SymJ(P2) under the map sending a curve to the 
set of its nodes. To complete the proof of Theorem 3.9, we compare Vnj with 
the family described above. Using the deformation theory of plane curves, we 
show that the two families coincide. 

I would like to thank B. G. Moishezon for very helpful discussions and T. 
Bloom, S. Halperin, P. D. Milman, and I. M. Sigal for the invitation to the 
University of Toronto and support. I am particularly grateful to P. D. Milman 
who encouraged me to write the paper and with whom I have had interesting 
discussions. 

1. Zero-dimensional subschemes of P2. 

1.1. Let/(x, v, z) = ^2aijj(x
lyJzk be the homogeneous polynomial of degree n 

in three variables with general coefficients a^. Let (a^) denote the coordinates 
in P^ (N = n(n + 3)/2) and (x\ : yi : z\\... \xd : yd • z<d the coordinates in 
(P2)^. We consider the following system Sd of 3d equations in a's: 

f&uyuzi) = °i fy(x\,y\,zi) = 0, ...,f'(xd,yd,zd) = 0. 

Let Md denote the corresponding [3d x (N + l)]-matrix with entries in C[x\,..., 

Let Q G (P2)J. The system Sd(Q) has a nontrivial solution in a's if and only 
if r k M ^ g ) ^ N. Let M$ C (V2)d be the closed subscheme defined by the 
condition xkMd ^ N. We have (see, e.g., [4, Chapter II]): 

1.2 LEMMA. Each irreducible component of M^ has dimension at least 
min{A/ — d,2d], i.e., 

codim(M^, (P2)d) ^ max{3d - N,0}. 

1.3 Notation. We put 

i/(n,d) = 3n + (n- \)(n-2)/2-d- 1 = N - d. 

It is known that v(n, d) is equal to the dimension of the variety Xn,d C P^ of 
all curves of degree n with d nodes and no other singularities [17]. 

Let T be the smallest integer ^ n(n + 3)/6. If d ^ T, then to r triplets 

(xil,yil,zh ) , . . . , teT,j/V,z/T), 

we can associate the [3r x (N + l)]-submatrix of Md consisting of the corre­
sponding 3r rows of M^. 
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PLANE CURVES WITH NODES 195 

1.4. Let Hilb* denote the Hilbert scheme of zero-dimensional subschemes of 
degree e in P2. It is a smooth connected variety [8]. Let Me(k) C Hilb^ be the 
subset consisting of zero-dimensional schemes lying on curves of degree k in 
P2. Let Me{k) C Me{h) be the union of those irreducible components of Me(k) 
whose general members consist of e distinct points. If V G Me(k) lies on a 
reduced curve of degree k, then V G Me(k) [6]. 

We can stratify Hilbe, Me(k), and Me{k) into a finite number of sets such that 
V and W belong to the same stratum if and only if 

h° (P2 ,JH0) - h° (P2Jw0)) for all /. 

Let De C HihV (De(k) C Me(k)) denote the stratum corresponding to the 
Hilbert function h° (P2

7Jfy(/)) shown in the table of Figure 1 (Figure 2). 

/ 

m 
m 

Figure 1 Figure 2 

The tables describe Hilbert functions as follows. Let P1 C P2 be a general 
line. The exact standard sequence 

0 •Ml-D—^MD- Opi(/) 0 

yields 

m (1) o-+//°(P2,M/-l))—>H°(l*,Ml))^H0(V\O(l)) 

The number of shaded squares in the /-th row is equal to dim Im ^(0- Figure 1 
(Figure 2) corresponds to the dense stratum of Hilb^ (M(k)) and m denotes the 
row number of the first entirely shaded row; see Lemma 1.5 below. We have 
two canonical maps 

Hilb' S y m " ( P 2 ) ^ - ( P T . 

We denote by Ue both the subscheme of Hilb^ whose elements correspond to 
reduced schemes and its image under <j>. 
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196 ROBERT TREGER 

1.5 LEMMA. Let V C P 2 be a zero-dimensional subscheme. Then 
i) deg(V) = Z^o^(0> where 7(0 is the area of the unshaded part of the 

l-th row of the table for V ; 
ii) V is m-regular if and only if dim Im i/>(ra) = h° (P1, 0(m)); 
iii) We = Hilb' and W{ïî) = Â ^ ) ; 
iv) i/ 

v, = yi+ •••+>>, E / ) ^ ) n ( / f ( / ) e n ( / f ) , 

//zen there exists a subset {/i,..., ie-\} C { 1 , . . . , e} with 

ylx + --'+yle_x G D ' - k W 1 ) ; 

v) De H t / ' w open in Ue and De(k) n t / ' w open m Me(k) H £/'. 

Proo/. i) Set 

f3(l) = h°(?\0(l))-h°(?2Jv(l)). 

We have 

dim Im V(0 = A0 (P2, UD) ~ h° (P2, Ml - 1)) 

= A0 ( P \ 0(1)) -15(1) + f3(l - 1) for / è 0. 

Hence /?(/) - / ? ( / - 1) = 7(/). Since 7(0 = 0 for / > 0, we have 

] T 7(1) = /?(/) = deg(V) for / > 0. 
i>0 

ii) The proof is obvious (cf. [13, §14]). 
iii) We will prove that De(k) — Me(k). We assume e > 4 and proceed by 

induction on e. Let 

Ve=zx + --- + ze eMe(k)C]Ue. 

We set Ve~\ — z\ + • • • + ze-\. By hypothesis we can approximate Ve-\ by a 
scheme 

lying on a curve C* C P2 of degree k. Let L denote a maximal linear system 
of curves of the smallest degree in P2 passing through We~\ and not containing 
the curve Cu- We take any point ye G C* close to ze and which is not a base 
point of L. Then 

;yi + ---+;y*-i +ye eDe(k). 
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iv) We will prove the assertion for 

Ve=yl+...+yeeDt(k)nUe. 

Every Ve-\ C Ve with degVe-\ = e — 1 is ra-regular. Indeed, for arbitrary 
e — 2 points of Ve~\, one can find a curve of degree m — 1 passing only through 
these points of Ve-\. Since Ve is not (m — l)-regular, there exists a subset 
{/i,..., 4_i} C { 1 , . . . , e} such that any curve of degree m — 2 through y,-, + 
• • • + )Vi wiU P a s s through V .̂ Thus y(] + • • + }>,;_, has the Hilbert function 
described in Figure 2. 

v) The assertion follows from (iv) by induction on e. Since the proof is 
similar to the proof of (iii), we omit details. 

1.6 Definition. 

< e d 

{ 1=1 y=i 

for every (iu . . . , /j) C ( 1 , . . . , e) 1. 

It is easy to show by induction, as in Lemma 1.5 (iv), that De is an open 
subset of De. 

Let Iy C C[x,y,z] denote the ideal of V G £/*. The inclusion 

a:Ue —> Hilb3% a(Iv) = 1^, 

is an algebraic morphism and its image is a locally closed subset of Hilb3é,[5]; 7(/2) 

is the 2nd symbolic power of Iy. 

1.7 LEMMA, i) dimMe(k) = 2e for e è k{k + 3)/2 a/a* d\m Me(k) = e + 
k(k + 3)/2 /or e^k(k + 3)/2 > 0. 

ii) For d^T, each nontrivial irreducible component of a(Ud)nM3d(n) has 
dimension ^ Z/(AZ, d). 

Proof i) We consider the system of e equations in fr's: 

where (xi : yi : z i ; . . . ;xe : ye : ze) G (P2)e. We get 

dim M'(*) = le for e ^ k(k + 3)/2 and 

dim M^(it) ^ e + k(k + 3)/2 for e>k(k + 3)/2 > 0. 

We now assume e > k(k + 3)/2 > 0. Using Lemma 1.5, by induction on e we 
get 

dim Me(k) èe + k(k +3)/2. 
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198 ROBERT TREGER 

ii) Since Hilb3^ is smooth, for a component K Ç a(Ud)C\M3d(n), 

dim K ^ dim a(Ud) + dim M3d(n) - dim Hilb3J = n(n + 3)/2 - d. 

1.8. We can view Sd as a system of equations defining a closed subscheme 
of FN x (P2)^. We denoted by An^d the projection of that subscheme to PN x 
SymJ(P2). According to Severi [17], Xn,d *s a locally closed smooth variety 
having several connected components. It follows the existence of the natural 
imbedding 

X ^ ^ A ^ C P ^ x S y m ^ P 2 ) 

Here pj = pn^ is the projection on the second factor. For a curve B of 
degree n with d singular points P\,...,Pd and possibly other singular points, 
the corresponding pair (#;]j^f=1P/) G An^ is called a curve with d assigned 
singularities. We will identify C G £„^ with its image in An^. 

2. Reducible curves. In order to describe the situation of nodes of irre­
ducible curves, we have to consider reducible curves as well. 

2.1 PROPOSITION. Let d ^ (n - \){n - 2)/2. Let ( £ ; £ ? = 1 P/) G A M &*? 
<2 reduced reducible curve of degree n with d assigned singular points. If 
(Bm,^2i=lPi) is not a specialization of an irreducible curve with d assigned 
nodes, then 

£ * **>'• 

Proof By [1] and [14, Theorem 1.4], we can find a nodal curve with d 
assigned nodes, perhaps a few unassigned nodes on intersections of its compo­
nents, and no other singularities such that (#; 5^/=i ^/) *s a specialization of it. 
By [17] and the assumption, we can assume that (B; ]C/=i Pi) ls a specialization 
of a curve C = C\ + • • • + Cr (r ^ 2) with d assigned nodes Qb • • • ? Qd and 
no other singularities. 

We now suppose 

5> eDd 
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and derive a contradiction. We get 

If r ^ 3, then, by Lemma 1.5 (iv), one can find d — 1 nodes, say Qi , . . . , Qd-\, 
such that 

By [17], (C; Yli=\ Qi) *s a specialization of a curve with d — 1 assigned nodes 
in Dd~x and no other singularities. After several steps, we obtain a curve C' = 
C[ +C2 with d! assigned nodes in Dd' and no other singularities such that C has 
two irreducible components and B is a specialization of C'. By Lemma 1.5 (iv), 
we obtain a curve C" = C" + C" with d" assigned node in Dd" and not other 
singularities such that C is a specialization of C" and C" satisfies the following 
property: If we forget about a node of C" which does not belong to C" D C", 
we obtain a set of points which does not belong to Dd ~{. 

By Lemma 1.5 (iv), we can now forget about one node of Cj'PlC" and obtain 
a set of nodes which belongs to Dd ~x. The Hilbert function of our set of d" 
points is described in Figure 1 with 

m(m - l)/2 < d" Û mirn + l)/2. 

Since d" ^ (n — \)(n — 2)/2, we get m — 1 ^ n — 3. By the Cayley-Bacharach 
theorem [9, p. 671], any curve of degree m — 1 through d" — 1 nodes of C" will 
pass through the forgotten node. Therefore the proposition follows from Lemma 
1.5 (i) and (ii). 

2.2 PROPOSITION. Let d ^ r and n ^ 6. Let B be a reducible curve of degree 
n with d nodes and no other singularities. One can find r nodes among the 
nodes of B such that a [3r x (N + \)]-matrix associated to these r nodes will 
have rank less than N. 

Proof. The idea is to choose as many nodes as possible on the intersections 
of components of B. Let k denote the degree of an irreducible component of 
B of minimal degree. Let B — C* + Cn-k, where degC* = k. We observe that 
if k(n — k) è r, then the curve 2Q has singularities at the k(n — k) points of 
Ck H Cn-k, hence the rank of a [3k(n — k) x (N + 1)]-matrix associated to the 
points is less than N. 

Case 1 (k — n/2). We can apply the previous observation. 
Case 2 (n ^ 9, n/3 ^ k < n/2). Since -6k2 + 6kn - « 2 - 3 n ^ 0 , we get 

k(n -k)^r. 
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200 ROBERT TREGER 

Case 3 (0 < k ^ n/3,k(n — k) < r). We will find a curve Bn-2k of degree 
n — 2k with t = r — k(n — k) singular points at the nodes of Cn-k\Ck- Then 
the curve Bn^2k + 2C* will have r singular points of which k(n — k) points lie 
on Ck H Cn-k and r— k(n — k) points lie on Bn-2k\Ck, and we get a required 
submatrix of Md. We choose arbitrary t nodes of B\Ck and consider a matrix 
associated to the points. Since 

(3) n(n + 3)/2 - [3r - 3k{n - it)] à - 1 + 3A:(w - it), 

there exist at least —2 + 3k(n — k) curves of degree n with singularities at those 
points. Let J be the ideal of those points. We consider the sequence (see (1)): 

Since h° (P2, J7 {2\n)) ^ - 2 + 3it(w - it), we get 

h° (?2J(2\n-2k)) à —2 + 3*:(n — A:) — (« + 1) — n 

- (n - 2* + 2) = -3 - 3k2 + kn + (2* - 2)(2it - l)/2 > 0 

provided (w, &) ^ (6, 1) or (6, 2). However, if (n, fc) = (6, 1) or (6, 2), then (3) is 
a strict inequality and 

h{)(?2,3{2\n-2k))ye0. 

Case 4 (w = 7 or 8; it = 3). We get it(n - it) = r. 

3. Irreducible curves. According to [17], Vn^ is a smooth irreducible variety 
of dimension I/(H, d). Let 

Vn,j C P ^ x Sym^(P2) 

denote the closure of Vnj. 

3.1 PROPOSITION. The set of d nodes of a general curve C E Vn,d belongs to 
Dd. Therefore, the degree of the adjoint curves to C of minimal degree is equal 
to m provided d = m(m + l)/2, or m — \ provided 

m(m - l)/2 < d < m(m + l)/2. 

In particular, it is independent of n. 

Proof We consider a curve L = L\ + • • • + Ln which is a sum of n lines in 
general position. We take the point P\ — L\ C\Li. Then we pick two new points, 
?2 and P3, on the intersection (L\ + Li) HL3, etc. We claim the first d points 
chosen above give an element of Dd for each d ^ (n — l)(n — 2)/2. 
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We first assume d = m(m + 2)/2. Using Noether's AF + BG theorem, it is 
easy to verify (compare [7, Book I, Chapter II, Theorem 24]) that no curve of 
degree m — I will pass through the points of intersections of Li , . . . ,Lm+i. By 
Lemma 1.5, the points give an element of Dd. 

It is now clear that for each d' ̂  m(m + l)/2, the set of the first d' points is 
an m-regular scheme. By Lemma 1.5, the first d points give an element of Dd 

for every d ̂  (n - l)(/i - 2)/2. 
The curve L with d assigned nodes P i , . . . ,Pj is virtually connected, hence 

it determines the variety Vn,d [17]. So, by Lemma 1.5, the set of d nodes of C 
corresponds to an element of Dd. Let now Co G Vn-d C Vn,d(d = (n—l)(n—2)/2) 
be a general rational curve. As Co varies, the nodes of Co can be interchanged 
[17, p. 348]. Hence the set of nodes of C corresponds to an element of Dd. The 
assertion concerning adjoints follows at once from Figure 1. 

3.2. We fix two integers q ̂  e ̂  0. Let D C P2 be a reduced curve of degree 
n with e assigned singular points P\,...,Pe, q — e additional singular points 
Pe+\,.. .,Pq, and no other singularities. Let 1A£D be the normal sheaf of D in 
P2. Let 

*CD = Ker (fAto —* ^(D/k, OD)) 

and let fAt^Pi, . . . ,Pe) be the sheaf that coincides with 9£D at Pe+i,... ,Pq 

and with 9\i'D elsewhere [18]. 
Let <p : D —• D be the normalization of D and f the conductor. Let 

D(P\,...,Pe) —• D denote the partial normalization at P\,...,Pe and f the 
corresponding conductor. It follows from the definitions that 

(4) 0l"D{Pu...,Pe)^J9lD 

where 7 C Ob is the ideal which coincides with the Jacobian ideal at P i , . . . ,P e 

and JQ = OQP elsewhere [18]. Let R be the ramification divisor of if. One 
defines two sheaves on D, fA£<̂  and fA£̂ , by the diagram 

0 —• 0£ —> </>*(0p2) —• #*> —+0 

o —+ 0Ô(P) —» ^*(0p2) —* fv;; —+o 

where 0^ and 0P2 are the tangent sheaves [3]. By taking determinants of the 
lower row, we get 

(5) ^ ; - ^ O p 2 ( 3 ) 0 o ; ô ( - P ) 7 

where 
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202 ROBERT TREGER 

is the dualizing sheaf of D. Hence 

( fAt; ^ <p* (Op2(3)0a;D) ® fCfc(-tf) - < ^ D 0 fCb(-tf), 
(6) < 

I *>*#; - ^ D ® *̂[f ob(-*)], ^*[^:; ® <%w] ~ t^D . 
It follows from (5), (6), and Serre duality that 

(7) H\DMD)^H1 (D^»Oô(R)) ^H° (D,ip*0^(--3)) =0. 

The exact sequence 

H°0,K'v) —> H° (D,9C'V ® Oô(/?)) 

—*H°(D,Ob(R)/Oô) —*H\D,9C'v)—*0 

yields 

h\D,9i'9) ^ length (Oô(R)/Ob) = degfl. 

Let 

r 

1=1 

where A ' s are the irreducible components. We denote by gt the geometric genus 
of Dt. By Riemann-Roch and (5), 

h\D1^) = 3n^2(J2^-r) 
r 

(8) -degR + r-Y^gi + h^D,^) 

r 

^ 3w + ^ ^ - r . 
i= l 

If deg/? < 3« then by the duality and (5),we get (cf. [19]): 

(9) H\D,^) = H° (D, ^*Op2(-3) 0 <%(/?)) - 0. 

The next proposition is a generalization of [2, Theorems 3.1] and [20, The­
orem 2]. It is already nontrivial if the curve Cn below is irreducible; see also 
(3.4). 

3.3 PROPOSITION. Let *D C An,d be an irreducible analytic family of curves 
of degree n with d assigned singular points whose general curve D is reduced 
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with q singular points P\,..., Pe,..., Pj,..., Pq, of which the first d points are 
assigned. Moreover, P\,...,Pe are nodes and Pe+\1... ,Fj are not nodes. We 
assume: 

i) there exists a curve Cn of degree n with d assigned singularities at the 
assigned singular points of D, and Cn and D have no common components; 

ii) dim£> ^ i/(n7d) — t, where t — min{d — e,n+l}. Then dim (D —vin^d) — 
(d — e), q — d, and Pe+\,..., Pj are cusps. Moreover, the number irreducible 
components of D is not greater than that of Cn, where each component of Cn 

is counted with its multiplicity. 

Proof. Let 

r 

1=1 

where the D/'s are irreducible curves of (geometric) genus gi. We can assume 
n ^ 2. Let 

r 

i-l 

denote the geometric genus of D. By [11], 
g(D)£(n-l)(n-2)/2-d 

with equality if and only if D has only d singular points which are nodes or 
cusps. We first assume D has more complicated singularities and prove (see 
Step 3) that it can only have nodes, cusps, and tacnodes. By (4), 9sC'D = J^D 
where J is the Jacobian ideal. We have J C J Op = f 0p(—R) [15]. Hence, by 
(6), 

dim 27 ^ / i ° ( D , ^ ^ ) ^ / i ° ( Ô 7 ^ ; ) . 

Step 1. Claim: 

h\Dn9t^)^gl + \ fori = l , . . . , r . 

This is trivial if D is irreducible, because 

h\D,9l'j^v{n,d)-{n+\)>2n + g{D)-2. 

We now suppose that h°(D\, fAt^) = gi and derive a contraction. Let 

r 

C — 2_, A? degC = k, and 
/=2 

r 

g(C) = ^ f t - r + 2. 
i=2 
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By (8), 

r 

h\C,9t'^) ^ 3* + 5 3 # - (r - 1) = 3k + g(C) - 1, 

hence 

h\DutM ;> ^ i/(i, <0 - n - 1 - (3* + g(C) -l)^2n-3k + g l - \ . 

If In — 3k ^ 2, we are done. We now consider the case 2n — 3k ^ 1, i.e., 
k = (2w — l)/3 + JC(JC ^ 0). Let w of the assigned singularities of Cn lie on D\ 
and the remaining v — d — u assigned singularities lie on D\D\. We will first 
prove that u + n ^ (Dx • C). If u + n < (Di • C), then w + v + n < {Dx • C) + v 
hence 

d + n<Y^b(Q : £> i+Q, 
Ô 

by [11]. Since 

(n - l)(n - 2)/2 - d - n >(/ i - l)(/i - 2)/2 - ^ ( Q : D) = g(D), 
Q 

we get 

dim£> ^ v{n,d)-n- 1 ^ 3ft + g ( D ) - 1, 

in contradiction with [20] and [2]. We will conclude the proof of the claim 
for n ^ 20 by showing that u + n < (D\ • C) provided degDi > 3, the case 
degDi ^ 3 being trivial. Since (D\ • Cn) ^ 2w, it is enough to show that 
2(D{ -C)-2n> (D{ • Cn) for k = (2n - l ) /3 + JC and degDi > 3. We have 
4 ^ degDi — n — k hence x ^ (n + l)/3 — 4. Further, 

(Di -C„) = n2/3 + n/3-xn. 

It is enough to show that 

fix) = 2[(n + l)/3 - x][(2n - l) /3 + JC] - 2n - (n2 + n)/3 + xn 

= -2x2 + x(n + 4)/3 + (n2 - 19n - 2)/9 > 0 for rc^ 20. 

The function/(JC) has maximum at (n+4)/12,/(0) > 0, and/ ((n + l)/3 - 4) > 
0. 

If n ^ 19, then degDi ^ 6. Since 

deg(fl|D0 ^ (degDi - l)(degDi - 2)/2 < 3degDi - 3, 
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we get H\Du^) = 0 by (9). Hence by (8), 

h°(Du9t'^ = 3 degDj + g{ - 1 - deg^lDO > gl + 1. 

Step 2. It follows that 

H\D,9t^) = H\D,9t^) = Hl(Dn$tv) = Hl(Dn^) = 0. 

We get 

v{n,d) - t ^ A°(D,fAC;) = 3n + g(D) - 1 - degtf. 

Since t ^ n + 1, deg/? ^ « + 1. 
Step 3. By (8) and (9), 

3/2 + g(£>) - 1 - degtf ^ h°(D,9si'D) S i/(w, d) - (d - e). 

Hence 

(10) (/i - 1)(* - 2)/2 - £ ) M G : D> - d e g * 

^ (w - 1)(« - 2)/2 - < / - ( < / - * ) . 

By assumption, /Vi? ...,/*</ are not nodes. Hence 

(11) £(/>! :D) + deg(/?|P|)^ 2, / = e + l,...,rf. 

Therefore, (10) and (11) are, in fact, equalities and 

h°(D^f
D) = h\D,<M^) = v(n,d) - (d- e) = d i m # . 

The curve D has only d singular points which can be nodes, cusps, and tacnodes. 
Step 4. Claim: D has no tacnodes. Suppose P G D is a tacnode. Then there 

are two points Qu Q2 G D, (/Kôi) = viQi) = P, and the two branches of D at 
P have a contact of order two. By (5), 

deg ^ = 3n + 2g(D) -2-dtgR>2g 

hence 

deg^(-Ql-Q2)>2g(D)-2. 

Therefore 

/ /1(ô,^;(-ei-ô2)) = o, 

and we derive a contradiction as in [2, p. 97] or [20, p. 221]. 
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Step 5. The last assertion follows from the Enriques principle of degeneration 
([19, p. 36], [7, p. 105]). 

3.4 Remark. In Proposition 3.3, if D is a priori irreducible, we can drop 
condition (i) (see Step 1 of the proof) and put t — min{J—e, 3(n — 1}. However, 
in interesting applications D is a priori an arbitrary reduced curve. 

In addition to reduced curves, we have to consider nonreduced curves as well. 
We need a simple lemma. 

3.5 LEMMA. The inequality 

(12) k(k + 3) + v(l -2k,d- k(k + 3)/2) ^ v(l, d)-x 

is equivalent to the inequality 

Ik2 + 3kè Alk - 2x. 

The inequalities are strict in the following cases: i) x — 0, / ^ 6, I ^ 2k > 0, 
and (k, I) ^ (3,6); ii) J C ^ / + 1 , / ^ 2k + 2,andk^ 3; iii) x ^ / + l , / è 2£ + 3, 
and k = 2; iv) x ^ I + 1, / ^ 2* + 5, and k = 1, v) JC ^ 3, / è 7, / è 2k + 1, 
am/ A: ^ 2; vi) x ^ 3 W / = 2k ^ 10. 

3.6 PROPOSITION. We assume 

[n(n + 3)/6] ^ J ^ (n - l)(w - 2)/2 and (n, J) ^ (6,9). 

Let V C Af$ be an irreducible component and Q = (<2i,..., Qj) G V a general 
point. Let 

be a general curve. 
i) If (Jd(Q) £ ^ « ^ d ^ r, r/^rt a cwrve of degree n singular at Q\,.. .,Qd 

is an irreducible curve with d nodes and no other singularities and dim V = 
v(n,d). Ifd = [n(n + 3)/6], then dim V = 2d, Od(Q) £ £*J> ^nd f/iere ex/sfs arc 
irreducible curve with d nodes in general position and no other singularities. 

ii) If I is the degree of a nonreduced curve of minimal degree singular at 
P\1... ,Pd, then I > n unless (n,d) — (8,14) or there is an irreducible pencil 
of curves of degree I — 1 singular at P i , . . . , /Y If (n, d) = (8,14), then I = 8 
and there is a unique nonreduced curve of degree 8 singular at P i , . . . , P u (a 
double quartic). 

Proof. We shall assume that / t S 6 . For n ^ 5, all the assertions are trivial. 
Let B = F +E be a curve, where degZ? = /, F has only multiple components, 
degFred = k, and E is reduced. We assume B has singularities at <2b •?& 
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(Pi,..., Pd\ of which t points are on FKd and the remaining d — t points are on 
^VVed- By assumptions and Proposition 3.1, we get t ^ k(k + 3)/2 (see Figure 
1). 

i) We put n — I. By assumptions d ^ k(k + 3)/2. 
Case 1 (« ^ 6 and J ^ r). By Lemma 1.2, dimV ^ v{n,d). By Lemma 

1.7 (i), the left side of (12) is an upper bound on dimV. Hence, by Lemma 
3.5 (i), k = 0 or n — 2k = 6. In the latter case, Q i , . . . , Q\o lie on a cubic, a 
contradiction. By [20] or [2], B has only d singularities and they are nodes. By 
Proposition 2.1, B is irreducible. 

Case 2 (n à 7 and J = [«(w + 3)/6]). By Lemma 1.2, dim V = 2d and 
0d(Q) € i K Since dimV ^ K M ) ~ 3, we get k = 0 or n = 2* = 8, by 
Lemma 3.5 (iv)-(vi). In the latter case, g i , . . . , g j lie on a quartic, and there 
is a reduced curve of degree 8 singular at <2, because 3d < n(n + 3)/2. By 
Proposition 2.1 and [17], there is an irreducible curve with d nodes in general 
position and no other singularities. 

ii) We suppose (B\ Yli=\ ^/') ls nonreduced, / ^ n, and there is no pencil of 
curves of degree / — 1 singular atP\,...,Pd. We will prove that (/i, d) — (8,14). 

It follows from sequence (1) and i/(m,d) — i/{m — l,d) — m + 1 that we get 
at most 

A = 2(/ + 2) + (/ + 3) + • • • + fa + 1) = / + 2 + v{ri, d) - v{l, d) 

curves of degree n singular at Pu...7Pd. By Lemma 1.7 (i), the left side of 
(12) is an upper bound on dimpd(Vn^d) for d ^ k(k + 3)/2. Because k ^ n/2, 
we have d ^ k(k + 3)/2. Since 

dim A , ( K M ) ^ I/(/I, d) - (h - 1) = i/(/, rf) - / - 1, 

we get a contradiction for k S 2 and / ^ 7, by Lemma 3.5 (iii) and (iv). We 
cannot have n — 6 and k ^ 2. By Lemma 3.5 (ii), we also get a contradiction 
for k ^ 3 and / ^ 2£ + 2. If now / ^ 2& + 1, then all the singular points are on 
a curve of degree k and / = 2k. Hence, by Lemma 1.7 (i), 

d^k(k + 3)/2 < [n(n + 3)/6] 

provided («, &) ^ (8,4), a contradiction. So, if there exists a nonreduced curve 
of degree / ^ « with d singular points P\,..., f̂ , then ^ = / = 2k — 8, J = 14, 
and it is a unique double quartic. 

3.7 Remark. The only property of the component Vnjd C £„,</ used in the 
proof of Proposition 3.6 (ii) is that 

/ = 1 

https://doi.org/10.4153/CJM-1989-010-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-010-x


208 ROBERT TREGER 

3.8 COROLLARY, (cf. [3, Theorem 3.2]). Let d^n(n + 3)/6, d^(n-l)(n-
2)/2 and (n,d) ^ (6,9). Let Pi,...,P</ be general points in P2. Then there 
exists an irreducible curve of degree n having nodes at P\,...,Pd and no other 
singularities. 

Proof. For d — [n(n + 3)/6] the assertion follows from Proposition 3.6 (i). 
The general case follows by Seven's regeneration [17], i.e., one can get rid of 
unassigned nodes. 

3.9 THEOREM, i) Letr^d^(n- \){n - 2)/2 and (n, d) ^ (6,9). Then the 
morphism 

Pd : Vn4 —> SynAP2) 

maps Vn,d birationally onto its image, and for a general C E Vn,d, 

Pd1 (Pd(C)) C K4 

consists of a point. 
ii) Letd ^ n(n+3)/6, d ^ (n-l)(n-2)/2, and(n, J ) ^ (6,9). LetPx,...,Pd 

be general points in P2. Then there exists C E Vn,d having nodes at P\,...,Pd-

Proof. It is enough to prove (ii) for d — [n(n + 3)/6] and n à 7, the case 
n ^ 6 and (rc, J) ^ (6,9) being trivial. Furthermore, the second assertion of (i) 
follows at once from the first one. 

(*). We fix d, 

[n(n + 3)/6] ^d^(n- l)(n - 2)/2 

and («, J) ^ (6,9). We will prove the remaining assertions by induction on n for 
an arbitrary component £ C £„,</ whose general curve has d nodes in Dd. (By 
(3.7), £ satisfies (ii) of Proposition 3.6.) 

Let /?«,</(£) C 0^(tO, where V C M^ is an irreducible component. By Propo­
sition 3.6 (i), a curve singular at a general ( g i , . . . , Qd) E V is an irreducible 
curve with d nodes and no other singularities. Moreover, dimV = v(n,d) for 
d ^ r, and dim V = 2d for d = [n(n+3)/6]. Let Q denote the component of £n^ 
whose general curve has nodes at Q\,..., (2^. By Proposition 3.6 (i), pd maps 
£2 birationally onto its image. We suppose £ ^ Q and derive a contradiction. 

Let W = I D Q and let D be a general curve of W. By assumptions and 
the standard sequence (see (1)), D is reduced. We consider D as a curve with 
d assigned singular points P i , . . . ,P^, where P i , . . . ,Pd are nodes of a general 
C E £. Suppose 

dimp-J (fv(D)) ^ " + 2. 

It follows from the standard sequences (see (1)) and assumptions the existence 
of a family of curves of degree n—\ with d assigned singularities at Pi , . . . ,Pd 
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whose dimension is at least i/(n — 1, d) and such that a general curve of the 
family, #w_i, is reduced. Hence Bn-\ has only d singular points and they are 
nodes ([20] or [2]). By Proposition 2.1, Bn^\ is irreducible. Furthermore, 

dimp~_lM (pn-i,d(Bn-i)) = 1 

(see (1)), a contradiction. Thus 

dimp~l
d (pn,d(D)) ^ n + 1 and dimW ^ i/(n,d) — n—\. 

We assume P\,..., ?d {e Ik d) are nodes of D and Pe+\,..., Pd are not nodes. 
It follows from (4) and (7) that 

Hl(D,*C"D(Pu...,Pe))=0, 

and D with e assigned nodes P\,...,Pe determines a unique smooth analytic 
branch (local deformation space) J%o of dimension v{n1 e) ([17] and [18]). We 
consider two distinct analytic branches of dimension z/(«, d), one for Z and the 
other one for Q, passing through (D; Yfi=\ Pi) anc* contained in J%o. Since 

dim/) W ^ z/(«, e) — 2(d — e) = I/(AZ, d) — d + e, 

D is an irreducible curve with £ nodes, d — £ cusps, and no other singularities, 
by Proposition 3.3. 

We now consider the variety 

V ( ^ ) C P ^ , g = (n-l)(n-2)/2-d, 

of all irreducible plane curves of degree n and geometric genus g and the variety 
V'n d C FN of all irreducible plane curves of degree n with d nodes and no other 
singularities. By [2] or [20], 

V^CV(n,g)cVnjCPN. 

We will conclude the proof of the theorem by showing that V(n, g) is irreducible 
at D. Since D has at most n + 1 cusps, we get 

Hence the local deformation space *B of the couple 0 , <p) is smooth and maps 
in a one-to-one fashion onto a neighborhood of D in V(n, g) (cf. [17, Mumford's 
appendix to Chapter VIII], [4, vol. II]). 

3.10 Remark. Theorem 3.9 (i) can be generalized to reducible curves. Let 
£ C An^ be an arbitrary complete irreducible algebraic system of curves of 
degree n with d nodes and no other singularities. Let (B; Yl1=\ Pi) ^ e a general 
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curve. We assume the linear system L of curves of degree n with assigned 
singularities at Yli=\ ?i consists of reduced curves. Then the moronism 

pd : I —-> SynAP2) 

maps X birationally onto its image unless dim L ^ 1 and L has fixed compo­
nents. 

The proof is similar to the proof of Theorem 3.9. As above, we obtain the 
curve D with nodes and cusps which can however now be reducible. Then, 
instead of V(M, g) and V'nd, we consider the corresponding quasi-direct sums 
(see [20, p. 222]) and conclude the proof as in Theorem 3.9. 

3.11 COROLLARY. Let 

T+l£d£(n-l)(n-2)/2 and n^6. 

Let 

be a general curve. A curve B of degree n with singularities at d — 1 nodes of 
C will coincide with C. 

Proof We fix a section of ad over a small analytic neighborhood of J2l=\ Pi-
Suppose the linear system of curves of degree n with singularities at Yli-\ Pi 
has dimension ^ 1. We obtain an analytic family &d-i C V nid-\ of curves of 
degree n with d—\ singularities such that the fibers of pd-\\*Bd-\ have dimension 
è 1 and 

dim #d_i = i/(n, d — 1). 

Hence *Bd-\ intersects any Zariski open subset of Vn^-\, a contradiction. 
Throughout the rest of the section, we assume 

r ^ d ^ (n - l)(n - 2)/2, n à 6, 

and (n, d) ^ (6,9). 

3.12 COROLLARY. pd(Vn,d) is an irreducible component of ad(M^)C\Dd. 

Proof We apply Theorem 3.9 (i) and Propositions 3.1 and 3.6 (i). 

3.13 Remark. It follows from Corollary 3.12 and Seven's statement (Vn^d = 
V d), recently proved by J. Harris, that 

Pd(Vnld) = (Jd(M$)nDd. 
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In a future paper we intend to give another proof based on results on the structure 
ofM$. 

3.14. We now consider the open subscheme 

A = UjAjCM$na?0d), 

where each Aj is defined by the nonvanishing of an (N x N)-minor of Md. On 
each Aj, we can solve the system Sd in a's. The solutions will coincide on 
At HAj, and we get a section s over cr̂ (A) of the trivial bundle 

P* x SynAP2) —• Sym^P2). 

For the generic curve of Vnj, the coefficients of the corresponding equation are 
symmetric functions of the nodes, and it is well known (and trivial) that every 
symmetric function of the nodes of the generic curve of Vn^d can be expressed 
rationally by the coefficients. 
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