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Maximal sum-free sets in cyclic groups
of prime-power order

Anne Penfold Street

A subset S of an additive group G 1is called a maximal
sum-free set in G if (5+S) nS =@ and |S| = |T| for every
sun-free set T in ¢ . In this paper, the maximal sum-free
sets in cyclic p-groups are characterized to within

automorphism.

Given an additive group G and non-empty subsets S, T of G , let
S + T denote the set {s+t; s € 5, t € T} , S the complement of S in
G and |S| the cardinality of S . We call S a sum-free set in G if
(5+S) € § . If, in addition, |S| = |T| for every sum-free set T in
G , then we call S a maximal sum-free set in G . We denote by A(G)

the cardinality of a maximal sum-free set in G .

Exact values of A(G) were given by Diananda and Yap [1] for |G|
divisible by 3 or by at least one prime ¢ = 2 (3) . When every prime
divisor of |G| is a prime p =1 (3) then, by (1],
|G| (m=-1)/3m = A(G) = (|G|-1)/3 , where m is the exponent of G , and it
is conjectured that in fact
(1) |G| (m=1)/3m = A(G)

This conjecture was verified in [1] for Zn , the cyclic group of order

n , and by Rhemtulla and Street [4] for elementary abelian p-groups.

Maximal sum-free sets have been characterized (up to automorphism) for

the following classes of abelian p-groups:
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(i) for zp , with p =2 (3) in {711 and [6], and with p = 1 (3)
in [4], (see also partial results in [7]);

(ii) for elementary abelian p-groups, with p = 2 (3) in [71], and
with p =1 (3) in [5];

(iii) for 2 5 > With p =2 (3) 4in [7137.

p
Here we extend the argument of [4] to characterize the maximal
sum-free sets in Z o with p =1 (3) . More precisely, we prove the
p
following:

THEOREM. Let G = 2 o » Where p =3k +1 <is prime and
p

pa = 3ka + 1 . Then any maximal sun-free set S may be mapped, under some

automorphism of G , to one of the following:

A =1k , k+2, ..., 2k -1, 2k +1} ;
Q a (¢ (o

o)
[}

{k , ..., 2k -1} ;
[0 o

AP
L}

{k +1, ..., 2k } .
o [0S

o4

DEFINITION. Let C ©be a subset and H a subgroup of an abelian
group G .
(i} € 1is said to be in arithmetic progression if
c=1{g+id | 2=0,12, ..., |C]-1} , for some g, d € G ,
d#0 . If so, d 1is called a difference of C .
(ii) ¢ 1is said to be aperiodie if C + H = C implies H = {0}

(iii) ¢ 1is said to be periodic if C + H = C for some H # {0}
If so, H 1is called a period of C .

(iv) ¢ is said to be quasiperiodic if C = C' v (" , where
' nc" =09, C' +H=(C" for some H # {0} and (" is
contained in one coset of H . If so, H 1is called a
quasiperiod of C .

Notation. Let G =12  andlet H# {0} be a subgroup of
p
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H=12 . If S is a maximal sum-free set in G , then Si denotes

the subset of H such that Si +1=8n (H+1) , wvhere H + 1 generates

G/H and i=0,1, ..., p% P .

The proof of the theorem depends primarily on results of Kemperman
[2], especially on Theorems 2.1 and 3.4 and Lemma L4.3. We also need

Kneser's Theorem {3], the lemma of [4] and the following simple results.

LEMMA 1. Let G =12 w? P = 3k + 1, and let C be a subset of G
p

in arithmetic progression, with difference d . If |c| > p%/7T , then d

has order p° .

LEMMA 2. Let G = Z o Where p =3k +1 and p*
p
H # {0} be a subgroup of G, H=72 g > and let S be a maximal sum-free
p

3k +1 . Let
[+

get in G .

(i) Let I = {1, li=0,1, ..., p°“8—1~, |5~;| > (p8+l)/2} . Let

L={z l 12=0,1, ...,pa—ﬁ—l; Sz=¢}' Then IT +ICL.

(i) If S,# @, then 5. #H for any 1=0,1, ..., pa-B—l .

(iii) A(G) > A(G/H)|H| .

(iv) Suppose the theorem is true for 2 5 for all 6 < a . Then
p

S. = H for fewer than ka- values of 1 .

7 8

Proof. (i) Since S is sum-free,

(2) (5;45,) n 8= 8 -

By Kneser's Theorem [3], there exists some subgroup X < H , |K| = pY ,
such that S, + S. + X =5. + S, and |[S.+S.| = |[S.+K| + |S.+k| - k]| .
(2 J z J T J T J

Since ]Sil = (p6+l)/2 , we must have lSi+KI = Q98+pY)/2 and
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. 8, Y Yy . B =
similarly for Sj . Hence lSi+Sjl = Z[p +p )/2 -p =p and Si+j =g .

(¢2) Apply (2) in the particular case 4 =0 .

(iii) MG) =k =k 4 L+ pr)

x(G/E)|H|

i}

8 -1
ko = kT +pP)

(Zv) By (i), if Si = H then 7 € I which is a sum-free set in

G/H = 2 aeB Hence Si = A for at most ka—B values of 7 .
p
Suppose Si = H for ka—B values of < and let
T = {i €2 -8 | Si = H} . Then 7 may be mapped (under automorphism of
p
G/H ) tc one of the sets Aa—B . Ba-s , Ca—s
Now Aa-B + Aa—B = Aa—B , soif T = Aa—B then, by (2), Si =@ for

all Z ¢ 7.

(Ba—B+Ba-B) VB g

{k -2, k -1} .
o e}

Hence if 7 =B _, then, by (2), 5, =9 for all i ¢ T except possibly

B8
for 7=k -2 or k -1 . If k
a o

2 , then S, _

k-2 =5,=% by (it);

[¢3

it k> 2, then 2(ka-2) €T so, by (2), 8§ Also 2[ka-1) €T

k2= 9"

a

s0 Sk =9 . Hence 5. =¢ forall ¢ ¢ 7.

A similar argument shows that if 7T = then Si =@ for all

Ca-B s
i €7 .

Hence A(G) = A(G/H)|H| which contradicts (iZ).

Proof of the Theorem. We proceed by inductionon a« . For a =1,
the theorem reduces to Theorem 2 of [4].

By [1], for any a , |S| = ka = (pa—l)/B . Since § 1is sum-free, we

must have |S+S| =2[S| + 1 and |5-S| =2|S| +1 .
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Suppose that |S+S| < 2|S| - 1 . By Kneser's Theorem [3]), there
exists a subgroup H <G, H # {0} , such that S+ S+ H=8+ 5 and
[s+S| z 2|S+H| - |H| . By Lemma 1 of [1], S+ H =S , which implies that

|#]{|s| . since |&#| = pB , L=B8<a, we have a contradiction. Hence
|s+s| z 2|S| - 1 and a similar argument shows that |5-5] = 2|Sl -1.

Now S-S == (5-S) and 0 € S -5 . Hence |S-5| 1is 0dd and can
take one of two values: [S-S| =2|5| £1 .

I. If |$-S| = 2|$| - 1 then, by Theorem 2.1 of [2], either S - S

is in arithmetic progression or S - § 1is quasiperiodic.
Suppose that § ~ S 1is gquasiperiodic. Now
a-1 .
|s-s] = 2k(p + ... 0+ p+l] - 1 . Hence there exists a subgroup H <G ,
2| = pB Zp , such that S - 5 consists of the union of
Zk(pa_s-l + ...+ p+l] complete cosets of H , together with

2k(p8-l + ...t p+l) - 1 elements, all contained in one other coset of

H . since |G/H| = po‘—B and since § - § = - (5-5) , these

2k(p6-l + ...t p+l] - 1 leftover elements must belong to H itself.
Since |(5-S)uS| = |G| - 2 , at least k(pB_l + ... + p+l) of the
remaining elements of H must belong to S . But

k(pB—l + ...+ p+1) =k, = xH) , so ]SO| = kB . S0 the remaining

B

kE* B+ ... + p+r1) cosets of H must be contained in 5 ,

contradicting Lemma 2 (i7).

Hence § - S is in arithmetic progression. Since |$-S| = 2k, -1,

Lemma 1 shows that the difference, d , of § - § must be of order pa .
By Lemma 4.3 of [2], S (and -S ) must also be in arithmetic progression
with difference d . Hence S may be mapped (by some automorphism of G )

to B or C .
o o

II. If |S-S| =2|8| +1 , then §~S =S5 . Hence S =-5,
S+ 85 =5-38 and we may apply the Lemma of [4].

(a) Suppose that, for some g € G , |(S+g)nS| =1 . Then by the
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lemma, [(5+3g/2)nS| = k, -3 -

If pfg ,map 3g/2 to 1 so that g = k, + 1 . The first part

of the argument of Theorem 2 of [4] shows that S may be mapped, under

automorphism of G , to Aa .

8 so that

- —B+1 -
e "B g, PP g, mep 392 to p°
B-1 , 182

g = (kp ceo + kp + k41)p%P = [7<B+1)p°"B . Now

|(5+p°F)rs| 2k, -3 . Let B=2 .= ¢*®) . Then

p
a-8 2
p -1 . a-8 p 6_1 a-R
S= U (s.+#1) ana |(s+p" F)ns| = } ’[S.+p ]nS.
. 1 L T 1
=0 1=0
a-8 _ . . = _
Note that Si +p Si if and only if Si @ or Si =Hf .

Q=
It | (s+p B)ﬂS[ =k, » then S consists of a union of complete

cosets of H . Hence |H|||S| which is a contradiction.

Ir ka -1z |(S+pa_8)n5| > ka - 3, we have to consider several

possibilities for S :

(i) 8 consists of a union of k(pOL_B-l + ...+ ptl) = ka g complete
. B-1
cosets of H , together with k(p + ...t p+l) other elements
distributed between one, two or three other cosets of H . But this

contradicts Lemma 2 (Zv).

(ii) S consists of a union of ka—B -~ 1 complete cosets of H ,
together with pB + k[ps—l + .0 p+l) other elements distributed between
two or three other cosets of H . But since S = -5 , one of the complete

cosets must be H itself, contradicting the sum-freeness of S .

(iii) S consists of a union of ka- - 2 complete cosets of H ,

B

together with 2pB + k(pB_l + ... 4 p+l) other elements distributed
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between three other cosets of H . Since S = -5 , one of these three
. . _ g-1
other cosets must be K itself. Since A(H) = kg = k(p + .o+ ptl) ,

at most kB of the remaining elements belong to H , and in fact ka—B

complete cosets of H are contained in S . This is impossible by (i).

(b) We are now left with the case where |(S+g)nS| #1 for any
g € G .

(i) Suppose that by taking an automorphism of (G , we may ensure that
|(S+l)nS| > |(S+g)nS| for all g € G . We list the elements of S as

follows:

(3) S = {al, - al+Zl, Ans wves Aotlys cens @G s ah+Zh}

< < g+l <
where 0 < a a, Zl a

a
1 -1 < a2+12 < ... <qg,-1¢< ah+Zh < p” and

2 h
ai, ey ai+li denotes a string of (Zi+l) consecutive elements of S5 .

Since S = -5 ,

() ay st o= " - a,, »forall ©=0,1, ..., k1,

and |(S+1)nS| = ka - h = |(S+tg)nS| for all g € G . Hence h is minimal
in (3) and we show that h = 2 .

Let X = {a 1} and let

10t

Y = {al+zl+1, cees ah+Zh+l} = {l-a,, ..., l—ah} =1-X

13
by (4). A repetition of the argument of [4] shows that
|(s+ai-1)ns| Zh-1 and

(5) hz|(x+a)o¥| zh -1 forall =1, ..., %h.

If |Xx+X| =z 2h - 1 , the argument of [4] shows that h =2 and §

maps under automorphism to Aa .

If |x+X| =2k - 2 , then by Kneser's Theorem [3], X + X is periodic

so that for some subgroup H <G, H =12 g’ we have X + X + H =X+ X
p
and |X+X| = 2|X+#| - |H| . Using Theorem 3.4 of [2], we can construct all
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possible sets X . We choose a subset X* of (G/H such that X* + X* is
aperiodic in G/H and |X*+X*| = 2|X*| =1 . If o0 denotes the natural

mapping of G to G/H , then X can be any subset of o_lX* , such that

lo_lX*dfl < (ps—l)/E . Hence any coset of H which contains the first

element of a string of elements of S must contain the first elements of
at least (p6+l)/2 strings of S .

By (5), X + X contains all of Y except possibly one element, say

Yy . Since X + X consists of a union of complete cosets of H ,
(H+y) n ¥ = {y} . Since ¥ =1 - X , this implies that |o  x*nX| = p® - 1
which is impossible. Hence Y cC X+ X . We can now describe the

distribution of the strings of S . Suppose

a-8

X* = {H+il, cees H+iz} for some €., ..., 2, € {0, 1, .., p -1} .

1? l
In each coset H + ij , more than half of the elements of the coset are

starting points of strings of S . Since S = -S , the strings finish in

the cosets of ~X* . 1If a string finishes in H - ij , then the next coset
H + (l—ij) € YC X+ X . Hence no string can continue into this coset, and

similarly no string could pass through H + ij -1.

Hence any coset which contains an element of S contains at least

&96+l)/2 elements of S . By Lemma 2 (7), the cosets containing elements
of S must therefore form a sum-free set in G/H . Hence
[s] = A(6) = MG/H)|H| , contradicting Lemma 2 (4i1/.

(ii) Finally suppose that by taking an automorphism of G , we may
ensure that |(S+pa_6)nS| > |(S+g)nS| for all g € § and that
|(s+p°“8)ns| > |(5+g)nS| for all g € § such that p* % ) g . Let
H = (pa-B> =Z and let q = pm_B for the remainder of this section.

B
p

For each % =0, 1, ..., g=-1 , we have Si =@ or Si =H or
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51 = {al‘l:q’ ceey [ali+zli)q’ aziq, ceny (a21+12i]q,
L) a\) 'iq) LA ] [a\).i*‘z\).’b‘]q}
i oot

where 0 < a = a <a i_l <a 8

R . . . A -1 < .+ <
lt+ZlL 2 z+Z < < av.z 1 a Z p

17 2t 21 v.i V.1
7 2
and ajiq, ey (aji+zji)q denotes the set of (Zji+l) consecutive

multiples of ¢ which we call an H-string in § .

Let I = {i ] i=0,1, ..., g-1; 1 = |Si| < pB—l} . Since

S5;+q-= Si if and only if % ¢ I , we have

(6) | (8+q)ns| = |5] - v, > |{5+g)nS|] for all g € G, q [ g .
el

1
Let X = {ajiqﬂl | ¢=0,21, ..., g-1; =1, ..., v;} . since §=-5,

= . _.a
we have Vv. =v . and (aji+zji}q +7=p

5 = Vgt [avi_j+l,q_lq+(q—z )] >

implying that

_ [+
() (a;5425da =" - T ~j+1,q-i7

Let

<
\

= {(aji+zji+l)q +7 ] 2=0,1, cesq-l3 4 =1, ..., vi}

qg- X vy (7).

Now (aﬁ-l)q +17 €5 so, by (6) and the lemma of [4],

(s + (aji-l)q + 1]nS| = (iZI vi} -1=]x] -1.

But for any 81> 85 €S, §q + (aji—l)q + 1= s, implies that 8y € X,

s, € -X and s, + a4 + 7 € Y . Hence
8) x| = T v,z |(tra.q)nr] 2 Lz \,.J 1= -1
'L'ZI 2 2 1y 23 S

for all 4, ©
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If |x+X| = 2|X] - 1, then X + X contains at least |X| -1

elements of Y but X + ajiq + 1 contains at most one element of Y .
Thus for at least [X| - 2 values of (j, 1) , we have 2(ajiq+i) ¢ Y.
But 2(ajiq+lJ ¢ Y implies that q(l—aji) -1t x4+ a;;q + i, since

Y=g - X . Hence for at least |X| - 2 wvalues of (g, 1) ,

(X+ajiq+i] ny {[am+aji)q + i+ | a.q+n€x, (myn)#(j, 1)}

{q - (amnq+n) | a.q+nex, (m, n) # (4, 2)} .

Hence, summing these two expressions for the elements of (X+ajiq+i) nY,
we have

\Y

n
(x[-1)g -2 } [ (a,qm) [mea p*) .
nel m=1

(|x]-3) (ajiqn')

Hence |X| =3 and S contains at most three H-strings, together with

complete cosets of H .

If |X] =0, S 1is a union of cosets of H . This implies EARRE]
which is a contradiction.
If |x] =1 or 3, then §=-5 implies SO # @ . By Lemma 2 (Z1),

Si # H for any 7 . Hence

Is| = At + 2(]8]-1) = TEP-1)/3 = Tk, < A(G)

by Lemma 2 (i), since p =T .

ir |x} =2, then § = -5 implies that either v =2 and S, # 9

o]

or v.=VvV . =1 for some 1 .
7 q-i

By the previous argument, we must have SO =@ . Hence S consists
of a union of 2A cosets of H together with two H-strings, each of
length at most pB -1.

Thus

(9) {s| = k, < 2ap? + 2(p8—1) = 20w1)pf - 2.

https://doi.org/10.1017/5000497270004675X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270004675X

Maximal sum-free sets 417

Since S5 1is sum-free, 2A = ka-B . Ir 2x = ka—B - 2 , then (9) becomes

B8
< -
ka < ka—Bp 2
which is a contradiction by Lemma 2 (7i¢). But if 2 = ka—B s, Wwe have a

contradiction by Lemma 2 (Zv).

1r |x+x| = 2|X| - 2 , then by Kneser's Theorem [3], X + X is

periodic and for some subgroup K<G, K=2 y we have

p
X+ X+K=X+X and |X+Xx] 2 2!X+K| - |K| . We now apply the argument
of (b) (i) to G/K , using (8) instead of (5). If X = H , then any coset
of K is a union of cosets of H . By the previous argument, any coset of

K which contains an element of X mnmust contain at least (pY+l)/2
elements of X . Hence there exists a coset of H , more than half of
whose elements are starting-points of H-strings in S . This is clearly

impossible, so S must consist of a union of complete cosets of H . But
this implies |H| |S| which is a contradiction.

If K < H , so that any coset of H is a union of cosets of X , then
the argument of (b) (i) shows that any coset of K which contains any

element of an H-string in S must contain at least (pY+l)/2 elements of

H-strings in S . Hence for each coset, X + 71 , of K either

(k+i) n S =g or |(k+i)nS| = (p'+1)/2 . But by Lemma 2 (<), the cosets
of K , more than half of whose elements belong to S , form a sum-free set

in G/K . Hence |[S| = AG) = A(G/K)|K| , contradicting Lemma 2 ({ii).
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