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Abstract

We investigate natural convection cooling of the fluid in a drink can placed in a
refrigerator by simulating the full combined boundary layer system on the can wall.
The cylindrical can is filled with water at initial nondimensional temperature 0, and
located within a larger cylindrical container filled with air at initial temperature −1.
The outer container walls are maintained at constant temperature −1. Initially both
fluids are at rest. Two configurations are examined: the first has the inner can placed
vertically in the middle of the outer container with no contact with the outer container
walls, and the second has the inner can placed vertically at the bottom of the outer
container. The results are compared to those obtained by assuming that the inner can
walls are maintained at a constant temperature, showing similar basic flow features and
scaling relations, but with very different proportionality constants.
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1. Introduction

The cylindrical container is one of the most common shapes encountered in natural
convection heat transfer processes, arising in liquid/gas storage tanks, thermal energy
storage systems and food cans, amongst others. The simplest model of natural
convection in such a container, vertically oriented along its axis, assumes that the
vertical wall is maintained at a uniform temperature, with an adiabatic top and bottom.
Past studies using this approach focused predominantly on the case in which the
container’s contents are heated up by the boundary conditions [1, 2, 4, 5, 13], although
recently the case in which the contents are cooled by the boundary conditions has also
been investigated by Lin and Armfield [6–8]. This latter case will be considered here.
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The evolving process of a transient cooling natural convection flow within a
cylindrical can, vertically oriented along its axis and subjected to cooling isothermal
boundary conditions, is as follows. Immediately after initiation of the cooling
boundary conditions, a natural convection boundary layer develops on the vertical
wall. This boundary layer discharges a cooled intrusion at its base, which travels
towards the centre of the can bottom. The intrusion rebounds when it reaches
the can centre, forming reverse travelling waves that interact with and perturb the
boundary layer. The boundary layer continues to feed cooled fluid into the intrusion,
which gradually increases in depth. The strong unsteadiness of the intrusion decays
during this time, resulting in a quasi-steady state, with stratified cooled fluid at the
bottom of the can, gradually increasing in depth as the boundary layer continues to
discharge cooled fluid. These effects are similar to those observed in cavities with
differential side-wall heating, for example in Patterson and Armfield [10] where a
number of scalings were developed to describe the start-up and fully developed flow
structures in terms of the control parameters, the Rayleigh number Ra, and Prandtl
number Pr.

The simple model described above, in which the can boundary is assumed to be
isothermal, may not be an accurate approximation for the case of interest here, that
of a drink can placed in a refrigerator. In this case the can has neither isothermal
nor isoflux boundary, as the cool air in the refrigerator interacts with the warmer fluid
in the can via the combined system consisting of natural convection boundary layers
on both the liquid and air sides of the can wall. To better understand this flow, we
investigate the combined natural convection cooling of a drink can, simulating the full
refrigerator/can system.

2. Mathematical model

The case under consideration is the natural convection cooling of the water in a
vertical cylindrical can located within a larger vertical cylindrical container of air, with
the air initially at a lower temperature than that of the water in the can. The walls of the
can are assumed to be very thin, and hence the assumption of zero thermal resistance
at the can walls is used, and the heat capacity in the walls is neglected. The walls of
the outer container are maintained at a constant temperature Tw. Initially both fluids
are at rest and the temperatures of the air and water are Ta and T0, respectively. Note
that Ta = Tw.

Two configurations are considered for the can. The first, Case 1, has the can located
in the middle of the container with no contact between the can and the container walls.
The second, Case 2, has the can located at the bottom of the container, with the can
bottom in contact with the container bottom; the can bottom is then maintained at
temperature Tw. Schematics for both cases are shown in Figure 1.

2.1. Governing equations The unsteady natural convection flow in the cylindrical
container and can is governed by the Navier–Stokes equations and the temperature
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FIGURE 1. Computational domain and coordinate system.

equation. With the Boussinesq approximation, the equations can be written in two-
dimensional cylindrical coordinates, in nondimensional form, as follows:

1
r

∂(ru)

∂r
+
∂v

∂z
= 0, (2.1)

∂u

∂τ
+

1
r

∂(ruu)

∂r
+
∂(vu)

∂z
= −

∂p

∂r
+

Pr

Ra1/2

[
1
r

∂

∂r

(
r
∂u

∂r

)
−

u

r2 +
∂2u

∂z2

]
, (2.2)

∂v

∂τ
+

1
r

∂(ruv)

∂r
+
∂(vv)

∂z
= −

∂p

∂r
+

Pr

Ra1/2

[
1
r

∂

∂r

(
r
∂v

∂r

)
+
∂2v

∂z2

]
+ Pr θ, (2.3)

∂θ

∂τ
+

1
r

∂(ruθ)

∂r
+
∂(vθ)

∂z
=

1

Ra1/2

[
1
r

∂

∂r

(
r
∂θ

∂r

)
+
∂2θ

∂z2

]
. (2.4)

The Prandtl number, Pr, and the Rayleigh number, Ra, are defined as

Pr =
ν

α
, (2.5)

Ra =
gβ1TZ3

0

να
, (2.6)

where g is the acceleration due to gravity; β is the coefficient of thermal expansion, ν
the kinematic viscosity, α the thermal diffusivity, all for water; 1T = Ta − T0 and Z0
is the height of the can.

The nondimensional quantities r , z, u, v, τ , p and θ are respectively the
nondimensional radial coordinate, axial coordinate, r -velocity, z-velocity, time,
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pressure and temperature, obtained as follows:
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(2.7)

where the velocity scale is U0 = α Ra1/2/Z0, as commonly used for natural convection
flow in a differentially side-heated cavity [6–8].

The top, bottom and side boundaries of the container and can are nonslip and
impervious, with symmetry boundary conditions applied on r = 0. The temperature
is continuous on the can wall, which has zero thermal resistance and heat capacity.
The nondimensional temperature on the container wall is set to θw =−1.0. Initially
both the water and air are quiescent, with the nondimensional water temperature set to
θ0 = 0.0 and the nondimensional air temperature set to θa =−1.0.

2.2. Numerical method Our simulations were carried out using the commercial
solver FLUENT 6.3, in which a finite volume method is used to discretize the
governing equations. The equations were integrated in time using the second-
order unsteady segregated solver, with a second-order upwind scheme used for the
convective terms in the momentum and energy equations. Second-order central
schemes were used for the diffusion and continuity terms. The PREssure STaggering
Option (PRESTO) scheme was employed for pressure discretization, with the SIMPLE
algorithm used for the pressure-velocity coupling [3, 9, 12].

As most of the flow interaction occurs near the walls, it is necessary to concentrate
the mesh points in those regions in both the air and water domains. A nonstaggered
mesh, very fine near the walls and relatively coarse in the interior, was used in this
study. The results presented below were obtained on a mesh with 111× 261 nodes
in the can and, on the boundaries of the container, 181 nodes along the horizontal
boundaries and 438 nodes along the vertical boundary. The smallest grid size in the
can is 1r = 0.000 523, adjacent to the vertical wall; in the container, outside the can,
the smallest grid size is 1r = 0.000 632, adjacent to the can wall. Results were also
obtained on three other meshes with 60× 131, 45× 131 and 31× 69 nodes in the can,
to determine the mesh dependency of the solution.

3. Results

According to equation (2.6), the Rayleigh number of a can of water depends
on the height of the can and on the physical properties of water. For a can of
water 13 cm high, at 20 ◦C, placed in a refrigerator containing air at 5 ◦C, we have
Ra= 4.62× 108. Here results have been obtained for Rayleigh numbers in the
range Ra= 6.40× 107 to 6.40× 109. Owing to the difference in kinematic viscosity,
diffusivity and coefficient of thermal expansion for air, the air-side Rayleigh number
range is Raair = 5.81× 105 to 5.81× 107, again depending on the height of the can.
The aspect ratio (height/radius) of the can and container are 4 and 2, respectively.
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FIGURE 2. Scaled thermal boundary layer thickness against scaled time for Case 1 with various Ra.

3.1. Development of the boundary layers Immediately after initiation of the flow,
the temperature difference across the can wall leads to the development of natural
convection boundary layers on both sides of the wall. The conduction heat transfer
through the can wall from the inner (water) side to the outer (air) side results in
cooled water immediately adjacent to the wall on the inner side, with an associated
descending natural convection boundary layer. On the outer side this results in heated
air immediately adjacent to the wall, with an associated ascending natural convection
boundary layer. This is qualitatively identical to the process observed by Lin and
Armfield [6–8] in their investigation of the natural convection cooling of the fluid in
a can subjected to an isothermal wall boundary condition. Following the approach of
Patterson and Imberger [11], Lin and Armfield developed a scaling for the thermal
boundary layer thickness, δb,t (τ ), which was found to obey the relation

δb,t (τ )∼ τ
1/2 Ra−1/4 . (3.1)

Similarly, the dimensionless time τbs for the natural convection boundary to reach
full development, and the corresponding thermal boundary layer thickness, δbs , were
found to obey the relations

τbs ∼ 1, (3.2)

δbs ∼ Ra−1/4 . (3.3)

Figures 2 and 3 contain the time series of the nondimensional thermal boundary
layer thickness, δb,t (τ ), on both the air and water sides of the can wall, obtained from
the numerical simulations. The thermal boundary layer thicknesses were obtained at
half the height of the can wall (Z∗ = Z0/2 where Z∗ = 0 at the can bottom), using the
location at which the temperature is θ =−0.01 for the water-side boundary layer, and
θ =−0.99 for the air-side boundary layer. The boundary layer thickness is scaled by
Ra−1/4 (Raair for the air-side boundary layer), and plotted against τ 1/2 to test the Lin
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FIGURE 3. Scaled thermal boundary layer thickness against scaled time for Case 2 with various Ra.

FIGURE 4. Fully developed thermal boundary layer thicknesses against Ra1/4.

and Armfield scaling given above. The time series are all seen to collapse onto a single
straight line for the initial growth of the boundary layer thicknesses on both the water
and air sides, for both cases, showing that the scaling works well for this phase of the
flow. Overall, the time series show the typical characteristics of growth and transition
to full development for natural convection boundary layers. The air-side boundary
layer (Pr= 0.7) reaches full development an order of magnitude more rapidly than
the water-side boundary layer (Pr= 7.0), transitioning smoothly from growth to full
development. The water-side boundary layer grows to a peak that considerably
overshoots the fully developed value, as a result of the imbalance in growth rate
between the thermal and momentum boundary layers which is characterized by the
Prandtl number. The time to full development is seen to be approximately τ = 5 for
the water-side boundary layer and τ = 0.5 for the air-side boundary layer, with little
dependency on Rayleigh number, again as predicted by the Lin and Armfield scaling.

Some variation is seen in the scaled fully developed boundary layer thickness, and
this is examined further in Figure 4, where the fully developed thermal boundary layer
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FIGURE 5. Average water temperatures against scaled time for various Ra.

thickness at Z∗ = Z0/2 is plotted against Ra−1/4. Again the appropriate Rayleigh
number is used. The plots show that δbs has a nearly linear relationship with
Ra−1/4, confirming that the scaling for the thermal boundary layer thickness at full
development given in equation (3.3) provides a good prediction of the behaviour in the
full combined boundary layer system. It is also observed that the thermal boundary
layer thickness varies little between Case 1 and Case 2, with the latter being the
smaller.

3.2. Long-term behaviour After the establishment of the thermal boundary layers
on both sides of the can wall, the can is gradually filled with cooled fluid, reducing
the temperature of the water in the can. The air is initially warmed by the transfer
of heat from the water through the can wall, but ultimately that heat is transferred
out of the container through the container walls, and at the final steady state the
air and water temperatures are equal to −1.0 everywhere. This is again similar to
the case considered by Lin and Armfield, who obtained an exponential scaling for
the average temperature of the fluid during the long-term phase of the cooling-down
process. Written in terms of the Rayleigh number used here, and for a can with a fixed
aspect ratio, their scaling is

θw,avg(τ )= e−C1 Ra−1/4 τ
− 1, (3.4)

where C1 is a constant that is determined empirically below. The average temperature
of the fluid in the can, θw,avg, obtained here as the average of the temperature within
the can on the lines Z∗ = Z0/2, r = R0/2, is plotted against τ Ra−1/4 in Figures 5(a)
and (b) for Case 1 and Case 2, respectively. The time scaling brings all four sets of
data to approximately a single curve, indicating that τ Ra−1/4 is an appropriate time
scaling for the long-term cooling down of the fluid within the can.

An average value of C1 is obtained for each case by fitting an exponential curve to
obtain individual values of C1 for each Ra, and then averaging. Scaling relations for
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the average temperature of the water in the can for each case are then obtained as

θw,avg(τ )' e−0.051Ra−1/4 τ
− 1 (3.5)

for Case 1, and
θw,avg(τ )' e−0.0716 Ra−1/4 τ

− 1 (3.6)

for Case 2.
The constants obtained here, C1 = 0.051 for Case 1 and C1 = 0.0716 for Case 2,

may be compared to the corresponding constants obtained by Lin and Armfield [8]
for the isothermal boundary configuration. Lin and Armfield also considered two
configurations, one with the can wall isothermal and the top and bottom adiabatic,
the other with the can wall and bottom isothermal and the top adiabatic. For the first
configuration they obtained C1 = 5.148, and for the second C1 = 5.428, where it is
noted that the constants they gave in their paper have been appropriately converted to
account for the specific time scaling, aspect ratio and definition of Rayleigh number
used here. The significantly larger constants obtained by Lin and Armfield show
that the rate of cooling is much more rapid for their configurations with isothermal
boundary condition.

An important quantity is the total cool-down time, τd , which is defined to be the
time taken for the average temperature of the fluid within the can to reach −0.99,
that is, 99% of the difference between the boundary condition imposed on the outer
container and the initial temperature of the fluid in the can. The total cool-down time
may be obtained directly from the calculated value of θw,avg, but given that scaling
relations have been obtained for θw,avg, equations (3.5) and (3.6) may also be used
to obtain an estimate for τd . Using equations (3.5) and (3.6), the cool-down time for
θw,avg to reach −0.99 is obtained for Case 1 as

τd ' 90.297 Ra−1/4, (3.7)

and for Case 2 as
τd ' 64.300 Ra−1/4 . (3.8)

These cool-down times predicted by the scaling relations are compared to the cool-
down times obtained directly from the numerical data, that is, the times at which
θw,avg(τ )=−0.99, in Figure 6(a). It is seen that, while providing a reasonable
approximation of the cool-down time, the scaling result consistently under-predicts
the result obtained directly from the numerical data. Figure 6(b) contains the results
obtained from the numerical data plotted against Ra1/4, to further test the time scaling.
As can be seen, the Ra1/4 scaling brings the numerical results very close to the best-fit
straight line, providing the empirical relations

τd ' 149.281Ra1/4
− 2874.03 (3.9)

for Case 1, and
τd ' 117.283 Ra1/4

− 4959.88 (3.10)

for Case 2.
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FIGURE 6. Cool-down time τd plotted against Ra, and against Ra1/4.

The numerical results, and corresponding scalings given above, show that the
Case 2 configuration cools the fluid in the can more rapidly than the Case 1
configuration. For example, for the specific Rayleigh number Ra= 4.62× 108, the
cool-down time for Case 1 is τd = 18 817, while for Case 2 the cool-down time is
τd = 11 414, a 40% reduction. By comparison, the cool-down times for the Lin
and Armfield [8] isothermal can wall cases, for an equivalent Rayleigh number and
aspect ratio, are τd = 524 for their first configuration and τd = 552 for their second
configuration. In these cases, the additional application of the isothermal boundary
condition on the can bottom had negligible effect on the total cool-down time. It is
also apparent that the Lin and Armfield isothermal can wall cases have cool-down
times more than an order of magnitude smaller than the cases considered here.

4. Conclusions

Full combined boundary layer solutions of the cooling of water in a can within
a larger container of cooler air have been obtained, and the results compared to a
previous investigation in which the water in the can was cooled via an isothermal can
boundary condition. In both cases the basic flow structure within the can is similar,
with the development of the natural convection boundary layers adjacent to the can
wall obeying the same scaling relations. In particular, the scaling relation for the
average temperature of the water is of the same form for the combined boundary
layer and isothermal boundary solutions, but with very different scaling constants. The
combined boundary layer solutions have total cool-down times more than an order of
magnitude greater than the isothermal boundary solutions, showing that the isothermal
boundary condition does not provide a good approximation of the cooling time for the
combined boundary layer solution. It is also observed that Case 2 considered here, in
which the can bottom is in contact with the container bottom, has a 40% reduction in
cool-down time as compared to that of Case 1.
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