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ABSTRACT. The mechanical conliguration of cavities associated with clasts is
discussed. and how this aflects the water pressure underncath the clast. The range of
permissible water pressure is determined by flow parallel to the bed rather than by
flow towards the bed. The actual pressure is controlled by hydraulic connections to
arcas away from the clast. The degree of cavitation provides an additional degree of
freedom which adjusts to ensure that horizontal and vertical forces respect the

Coulomb friction condition.

1. INTRODUCTION

A clast in contact with temperate glacier ice and
subglacial hedrock will either move or remain station-
ary. If moving, it is a tool for glacial abrasion. Clast
motion is driven by the drag of ice moving relative to the
clast, but is resisted by the Coulomb friction of the clast
with the bed. In this paper the conditions controlling this
drag and resistance are considered. As has been done by
all recent papers on the subject of glacial abrasion (e.g.
Boulton, 1974:; Hallet, 1979), the computation of the
effective pressure of the contact between clast and bed is
considered in some detail. The problem in constructing a
theory of abrasion arises from the notion that there is a
continuous film of water enveloping the clast. In order to
generate clast-bed contact forces, one must provide a
mechanism which permits a water-pressure difference to
exist between the upper and lower surfaces of the clast.
Force balance then requires there to be clast-bed contact
stresses greater than those necessary to oppose the weight
ol the clast.

Generating scratches by simple experiments with two
rocks in the field or laboratory is sufficient to convince
that contact forces must be higher than those generated
by the buoyant weight of the clast. Moreover, the
presence of striations on glacially eroded bedforms would
scem to require high clast bed contact stresses. While the
shape of these forms can be partly explained by the
presence ol indentors on the clasts (e.g. Iverson, 1991),
the construction of an abrasion theory where clast=bed
contact stresses arise from bedward flow (e.g. Hallet,
1979) leads to a prediction of contact forces, which, in
regions where the bed is flat, are unlikely to be more than

an order of magnitude greater than the buoyvant weight of

the clast (Hallet, 1979, fig. 2). Another example which
opposes the high-water-pressure theory is the erosional
effect of particles transported by rivers, where scratching
of bare bedrock is less common, but where contact forces
are no less than the buoyant weight of the particle.
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If, on the other hand, one allows the water pressure
beneath the clast to be rather less than the ice pressure,
thus generating high clast bed contact forces (Boulton,
1974), one needs to provide a mechanism by which this
low water pressure between clast and bedrock can be
maintained, a point emphasised by Hallet (1979). Such
low pressures are easy to understand if the bed is
permeable and in contact with a region of lower
pressure, but where the bed is impermeable the problem
of finding mechanisms which generate low water
pressures underneath the clast hecomes more difficult.
One mechanism is the formation of cavities on the lee side
of clasts, analyzed and rejected as stable configurations on
grounds of mechanical instability by Boulton and others
(1979), and discussed further by Hindmarsh (1985), the
point being that cavities will cause sub-clast water
pressures to be low, owing to the hydraulic connection
between the cavity and the sub-clast area. Clasts with
cavities have been frequently observed (Boulton and
others, 1979), but these are in places where the moving
clast experiences a changing stress field. The implication
of this is that one cannot make inferences about the
stability of the clasts. In this paper, we examine
theoretically the formation of cavities contiguous to
clasts and consider their effect on lodgement and
abrasion,

2. THE SOLO CLAST
2.1. Basic configuration

The configurations we are considering are illustrated in
Figure 1. The clast lies between the ice and the bed, and is
surrounded by water or gas, and clast—clast interactions
provide a negligible part of the total force balance. The
ice is assumed to be at its pressure-melting point. In
general, the lower face of the clast and the bed will not be
conforming, and in the gaps there will be either water or
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Fig. 1. Physical madel of the clast used in this paper. The
clast is enveloped in water or gas. The ice may be
conforming with the clast virtually evervichere (a) or
cavilies may develop on both upsiream and downstream sides
(b). The cavities may be filled with water or with gas.

gas. The gas will either be air or water vapour, and in
view of the stresses generated we can take the triple-point
pressure of water to be zero.

By assumption, since the ice is nowhere in contact with
the clast, the forces on the clast are not determined
directly by stresses in the ice, but rather by how these
stresses are transmitted directly through the fluids
enveloping the clast. These assumptions are typical of
those used in regelation theory and combinations ol
regelation theory and viscous-tlow theory (e.g. Nye, 1969;
Kamb, 1970). The ice is disallowed to be in direct contact
with the clast by the assumption of temperate conditions,
This constraint is imposed by thermodynamic principles,
which do not. however, disallow direct clast bed contacts.

If one permits temporary, local freezing of'ice onto the
clast, as in the mechanism proposed hy Robin (1976),
then the “problem™ of explaining high clast-bed contact
pressures disappears, as there is no reason why water
pressures under the clast should be similar to the stresses
transmitted from ice directly to clast. Non-temperate
conditions will not he considered further in this paper. but
it should be borne in mind that they could potentially
explain some abrasional episodes.

Il the ice is separated from the upper surface of a clast
by a thin water film but nevertheless conforming to all
upper surfaces ol the clast, continuity of pressure imposes
constraints, and in particular it seems difficult to invoke
arbitrary pressures under the clast to explain lodgement
and abrasion. This is the key point made by Hallet (1979,
1981) in arguing against the Boulton (1974) model. We
shall argue that there are mechanisms related to thinning
of the water film which can seal the sub-clast area from
the super-clast region, and that these arcas necessarily
exist, as the high hydraulic transmissibility of the sub-clast
area requires very large fluxes of water to support the
pressure gradients imposed by the flow of ice past a clast.

2.2, Application of the Watts solution to the
half-space

The sub-clast water-pressure problem has been analyzed
by Hallet (1979, 1981}, who applied a theory due to
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Watts (1974) describing the flow of “Newtonian™ ice
around a spherical clast. Hallet's configuration is shown
in Figure 2. We shall call all solutions describing the flow
of ice around clasts “Watts-type solutions™.

Ice

Bed |

Fig. 2. The configuration used by Hallet (1979). The
clast s surrounded by a thin water film.

Watts” solution is based on the following assumptions.
The model ofice is one where all regelation occurs at the
interface and where ice is a Newtonian {luid. In spherical

co-ordinates (r, 8.1 the pressure is found to be

pulia?

= ot
r(a® + a.?)

P

and the normal stresses are
a*ul cos
2 (a? + a.?)

g = Oy = 0, (1)

Tir =3

where [ is the far-field velocity, a is the radius of the
sphere, and a,* = 3uC'/Lp, where ju is the viscosity of the
ice. €' is the Clausius constant, L is the volumetric latent
heat ol'ice, and py is the thermal resistivity of the system.
The quantity a. represents a transition length scale ice
flows round clasts smaller than this by melting—refreezing
processes and around clasts larger than this primarily by
viscous deformation. The estimate by Watts that a.
~ 10em is approximate. Fowler (1981) estimates the
length scale as being 1 em. The Watts solution is linear
and therefore does not include non-linear rheological
elfects or the formation of cavities,

From Cauchy’s law we can see that py in the water
lilm is equal to g,,. and using @ = acosf we can see that

or(a) = 3ulz/(a® + a.?).

i.e. there is a linear decline in the pressure in the water film
from upstream end to downstream end. This is what we
would also expect underneath the clast if Poiseuille flow
were occurring there, and means that the net contact force
between particle and bed would simply be the buoyant
weight of the particle, as discussed by Hallet (1979).

Let us consider for the moment the velocity and stress
fields within the ice and ignore the lubricating water film.
In this case, the only geometry where the bed is close to
the clast which is also consistent with the application of

33
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the Watts full-space theory is the half=space problem. This
is because the shear stress is zero along the plane bisecting
the domain in the Wartts solution, and is also zero along
this planc in the half-space assumption by virtue of the
assumption of perfect slip.

However, when one considers the thin water film,
applying Watts’ model to the half-plane introduces
inconsistencies (Hindmarsh, 1985). A pressure gradient
beneath the clast immediately implies that this is an extra
drainage route, which means that the Watts solution,
with its assumption of restricted drainage around the clast,
no longer applies. Recall that in classical regelation
theory the thickness of the water film adjusts by the flow
or melting of ice so as to provide the right flow resistance
for the discharge and the water-pressure gradient. This is
not possible underncath a clast, where the transmissibility
is more or less constant and is almost certainly very much
larger than that around the clast, because the same
dependence on the cube of thickness occurs. As we
suggested above, there is no particular reason why the
clast base and the bed should be conforming.

A further problem with the direct application of the
Watts theory lies in the fact that a water film exists
between the ice and the bed upstream of the clast. This is
a special property of the half-space solution. Irom
Cauchy’s law, the pressure in the water film between
clast and ice at the leading edge of the clast is given by
e, while that in the film between clast and bed at this
point is given by agg, and we can see from Equation (1)
that these stresses are not equal, and the water pressure is
discontinuous at (r.#) = (a,jn), j=(0,1). This is
illustrated in Figure 3. Application of the Watts theory
to the half-space is not consistent, as it ignores the water
film between bed and ice. More generally, one cannot
have two free surfaces of a deforming fluid meeting at
angles other than a right-angle, as shear stresses
associated with the deformation are incompatible with a
symmetric stress tensor in this case, 1t is not clear that the
configuration discussed by Hallet (1979) is physically
consistent. Of course, Hallet is simply using the Watts
model as a physical example of what is essentially an
order-of-magnitude argument, but in view of the
comments made above about continuity of pressure in
the water film one should be careful not to go outside the
domain of applicability of this model.

These problems all stem from the requirement that
the ice be conforming with the clast and the bed. We do
not expect this to happen, and suggest that cavities will
form, and that this resolves the problem of discontinuous
water pressure in the thin film. There is another
problem, that large water-pressure gradients imply
large temperature gradients. We will ignore the
thermodynamic problems, concentrating on a fluid-
mechanical resolution to the problems of consistency
discussed above, and leave the thermodynamical
considerations to a subsequent paper.

A final point relates to the longitudinal symmetry of

the sphere. It is casy to see from the Watts solution that
the total vertical force acting on both upper surface and
lower surface is zero, and it would seem that this is a
special consequence of the upstream/downstream sym-
metry of the solution. This fact need not be true for
asymmetric configurations, and upwards or downwards
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Stress or pressure

Position

Fig. 3. The solutions for the radial stress . (dash-dot
line ) given by Waits (1974 ) for flow around a sphere, and
the waler pressure in a thin water film (solid line) given
by assuming the theary applies to a half-space. This
normal traction is equal lo the water pressure. Vertical axis
is stress, horizontal axis x is position in the direction of
Slow. The obstacle lies in —1 < x < 1. For |x| > 1, the
pressure is taken along a plane parallel to the divection of
Jar-field flow which goes through the sphere centre ( the bed
plane), while for |x| <1 the stress and pressure are
computed at the clast surface, t.e. along the surface
|r| = L. Radial stress is continuous while normal traction
LS continuous.

&X

“lift” generated on the clast is possible while global force
halance is maintained over the clast and bed.

2.3. Finite-element calculations

We have suggested that the Watts solution is special
owing to its symmetry, and we need to determine whether
more general configurations show similar properties. We
solve the Stokes equations

Oty. | O1pw _ Op

Oz * r  ox

Ory;  Or:  Op

T BB (1)

along with a linear viscous relationship, where (z,2)
represents a two-dimensional Cartesian coordinate system
with z pointing upwards. Thermodynamic effects are not
treated. Numerical (and therefore approximate) solutions
are obtained by the finite-element discretisation proce-
dure. We discretise using quadratic triangles with mid-
side nodes where velocities are computed. Pressure as well
as velocities are solved at the vertices of these triangles.
We investigate the flow over bumps (cf. Tken, 1981;
Schweizer and Tken, 1992; Guomundsson, 1994). At the
hase we assume perfect slip (zero tangential traction), and
on the sides we use periodic-boundary conditions (so that
the bump has an inflinity of clones upstream and
downstream). We apply the upper surface condition
sulliciently far from the base that the vertical velocity
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component at the boundary can be assumed to be small.
The boundary condition on this surface comprises a
constant. unit, horizontal velocity and zero vertical
velocity, A moving [rame ol reference can allow us to
follow the sliding motion of a clast, since away from the
clast/bump the bed is flat. Then, provided that we specify
perfect slip over the bed. the solution also applies to a
bump/clast travelling at arbitrary speed. We shall not
specify physical constants, as we are interested in
qualitative features of the low.

Calculations were carried out for flow around a clast
e} specified by

. 9

c(r) = max |0, 2sin T _

Various grids were used, the densest of which is shown in
Figure 4. These grids had varying numbers of computa-
tion nodes along the base: 17, 33, 65 and 129. The normal
traction at the ice-bed interface and from this the (ilm

10K *

% 2 4 6 8 10

Fig. 4. Finite-element grid with 129 nodes along the
botlom. Other grids, not shown here, used 63, 35 and 17
nodes along the base.

water pressure were computed. The results for various
grids (Fig. 5) show convergent behaviour away from the
leading and trailing edges but also evidence for dis-
continuities in water pressure at these edges. At clast
edges the solution does not appear to converge. T.
Johanneson (personal communication) has suggested that
this non-convergence may be a manifestation of Gibbs’
phenomena. An alternative way of viewing this is to note
that discretisations of the problem, which smooth the
slope discontinuity, are well posed, while the continuum
representation is not, as it is not possible for a delorming
fluid to sustain free surfaces meeting at angles other than
a right-angle. The problem really arises because we have
imposed the condition that the ice be conforming,
whereas in general we would expect cavities to form.
Before proceeding on this point, we note that these
solutions are symmetrical about the clast centre, meaning
that the total normal force acting on the upper surface is
zero and was found to be so to low error, owing to the
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Fig. 5. Estimated normal traction (arbitrary units) plotted
against horizontal position. The physical configuration of
Slow over a clast is shown in Figure 3, except that the
different  plots represent calculations with different
computational grids. The wunbroken line is for 129 nodes
along the botlom, as in Figure 3: the dashed line is for 65
nodes along the bottom; the dash-dot line is for 33 nodes;
the crosses are for 17 nodes.

good global conservation properties of the finite-element
method. Various asymmetric bump configurations were
used in similar calculations, and the ratio

[ : pwdz
[ o e

computed. This was no longer exactly zero but still only
ol the order of a few per cent, and could not be said with
any confidence to be different from zero. While steeper
faces generate larger normal stresses, so increasing the
face, the
normal vector is

magnitude of the force on the vertical

component ol the reduced, which

reduces the net effect on the vertical force,

3. THE THIN WATER FILM

Regelation theory supposes that the thickness of the thin
water film adjust so that the discharge of water g
(determined by the melting and refreezing of ice) and the
water-pressure gradient along the clast Opy /s (deter-
mined by the flow of ice around the clast) satisfy the
laminar Poiseuille relation

k. ]

T =""194 os

The problem of discontinuous water pressures has been
considered by Weertman (1972) in his application of the
Nve (1953) tunnel-closure theory. It is a problem that
arises implicitly for all those who use the Rothlisberger
(1972) theory of tunnel closure. In this application, the
computed water pressure between the ice and the bed is
different from the tunnel pressure (Fig. 6). Mollification
of the discontinuous or singular behaviour is supposed to

35
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Ice

Clast or
Tunnel

Bed

Fig. 6. The four possible water pressures associaled with
singular geomelries. When this configuralion represents a
tunnel, the only water films are 1 and 4, and their pressure
is different from the water pressure in the tunnel, excepl for
a narrow boundary laver (Weertman, 1972). When this
configuration represents ice flowing around the clast, films
I and 2 belong to the leading edge, and 3 and 4 lo the
trailing edge; ice flow is from left to right. Film 1 Us the
leading-edge film abutiing the bed: film 2 is the leading-
edge film abutting the clast; film 3 is the tratling-edge
pressure abutting the clast; film 4 is the tratling-edge
pressure abutling the bed. In general. we expect the waler
pressures in these films to be ¢ffectively discontinuous at the
corners. This leads to the formation of cavilies.

accur by pinching-out of the water layer and consequent
reduction of its transmissibility, allowing a large pressure
oradient to exist. 'This can only happen when the water
pressure in the film is higher than the pressure in the
tunnel of cavity, as the opposite situation would simply
lead to enlargement of the cavity. The high water-
pressure gradients mimic the discontinuous behaviour
and produce pressure-scaling. The Weertman theory has
been criticised (e.g. Walder, 1982) because it appears to
drive water away Irom tunnels. However, water may
drain into tunnels through “Walderlets™ (very small
channels) while the thin water film described by Weert-
man mechanically supports nearly all of the ice. In short,

criticisms ol the Weertman theory as a description of

drainage may be correct but do not affect my argument.

The solutions presented above for the flow of ice
specified perfect slip as the boundary condition. This is
correct if we assume that the pressure in the water film
can take on arbitrary distributions, but, as the discussion
above has shown, discontinuous water pressures are
predicted in general. We hypothesise that the constric-
tion of the water film creates a boundary layer in the flow
of the ice, where the ice flow changes in order to
accommodate the mechanical requirements of the water-
pressure gradient. This boundary layer will have length

scale parallel to the film comparable with the thickness ol

the thin water film. Away from the film the flow of ice is
essentially undisturbed from the solution predicted by the
perfect=slip condition. The pressure under the clast must
be approximately constant, as this area is oo transmis-
sible to support a large pressure gradient,

We use this idea to consider qualitatively what
happens at the leading and trailing edges of clasts. This
is also illustrated in Figure 6. There are four pressures
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relevant to the problem, two associated with the leading
edge. in the water film abutting the bed and the water
film abutting the clast, and two associated with the
trailing edge and its two associated water films. The water
pressure underneath the clast is supposed to be constant.
It could be less than all four of the water pressures
generated by the ice flow over the clast, but only il there
were a connection to an external drainage route through
or along the bed.

Otherwise, we can consider the following cases, related
to

. The pressures at the trailing edge.

(a) The sub-clast pressure lies berween the two
trailing-edge pressures, being greater than the lower
of the trailing-edge pressures, which is in the film
abutting the clast lee face. A cavity opens, while the
other, higher-pressure film, in the film abutting the
bedrock, is sealed from the cavity by pinching-out of
the water layer.

(h) If the sub-clast pressure is greater than both of the
pressures associated with the trailing edge, the cavity
orows until the extra bridging stress needed at the
point of retouching exceeds the cavity pressure. This

now ('()I']'('H])()lld‘i Lo case la.
2. The pressures at the leading edge.

(a) The sub-clast pressure is less than either of the
leading-edge pressures. The ice is sucked under the
clast (to a limited extent), and the leading-edge face
and the bed face become sealed from each other and
the clast by pinching-out of the water layer.

(h) The sub-clast pressure is greater than the lower of
the two pressures. A leading-edge cavity is formed.

(¢) T'he sub-clast pressure is greater than both leading-
edge pressures. This can occur only if there is drainage
into the sub-clast area from outside. The leading-edge
cavity grows until increased bridging stresses cause the
pressure in the film abutting the clast to be greater than
the cavity pressure. This now corresponds to case 2b.

To illustrate these ideas, let us consider the flow ol ice,
initially at rest. around a particle lodged on the bed. The
ice begins to flow, and a pressure difference is created
along the clast. By the arguments above, we cannot
expect the pressure to be less than the minimum trailing-
edge pressure, if the area under the clast is hydraulically
isolated. The water pressure under the clast would then
be a local minimum, and we would thus expect there to
he flow of water into the area under the clast, raising the
pressure above the minimum predicted by Watts-type
theory. Under these conditions. a cavity will form,
probably on the downstream side and possibly on the
upstream side as well. Of course, if the minimum pressure
predicted by Watts-type theory is less then the triple-
point pressure of water, a gas-filled cavity will form.
How does this phenomenon of discontinuous water
pressure operate in three dimensions? We have seen from
the Watts solution that the water pressure is discontin-
uous at the leading and trailing edges. As we move round
the flanks of the clast, the discontinuity still exists but
becomes smaller, until at the side there is no longer a
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discontinuity, Round the lee side of the clast the
discontinuity reappears. Exactly the same arguments
apply regarding the mollification of the discontinuous
water pressure as in the two-dimensional case. High-
pressure layers get pinched ofl' by sealing, and the
minimum sub-clast water pressure is determined by the
lowest pressure in the system. Cavities can develop on the
lee side.

This section is quite crucial, because it seems that we
cannot compute the water pressure underneath the clast
from Muid-dynamical considerations alone, which contra-
dicts the implicit assumption made by Hallet (1979). As
described above, this contradiction arises from the [act
that Hallet does not consider the presence of the film
abutting the bed. which connects the upstream and
downstream sides of the clast. Instead, we have to
consider the way the cavity is hydraulically connected
to the rest of the glacier (Lliboutry, 1968; Walder, 1986:
Fowler, 1987; Kamb, 1987).

A reviewer, B. Hallet, has rightly criticised the above
model on the grounds that it ignores the thermodynamics
of the problem. In particular, high pressure gradients
imply high temperature gradients, and additional sources
and sinks of water in the film. Since heat dissipation per
unit area in the thin water film is given by q - Vp,,, we can

expect strong heating in the boundary layer. Moreover, if

the pressure under the clast is lower than the ambient
pressure, we should expect heat 1o flow out of the area,
and freezing 1o occur underneath the clast (which in fact

is a problem for a/l hard-bed abrasion theories). All of

these are valid points and may mean that sustained
abrasion is not possible. as the clast could eventually get
frozen into the ice. Acting against this particular
mechanism is [rictional heating between clast and bed.
However, all that is needed for abrasion to occur is {or the
mechanical configurations described above to be realised
temporarily, and this is quite plausible given that thermal
time-scales are longer than mechanical time-scales, which

can be regarded as being instantanecous.

4. FORCE BALANCE AROUND CLASTS WITH
CAVITIES

[I'a clast is in contact with the bedrock, it must satisfy the
Coulomb [riction condition

|Fy| < | £

where F. is the force acting parallel to the hed. F. is the
net normal contact force between clast and bed, and 7 is
the coeflicient of friction.

There is an important problem relating to the
presence of cavities around clasts, in that it has appeared
theoretically quite difficult to generate normal and
tangential [orces on the clast which are consistent with
the requirements of the Coulomb friction relationship
(Boulton and others, 1979). This problem is reanalyzed
with a hydraulic-jack model, and it is found that
adjustment of the degree of cavitation can resolve the
issue.

We carry out a semi-quantitative analysis as follows.
We consider the clast to he the isosceles triangle sliding on
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its non-symmetric face, and we suppose that the water
pressure declines linearly from leading to trailing edge.
This configuration is illustrated in Figure 7. The clast
profile is denoted by z = e(x/X). Although this is a rather
crude model, T believe that the analys

s which follows is
qualitatively correct; the decline in pressure seems to
occur generally, while the faces of constant anele are
devices (o ease the computations below. The principal
conclusion, which relates to how the ratio of horizontal to
vertical forces changes with degree of cavitation. is
qualitative.

- pe
- pm

Fig. 7. The notation used in the clast force balance.

When a cavity exists, let us suppose that the [lm
pressure is linear in @ from leading edge to point ol
scparation on the trailing face (or the trailing edge i no
cavity exists) and constant therealter. Such linear
dependence is found in Watts’ solution. We express this
pressure relationship as

»— p,,,'—_. R S

Pw = X ' (2)
Mo 4 n =

where py, > 0 determines the water-pressure gradient and
thus the water pressure at leading and trailing edges, The
pressure in the cavity (il the cavity exists) is p., and the
water pressure underneath the clast is also pe. It is more
convenient to consider the deviation of the water pressure
from the ice pressure, and we thus write

/
P =Pw=Dis

and in the cavity we have p!, = —p. = p. — p;. These two

relationships allow us to write
<

! ) —Pmies

I'}w - ‘Y

— m Bl

T <. Ts (.3 )

The point of separation is assumed to be given by
&g Ps—Di Py

= FENE < S 1
‘\- IJIIJ l}lll ( )

which is an assumption that after one has computed the
position of separation, the presence of the cavity does not

affect the pressure ficlds where the ice is still conforming

S
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to the clast. This construction amounts to a hydraulic-
jack-type theory (Rothlisberger and Iken, 1981). We

define
s
4= (5)
X
and from Equation (4) note that in particular
By da, %

AT B (6)
P dpe  pm

Let us denote the normal vector

_ [ (=), £<0
(V‘;._U:) = { (""‘i,--f/i)» E> 0.

where r/_il..ui.' are constants. By Cauchy’s law the non-
glaciostatic forces (i.e. subtracting the ice overburden)
exerted by the water film on the upper surface of the clast
are given by

]‘51:
!
; — pveds
PT:' =51
F? Sn
< - / Pl v.ds
A

where we recall s is the distance along the clast surface.

Use of the relationship
v/ 1+ (tanv)’dzx

where 7 is the angle subtended by the leading edge of the
clast, allows us to write the non-glaciostatic forces as

£

which, upon using || = 1 allows us to write

X
Fl 1| / Pyvedz

TR X
8 — pvade
Jx
Note that we may also write
X X 9
: (7
F,=- / pl, tanydz = — / pi\.yd.r.

J-X J-X o

From Equations (3) and (5) we can see that

p:‘; = _pm‘f- 5 S ‘fh y
p:\- = —Pe ‘E b EH 1
and
v, = —sgn(&)v v, = —ii.

The integrand in Equation (7;) can then be evaluated to
be
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—_n — = Dy —
I\\ ; ]Illy

With the integrands now defined, Equation (7) becomes

1 £ .
e X(_f Pml€|V/.dE + Pv‘-'(Es))
g iy

o &
: -X —pm&dE — pe(l — &
(fl Pt — el &))

and using Equation (6) to eliminate p, yields

vl

& .
I XPm (/ — |[E]pedE + cf,,-c.(‘fﬁ)>
r —j # :
= . - (8)

Fe
= —.Xpm (/_1 _EdE - E\(l e EH))

We note that
e(€) = eX(1 — |€]), € = tany = v fol.

Then, from Equation (8), we can write
Ui,. &
e _'i‘Yl-‘m €]d€ + &(1 — |&])
r V. J—1

Fe e
i _Xpm (_ / EdE S ‘f“(l = E\))
=1

and computation of the integrals vields

.F: _ %/Yfpm(l e E\('Z o ‘Eﬁ‘)) (9)
F;' - =+ JYPm(%gs = % = éw)

for the forces applied to the upper surface of the clast by
the water film.

On the lower surface of the clast, the forces are given
by

F! 0 0

tl

Fj _2)(}"’!' _2*¥7711|‘5-e

there being no w-direction forces owing to the assumed
e 3 i i 3 5 "

flat base. The total force F = FC 4+ F' | which is of course

the clast bed contact force, is found to be

F, -l_:XEpm(l +&(2 — |&

F.| — 1 Xpu(&+1)

)

We deline a [unction

() = -t = LSBT
( ) (Es+l)_

The function W(&,) is shown in Figure 8 along with plots
of F,/ Xepy, | FL|/ Xpw and |F¢|/Xpy,. For & = 1(incipient
cavitation) (&)= 1/2 while for & =0, ¥(&) = 1. For
& < 0,¥(&) = 1, independent of the degree of cavitation.
This case would correspond to positive effective pressure,
which is unlikely to be physically sustainable, although it
does not lead to to an upwards net force on the clast.

Figure 7 shows that we expect larger horizontal/
vertical force ratios as the cavity develops, although it
should be remembered that this simple linearised model
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Fig. 8. Plots of the force ratio V(&) (dash-dot); the
horizontal force acting on the clast F.(&) (crosses): the
magnitude of the verlical force acting on the upper surface
of the clast |F.|(E) (asterisks); and the magnitude of the
verlical force acting on the wpper surface of the elast
|FE[(&) (circles). This analysis ignores the effect of

cavities developing at the leading edge.

of the stress distribution has ignored the possible
development of stoss-side cavities near the leading edge.
The Coulomb condition is now

w(e) <!
€

with the implication that, i ¥(0) =1 > n/e while
W(1) =1 < /e, somewhere in between there will be a
state of cavitation where the Coulomb condition is
satisfied. This conclusion appears to be robust as it is
simply based on continuity of the function ¥, which is
physically reasonable. Our conclusion is thart if a clast is
lodged, development of a cavity will lead to an increased
horizontal/normal pressure ratio and the clast will begin
to move provided that 1> /e > % Clast-aspect ratio
(“streamlining™) is thus an important part ol the
problem. II'we take 7 = tan 30" this gives a the range of
aspect ratios for mobile clasts between 307 and 167,
Particles with too high an aspect ratio will, however, tend
to get toppled.,

The state of cavitation can be changed by altering p.,
by drainage or imbibition or by the motion ol the clast
into zones of different ice pressure. For example. slow
drainage of water into the cavity will cause the effective
pressure to decrease, the cavity to grow and thus ¥ to
increase, possibly permitting clast motion. The state of
cavitation will change if we change py,, which is
determined by the relative velocity of ice and clast.

Another mechanism for changing the state of cavita-
tion is to allow an increase in the relative velocity. This
will inerease the size of the cavity and increase ¥, making
conditions for movement of the clast more favourable. For
a given cavity pressure and assuming that the clast is in
motion, we can solve for the relative velocity ol the clast
and ice in much the same way as Boulton (1974) solved
for this quantity. If the clast velocity is computed to be
less than or equal to zero, then the clast is lodged.

https://doi.org/10.3189/1996A0G22-1-32-40 Published online by Cambridge University Press

Hindmarsh: Cavities and clasts

Since the ratio of coeflicient of friction to aspect ratio
appears in the Coulomb condition, streamlined particles
may not move (erode) on a rough bed, but if they are
riding on a moving carpet of silt over polished hedrock,
they may be able to move and erode. The implication is
that smooth heds (on the length scale of the clast and
smaller) are preferentially eroded as they permit more
clasts to move. There is a whole related question of which
sediment fraction carries out the erosion (Riley, 1982;
Ciuffey 1996; Hindmarsh, 1996); this is
complicated by the fact that the presence of silt appears

and  Alley,

to inhibit abrasion.

This analysis is likely to be qualitatively correct for
clasts which do not have a flat base. Consider the case
where the leading and trailing edges lic a short distance
above the bed. Underneath the clast, the water pressure
will be constant, meaning that it exerts no resultant -
direction force on the clast. Tee may be present under-
neath the leading edge and (less likely) the trailing edge.
There will still be distinet film pressures in the ice
abutting the clast and the ice abutting the bed. Ice
underneath the leading edge will tend to wedge the clast
up, while deforming ice under the trailing edge should
tend to pull the clast down. Since the latter is less likely,
the net effect will be o reduce clast-bed contact forces,
and conceivably that these could be sufficient to raise the
clast off’ the bed. The horizontal force is less likely to be
affected, as it is affected by the magnitude of the
horizontal component of the normal vector but not the
sign. Thus, clasts with curved bases are more likely to
move, but some may not be able to stay in contact with
the bed.

Bedward [low ol ice should affect the cavity geometry.
Intuitively, one would expect it to suppress cavitation.
Combining this expectation with the prediction that
decreased cavitation leads to a smaller horizontal fvertical
force ratio suggests that bedward flow will increase the
probability of a clast being lodged. in accordance with
expectation.

I have criticised the Hallet model because of the
singular geometries it implies, while having adopted such
geometries myself. Is this as inconsistent as it appears? My
argument is that singular geometries necessarily upset the
assumption that the ice and bed are conformant. and this
permits large pressure gradients which in turn permit the
generation ol large clast-bed contact forces. This is an
additional mechanism, not requiring bedward flow,
which may be able to generate larger bed-contact forces
than the mechanism described by Hallet.

5. CLAST-BED CONTACT FORCES

Inspection of the force Equations (9) shows that the
normal contact force F. depends on the tangential
relative velocity through the parameter p,, which
determines the pressure at the upstream face. This
illustrates an important point, that in theories which
involve cavitation, the normal contact forces depend on
the tangential relative velocity. whereas in Hallet-type
theories the normal contact forces depend on the bedward
velocities. Clearly, theories which permit cavities to exist
can potentially predict much larger contact stresses. The
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field evidence is equivocal. LE.M. Morris (personal
communication) states that from observations under
Glacier d’Argentiere, French Alps, clast velocities
secemed to be very nearly the velocity of ice. Since the
ice is sliding at hundreds of metres per year, it is not clear
whether the relative velocity is tens of metres per year or
tens of millimetres per year. The latter case would create
contact stresses comparable with Hallet-type mechanisms
involving bedward flow.

6. CONCLUSIONS

This paper argues that the pressure in the water [ilm
enveloping a clast cannot in general be determined by the
flow of ice around the clast. The conforming flow of the
ice around lubricated obstacles causes water-pressure
discontinuities wherever there are breaks in slope in the
clast-bed system. These breaks in slope are most likely to
occur at the clast edges. Since such conforming flow is
unlikely to be realised in practice. we expect cavities to
form around the clast edges. These cavities are expected
to be connected to the area under the clast. As in any
subglacial cavities, water pressure is determined by
connections to other parts of the bed. Even il large
cavities do not grow, water pressure underneath the clast
must be approximately constant.

This water pressure can be low enough to ensure
clast-bed contact pressures higher than those generated
by bedward flow, and will often be low enough to cause
cavity formation on the lee side. It seems [rom hydraulic-
jack models that as the degree ol cavitation increases, so
too does the ratio of horizontal to vertical forces acting on
the particle. The degree of cavitation is determined by the
relative velocity of the ice and clast and the effective
pressure of the clast cavity, and thus the degree ol
cavitation can adjust to satisfy the Coulomb condition.

As in any theory involving cavitation, the water
pressure is not determined by the local flow, as it depends
on the hydraulics of the bed. The theory in this paper can
predict the maximum effective pressure realisable as the
result ol viscous flow around the clast and without
sustained drainage of the water out of the sub-clast cavity.
Drainage into the sub-clast cavity is potentially quite slow
owing to the pinching-out of the water layers, and can
actually start abrasion by increasing the ratio of
horizontal to vertical force acting on the clast.
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