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SHORT-TERM RHEOLOGY OF POLYCRYSTALLINE ICE

By N. K. SiNnaa

(Division of Building Research, National Research Council, Ottawa, Ontario K1A oR6,
Canada)

ApstrACT. Deformation characteristics of polycrystalline ice and their dependence on time, temperature,
and stress have been analysed on the basis of a phenomenological relation which describes creep in terms of
initial elastic, delayed elastic, and permanent strain. It is shown that the effective modulus of ice observed
in the laboratory or in the field can be examined on the basis of this model. The model also provides a basis
on which the observed flow law of ice can be examined conveniently. Some apparent inconsistencies in the
results of earlier investigations of the mechanical property of ice appear to be reconciled by the model.

REsuME. Madéle rhéologique a court terme de la glace polycristalline. Les caractéristique de déformation de la
glace polycristalline et leur dépendence du temps, de la température et de la contrainte ont été analysées en
utilisant une relation phénoménologique décrivant le fluage en terme de déformation élastique, déformation
viscoélastique et déformation plastique. On montre que le module effectif de la glace observé dans le
laboratoire ou sur le terrain peut étre considéré sur la base de ce modéle. Celui-ci fournit également les
éléments permettant une analyse correcte de la loi d’écoulement expérimentale de la glace. Certaines
contradictions apparentes dans les résultats des études antérieures concernant les propriétés mécaniques de la
glace peuvent ainsi étre dissipées.

ZUSAMMENFASSUNG.  Kurzzeit-Rheologie wvon polykristallinem Eis, Die Verformungsmerkmale von poly-
kristallinem Eis und ihre Abhiingigkeit von der Zeit, Temperatur und Spannung wurden auf der Grundlage
ciner phianomenologischen Bezichung untersucht. Sie beschreibt das Kriechen in Ausdriicken von anfinglich
clastischer, verzigert elastischer und bleibender Verformung. Es wird gezeigt, dass der wirksame Modul von
Eis, der im Labor oder im Feld gefunden wird, auf der Grundlage dieses Modells untersucht werden kann.
Das Modell liefert ebenso eine Grundlage fiir dic bequeme Priifung des beobachteten Fliessgesetzes fiir Eis.
Einige augenscheinliche Widerspriiche in den Ergebnissen fritherer Untersuchungen der mechanischen
Eigenschaften von Eis scheinen durch das Modell beseitigt zu sein.

InTRODUCTION

Studies of creep of polycrystalline ice have emphasized the steady-state or secondary
creep stage. Little attention has been given to the initial or transient creep range, the range
of particular importance to many engineering problems involving ice.

A programme of observation was undertaken on the initial uniaxial compressive creep
and recovery of columnar-grained ice. I'rom these observations a phenomenological visco-
elastic relation was developed which appears to agree satisfactorily with actual measurements.
This relation permits the static and dynamic elastic moduli of polycrystalline ice to be
examined quantitatively; as well as allowing laboratory and field measurements of both short-
and long-term deformation properties to be analysed in a rational manner. A critical examina-
tion of the relation indicates that the transition observed in the flow law of ice at low stresses
may be due to the short duration of previous experiments. This paper reports the results of
this work.

PHENOMENOLOGICAL VISCOELASTICITY OF ICE

Compressive creep tests were conducted in the temperature range —10 to —45°C on
columnar-grained type S-2 ice (Michel and Ramseier, 1969) with the [ooo1] axis of the
grains normal to the columns. A load was applied in the direction normal to the columns
with a simple lever system and measured by a load cell. Specimen deformation was measured
by linear differential transformers mounted directly on the specimen, and recorded using a
high-speed data-acquisition system. The loading duration was limited to a period of about
500 s. Fuller details of the experimental techniques and method of analysis are outside the
scope of this paper and will be presented elsewhere. *

* Paper by N. K. Sinha entitled “Rheology of columnar-grained fresh water ice”, to be published.
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The ice showed an initial elastic deformation which was followed by a time-dependent,
delayed elastic (or recoverable) strain and viscous flow. Both the delayed elastic strain and the
viscous flow had the same activation energy. Thus, this ice could be considered as non-
linearly stress dependent and rheologically simple. For such a material, creep curves for a
given load at various temperatures can be reduced to a single master curve by means of a shift
function S, ,, given by

In(tft) = In S;.; — % (%—%) ' (1)

in which ¢, and ¢, are the times required to produce a given strain at temperatures 7, and T,,
respectively, @ is the activation energy, and R is the gas content. The phenomenological
relations can be described by

&« = (0/E,)[1+c{1—exp(—[ant]")}) +év,|o]|", (2)

where €7 is the creep strain at time ¢ after loading, the superscript denoting stress and the
subscript indicating time, o is the applied uniaxial stress, ¥, is Young’s modulus which is
relatively temperature independent, ¢, is the steady-state strain-rate for unit stress, z is the
usual stress exponent, b and ¢ are constants, and ap is a factor varying with temperature
according to

ar = exp[—(Q/RT+d)], (3)

in which d is a constant.
The steady-state strain-rate for unit stress é,, in Equation (2) varies with temperature as

éy, = A exp(—Q/RT), (4)

where 4 is a stress-dependent constant (Glen, 1955; Gold, 1973).

It is known that the deformation behaviour of polycrystalline ice depends upon several
factors, including crystallographic structure, purity, direction of application of load, and any
previous strain history which might have introduced irreversible morphological changes into
the microstructure. Equation (2) appears to satisfy the experimental results for previously
undeformed S-2 ice of average grain size (4 mm) with the following values:

E, = 9.3 GNm2,
66.9 k] mol—! (= 16 kcal mol~' = 0.70 eV),

Il

Q
E=mn=49,
b=o0.94 % 1/n, (5)
d = —22.34 giving a = 2.5 X 10~ *s~! at 263 K,

A = 3.76 x 103 for ¢ in units of 105 N m~2 (Gold (1973) for S-2 ice).

The stress exponent for viscous flow has been assumed to be equal to § in accordance with
previous investigations.

TIME-DEPENDENT MODULUS

Deformation in a viscoelastic material is time-dependent, and the quotient of the applied
stress and corresponding strain can best be called the time-dependent or effective modulus.
For a linear viscoelastic material the strain is linearly related to stress, and thus the effective
modulus is only a function of time. The creep strain of ice is a function of both time and stress,
it is therefore appropriate to use

Eyf = ofe?, (6)

for the time-dependent modulus of ice.
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Substituting ¢” in Equation (6) from Equation (2), the time-dependent modulus during
creep of ice is

Epr = 0/(% [1-4¢f1 iexp(—[aq't]b)}]'E‘évﬁlcln) . (7)

Its value reduces to £,, the Young’s modulus or the high-frequency modulus, for time ¢
equal to zero. The relative contributions of the delayed elastic and viscous creep would
determine E; in the intermediate time range, the long-term value is determined mainly by
the viscous deformation.

FREQUENCY RESPONSE OF EFFECTIVE MODULUS

The usual engineering practice is to record stress-strain curves at various applied strain-
rates, from which initial tangent modulus, average tangent modulus, or secant modulus are
determined (Hawkes and Mellor, 1972; Gold and Traetteberg, [1975]; Traetteberg and others,

1975)-
The average strain-rate up to time ! after loading is given, from Equation (2), by

€" G
étan” = T = 3 [1-+e{1—exp(—[art]?)}]+éno]™ ®)

Equation (7) in conjunction with Equation (8) gives an opportunity to compute the
variation of the effective modulus as a function of strain-rate, provided the load amplitude is
small, because the total strain-rate in a constant strain-rate experiment is the sum of the elastic
and viscous strain-rates (Weertman, 1973). Comparisons were made of the experimental
results of Gold and Traetteberg ([1975]) at —10°C and of Traetteberg and others (1975) at
—39.5°C and —19.3°C with the corresponding calculated values. There was fair agreement
for strain-rates ranging from 1073 to 10~7 s=! (Sinha, 1977). Gold (1976) summarized pub-
lished results of the frequency dependence of the effective modulus (Fig. 1), showing that
there is continuity between the effective modulus derived from strain-rate experiments and
those derived from previous high-frequency measurements. Figure 1 also shows the depen-
dence given by Equation (7), assuming that the relation between total time of loading and
frequency is given by

I

f=2 (finHzting). (9)
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Fig. 1. Frequency dependence of effective modulus for polycrystalline ice at — ro°C.
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As the low-frequency experimental data in Figure 1 were determined for a load amplitude
of 0.3 MN m~2, the calculated values shown are for this load level.

It may be noted in Figure 1 that values predicted on the basis of Equation (7), with creep
parameters given in Equation (5) for S-2 ice, differ considerably from experimental data on
granular ice. This indicates that the parameters for elasticity and viscous creep must be
different for granular ice—a reasonable conclusion considering the difference in the structure
of the two types of ice. Information on the short-term rheological response of granular ice is
required to confirm this hypothesis.

This foregoing discussion indicates that the dependence of time-dependent modulus on the
strain-rate is another manifestation of the creep behaviour of ice. The time-dependent
modulus in creep, however, is highly dependent on stress level and temperature; giving the
modulus only as a function of average strain-rate or frequency does not fully describe the
material behaviour in general. A better representation of creep response is needed before
more general conclusions can be drawn for engineering and material-science applications.

CREEP COMPLIANCE FUNCTION

The creep compliance function D¢ for a linear viscoelastic material is given by
Dy =¢=E" (fore=1). (10)

This relation is particularly useful when using Boltzmann’s superposition principle in the
prediction of deformation processes in linear viscoelastic materials under conditions of rela-
tively complicated stress or strain history. D; cannot be described uniquely for non-linear
viscoclastic materials such as ice because of the stress dependence of E, i.e.

Dy = q"'/c = I/Eg”. (II)

NORMALIZED CREEP COMPLIANGE FUNCTION

The normalized form of creep compliance is given by
Doa'f(Dta == an-/eta- == Eta-on: (12)

where the subscript o indicates response at zero time.

This is a convenient method for expressing time-dependent values of creep compliance or
effective modulus in terms of initial response. The rheological response of the same type of ice
could vary from sample to sample owing to variations in the microstructure; experimental
results are, therefore, always subject to a certain amount of unavoidable scatter. The normali-
zation technique allows the experimental results to be compared in a rational way.

Normalized creep compliance functions for columnar-grained S-2 ice are presented in
Figure 2 for a few stress levels at —10°C. For times less than one second and stress less than
2 MN m2 the functions are essentially similar. For stress less than 0.5 MN m~2 this similarity
continues up to about 20 s. The normalized creep compliance functions at other temperatures
are obtained by shifting the curves in Figure 2 along the time scale by the shift function. For
example, for stress less than 0.5 MN m~2, the time-dependent modulus would be independent
of stress for a period of about 2 000 s when the temperature is —45°C.

The first term of Equation (2) provides a model for temperature- and time-dependence
of the elastic modulus after loading. The normalized elastic response, that is, the ratio of the
initial elastic strain to the total elastic strain including the delayed elastic part, is also shown in
Figure 2 as a function of time. This is independent of stress level as is evident from Equation
(2). Deviation of the various creep compliance curves in Figure 2 is due to stress-dependent
viscous flow. The time ranges discussed in the preceding paragraphs therefore indicate the
period of time for which ice behaves in an essentially elastic manner for the given load levels.
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Fig. 2. Normalized creep compliance function for S-2 ice at —10°C for different loads.

Equation (12) in conjunction with Equation (2) could therefore be used to determine the time
and strain at which permanent deformation is significant in relation to elastic and delayed
elastic (total elastic) strain for a given load and temperature.

The theoretical analysis of most bearing-capacity problems involving moving loads and
ice-structure interactions is based on the principles of linear elasticity. The foregoing presenta-
tion indicates the limits of time, temperature, and stress within which elastic theory may be
applied to ice problems and the corresponding relaxed or effective elastic modulus may be
used. In his discussion of the engineering properties of fresh-water ice, Gold (1976) stated
that ice can be assumed to respond elastically to stress when the period of application of the
load is less than 100 s for stresses less than 1 MN m~2 or if loaded to failure within about 2 s.
The normalization technique adds greater quantitative precision to this conclusion regarding
the applicability of elastic theory to ice problems.

STATIC AND DYNAMIC ELASTIC MODULUS

The variation in the modulus of ice, determined experimentally by static and dynamic
methods, can be explained using Equation (2) or its graphical presentation in Figure 2.
Measurements made in times less than 10735 (in fact at 5 x 102 Hz) at —10°C should be very
close to the true value of Young’s modulus. Experimental data presented in Figure 1 support
this observation. Static methods, however, will yield values that depend, for a given type of
ice, on the time taken to load the specimen, the time at which the measurements are made,
and temperature and stress, as is evident in Figure 2.

STATIC MODULUS

The normalized effective modulus as a function of temperature after times of 1, 5, and 305
is plotted in Figure g for stress levels of 1t MN m~2 and 2 MN m 2 (loading time was assumed
to be instantaneous for these curves). It can be shown (Fig. 3) that the curves at one second
are essentially the same, assuming that full load is applied instantaneously. Complications as a
result of pressure melting and impurities at grain boundaries could influence the activation
energy for creep in the temperature range near to the melting point. Caution must be
exercised, therefore, if the curves in Figure g are to be extrapolated to higher temperatures.
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It has been pointed out that the effective modulus is practically independent of stress up to
2 MN m~2 for loading or measuring times less than 1 s at —10°C. Figure g reaffirms that ice
can be considered to be an elastic material in the entire temperature range of practical interest
providing that the loading time is less than one second and the load is less than 2 MIN m~2

0.4 | | L | ] | |
0 -5 -0 =15 -20 -25 =30 =35 -40 -45 =50

TEMPERATURE, °C

Fig. 3. Temperature dependence of normalized effective modulus of S-2 ice for loads of 1 MN m~2 (solid line) and 2 MN m~*
(broken line) at three different times.

LABORATORY AND FIELD OBSERVATIONS OF THE EFFECTIVE MODULUS

Static measurements of the effective modulus can be divided into two categories: those
made in the laboratory, and those made in field tests. As both types usually differ greatly
from each other, it seems appropriate to discuss the subject in some detail. Consider first the
strain, and hence the effective modulus, if measurements are made five seconds after the
application of full load for loads up to 1.0 MN m~2. As shown in Figure 3, the effective value
will be lower than the high-frequency modulus or Young’s modulus by 6%, at —45°C, 119, at
—30°C, 23% at —10°C, and more than 309, near 0°C. Similarly, if strain is determined
30 s after load has been applied, values will be lower by 109, at —45°C, 199, at —30°C,
369, at —10°C, and more than 509, at temperatures just below 0°C. Theincrease in apparent
activation energy observed for temperatures near the freezing point will introduce even larger
discrepancies into the effective modulus in that temperature range. Higher loads will also
introduce larger discrepancies (Fig. ). Experimental observations by Voytkovskiy (1960)
and field tests by Eyre and Hesterman (1976) support this conclusion. These workers observed
the dependence of effective modulus on stress and found that modulus decreased as the load
increased.

Typically, laboratory measurements are made within 5s of load application and in situ
field measurements within g30s. Field values, which are subject to additional discrepancies
owing to the temperature gradients inside the specimens, should therefore be lower than
laboratory values. Both should show that effective modulus increases with decreasing tem-
perature, and this has been verified by numerous field and laboratory measurements (e.g.
Gold, 1958; Voytkovskiy, 1960; Tabata, 1967; Smirnov, 1971).

FURTHER COMMENTS ON EXPERIMENTALLY DETERMINED MODULUS

It is common experimental practice to record strains for several load levels and determine
the effective modulus by standard statistical methods. The finite time involved in loading or
measuring strains, in conjunction with the statistical methods used, introduces yet another
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uncertainty into the final result, an uncertainty that becomes more critical as higher load
levels are used at higher temperatures. A specific example may clarify this.

Consider a hypothetical laboratory experiment in which loads are applied at a finite load
rate of 1t MN m~2 s~ and experiments are conducted for various load levels up to 2 MN m~—2,
Figure 4 illustrates the stress—strain relation obtained from Equation (2) for four load levels.
The points represent the calculated strains at —10°C for 0.5 MNm 2 1 MN m2
1.5 MN m=2, and 2 MN m2 at times of 0.5, 1, 1.5, and 2 s respectively, to comply with the
loading rate. These points do not lie strictly in a straight line. If they were experimental
results, then the points would, in the ordinary way, be considered to be linearly related and
the corresponding modulus would be determined from the slope of the line of best fit. The
dashed line drawn by joining the second and the fourth points represents the line of best fit
fairly well, giving a modulus of 7.2 GN m-2.

=3

MN-m
~

STRESS, o,
~

7 \t[[::; 8.2 GN o

b | I
0 10 20 30

STRAIN, <7, o

Fig. 4. Computed stress—strain relation for loading rate of 1 MN m=2 5—1 at — 10°C. Solid lines indicate slope and expected
effective modulus. Broken lines show slope and evaluated modulus Fe.

The evaluated result E, is considerably lower than £, .5, the maximum value, and is even
lower than E,2, the lowest value in the series. Note also the intercept of the broken line with
the stress axis. This intercept, if present in a real experiment, would be ascribed to the
uncertainties of the measuring system.

Actual experimental data on S-2 ice at —10°C for an average load rate of 1 MN m~2 s
are shown in Figure 5. Results were obtained from a sequence of rapid loading up to full
load, followed by rapid unloading. The conditions of the experiment were similar to those
described for the creep tests. The average load rate was determined from recorded load
histories. The line of best fit, obtained by the least-squares method, is represented by the solid
line, and gives 7.0 GN m~2 for the evaluated modulus with a stress intercept of 0.07 MN m~2,
The example bears a close resemblance to the model presented in Figure 4.
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Fig. 5. Observations of stress—strain relation of S-2 ice at — 10°C.

An example typical of experimental results obtained at —40°C is shown in Figure 6. Note
the higher value of the evaluated modulus and a stress intercept which is lower than that for
measurements at — 10°C. The average load rate is, however, slightly more than that at the
elevated temperature owing to increased stiffness in the loading system.

The variation of the experimentally-evaluated effective modulus as a function of tem-
perature is shown in Figure 7. The solid line represents the variation calculated on the basis of
the simple schedule illustrated in Figure 4, assuming a constant load rate. The agreement is
fair in view of the method of calculation.

Although the maximum time taken to load the specimen to the highest load level was
about two seconds, variation of the experimentally evaluated modulus with temperature is
more like that of the five-second modulus presented in Figure 3. The load rate chosen was
considered to be very rapid and the experimental conditions sufficiently precise; even under
these conditions, however, the results show large discrepancies. The data obtained from
laboratory experiments are not readily applicable to field conditions because of differences in
the type of ice, grain size, temperature variation within the specimen, complex stress states
occurring in the natural ice sheet, and the constraints on the conditions of performing tests.
The examples show how even a well-performed laboratory experiment will give low values for
the effective modulus. Extending the analysis to field conditions could demonstrate that
under these conditions very low values (compared to the high-frequency elastic moduli) can
be expected.

FLOW LAW OF POLYCRYSTALLINE ICE

Problems encountered in the interpretation of the initial creep of ice seem to be repeated
again, in a different form, for a time scale that is long for general experimental observations
but short with respect to the period required to study the phenomenological flow laws of ice.
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Accurate determination of Young’s modulus and variations of the effective modulus with
temperature, stress, and time are the primary problems encountered at the very short end of
the time scale. For long times we have the problem of how to determine the flow law and its
variation with stress.

In the past, investigations have been made into the development of a relationship between
“observed” steady-state strain-rate and applied stress. These studies demonstrated clearly
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Fig. 6. Variation of instantaneous strain with applied load at — 40°C.
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Fig. 7. Temperature dependence of experimentally evaluated modulus compared with predicted modulus.
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that there are three distinct zones in the load-creep-rate spectrum. A steady state was never
reached for high stresses (above 1 MN m~2) so that efforts were concentrated mainly on
relating minimum creep rate to stress. In the intermediate range (0.1-1.0 MN m~—2) a steady
or quasi-steady state has been observed. A definite flow law for this regime has been agreed
upon (Glen, 1955; Steinemann, 1958; Voytkovskiy, 1960; Dillon and Andersland, 1967 ; Barnes
and others, 1971; Gold, 1973). This may be called the zone of general agreement or a
“no-conflict” zone. There are, however, controversies remaining concerning the mechanisms
which obtain at the lower end of the stress range.

Several investigators (Butkovich and Landauer, 1960; Meier, 1960; Mellor and Smith,
1967; Bromer and Kingery, 1968; Colbeck and Evans, 1969, 19733 Mellor and Testa, 1969)
have observed that creep rate changes from power law to a Newtonian viscous flow at low
stress. There had been earlier suggestions of a transition in the flow pattern somewhere
around 0.1 MN m~2. An effort will be made in the following paragraphs to use the proposed
viscoelastic relation to examine the early part of creep behaviour and its relation to stress,
time, and temperature.

CREEP RATE
Creep rate at any time ¢ after loading is given by differentiating Equation (2) with respect
to time
&7 = (cob|Et) (apt)? exp {— (art)t}+éy,|c|. (19)
The first term of Equation (13) is directly proportional to stress, whereas the second term
varies as the cubic power of stress. Moreover, the term which represents recovery creep

, &7
!

o
t

CREEP RATE, ¢

10*13
0.0001 0,001 0.01 0.1 L 10

STRESS, o, MN m’?

Fig. 8. Creep rate of S-2 ice in uniaxial compression against applied stress at — 10°C for several loading times. Curves are
calculated on the basis of proposed rheological relation.
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approaches zero asymptotically at infinite time. Thus, a quasi-steady state in the total creep
strain-rate would be attained in a shorter time with increasing stress. This state may not be
observed at low stresses, except for prolonged creep, provided the morphological changes in
the microstructure of ice do not alter the creep behaviour. Observed steady state would, in
any case, depend largely on the conditions and accuracy of measurements.

The computed stress dependence of strain-rate for a number of creep times is presented
in Figure 8. Calculations were made on the basis of Equation (13) and information given in
Equation (5). It may be seen from the graph that 15 min is considered sufficient (depending
on the accuracy of measurement) to reach a quasi-steady state with a load of 2 MN m~2 at
—10°C, whereas to reach about the same state with a load of 0.2 MN m-2 would take more
than a day.

The effect of temperature may be seen by translating the curves in Figure 8 along the
ordinate by the amount given by the shift function. Thus, for a load of 0.2 MN m~2 it would
take more than 130 d at —45°C to reach the same creep rate as can be reached in 1d at
—10°C. It will be shown that determining an assumed steady-state strain-rate from plotted
creep data might not be sufficient for low stress levels. An alternative method is suggested for
the treatment of experimental results.

EVALUATED STRESS EXPONENT

It is customary to determine the stress exponent for ice from the observed creep rate using
the power law relation first proposed by Glen (1955). Consider the following relation in which
& of Equation (13) is restated as

€7 = év:elalﬂe: (14)

where é;,. is a constant and subscript ¢ is used to distinguish values calculated in the normal
way from the ideal steady-state value; ne will be called the effective stress exponent. Equation
(14) can be re-arranged to give ne in terms of strain-rates and stresses,

ne = log (&71/&70) log (a,/ay), (15)

where g, is the base stress and o, applied stress. A graphical presentation of the variation of n,
as a function of time and stress is presented in Figure g. The solid curves shown correspond
to those in Figure 8. Calculations are based on 5, — 0.1 MN m-2.

5 30

n

EFFECTIVE STRESS EXPONENT,

1.0 il I L
0 0.5 1.0 1.5 2.0

. STRESS, MN m 2

Fig. g. Evaluated stress exponent of S-2 ice in uniaxial compression at — 16°C as a_function of stress for several loading times.
Solid curves are calculated on the basis of the proposed rheological model using 0.1 MN m~2 as the base stress level and the
broken line for base stress of 0.5 MN m—2.
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Experiments are usually performed in a narrow range of stress. It is conceivable that the
lowest stress would be chosen as the base stress for calculating the stress exponent, unless one
tried to fit a straight line to a log-log plot of stress versus strain-rate. Figure g (broken line)
illustrates the change in the effective stress exponent for 53 10%s when o, is changed to
0.5 MN m 2 from 0.1 MN m™=

A few observations should be made regarding the characteristics of ne. The effective stress
exponent would be a function of time for a given stress and temperature. It would be a
function of stress level, resulting in an “apparent” transition at low stresses, and would also
depend upon the choice of the base stress. These dependences would disappear as the steady
state is reached and ne approaches #. In fact, this suggests an alternative method of examining
the quality of the experimental results, provided the existence of a true steady state is real.

Gold (1965) studied the initial creep rate of S-2 ice between 6o s and 2 ¥ 10*s at —10°C
for stresses of from 0.4 to 1.4 MN m~2. This is the only study, to the author’s knowledge, of
initial creep in the intermediate stress range that can be compared directly with Figure 9.
Gold observed that creep, at a given time, for previously undeformed ice could be approxi-
mated by a power-law function. He found that the stress exponent increases from unity to
about 2.2 in the first 5% 103s and thereafter remains almost steady up to 2x10%s. This
agrees well with the prediction.

Experimental results of long-term creep-rate investigations (mentioned earlier) of the
flow law of polycrystalline ice show remarkable similarity to the curves in Figure 8. The
compilations of laboratory studies by Dillon and Andersland (1967), the separate compilations
for laboratory and field data shown by Langdon (1973), and recent compilations by
Roggensack (unpublished) and Shumskiy (1974) on both field and laboratory data (see also
the review by Hobbs, 1974) corroborate the convergence at high stresses and the time of
measurement-dependent flare in strain-rates obtained at low stresses (Fig. 10) which are
predicted by the present analysis. Figure 10 gives the bounds for calculated results and
realistic ranges of temperature, stress, and time.
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Fig. 1o. Zoneof strain-rate versus siress for S-2 ice between measuring times of 10*s and o0 _for a temperature range 0 lo — 20°C.
Caleulations are based on Equation (13) assuming no aclivation energy change near 0°C.
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It is also worth noting that previous observations (Glen, 1955; Steinemann, 1958;
Voytkovskiy, 1960; Dillon and Andersland, 1967; Barnes and others, 1971; Gold, 1973) are
more or less consistent with each other in the intermediate stress range for which a quasi-
steady state occurs in a reasonable length of time. Agreement could, in fact, be predicted by
the convergence of various curves of widely separated time and temperature ranges in Figures
8 and r1o. That different workers obtained a stress exponent of about 3 in this stress range
indicates that the choice of the exponent in Equation (2) may not be far from reality.

Internal crack formation at high stresses (Gold, unpublished) and dynamic recrystalli-
zation at still higher stresses (Barnes and others, 1971) influence creep rate. The present model
is not valid at higher stresses unless the third term in Equation (2) is modified.

Creep data at low stresses need further analysis in examining the applicability of the
proposed rheological model. Butkovich and Landauer (1960) observed the stress exponent
to be between 0.86 and 1.15 in the stress range of 0.002 to 0.02 MN m~2. Colbeck and Evans
(1969) found the power to be 1.9 over a range of stresses 0.01 to 0.1 MN m-2. Mellor and
‘Lesta (1969) observed the stress exponent to be 1.8 in the range from 0.009 to 0.04 MN m~2,
Colbeck and Evans (1973) noticed that their results fitted a power of 1.3 at stresses ranging
from 0.006 to 0.1 MN m~2. Thus there are a variety of stress exponents at low stresses. But
these discrepancies are to be expected, according to Figures 8 and 9, if creep times are short
in comparison with the time required to reach a steady state. The experimental results
probably reflect inadequate time of loading and inaccuracy of measurements; this has been
suggested by Weertman (1969, 1973).

Some direct support of this hypothesis comes from Thomas (1973), who extended the
power law with the stress exponent of about 3 to the stress range 0.04 to 0.1 MN m~—2, Thomas
based this extension of the generalized flow law on his interpretation of the available data on
ice-shelf deformation. Although his results support the present hypothesis, they do not fully
clarify the reported discrepancies because the ice shelves studied had average temperatures of
—6 to —16°C, whereas some of the laboratory creep data were obtained at temperatures
Just below 0°C. An indirect approach, although not fully convincing, lends some support to
the hypothesis.

Meier (1960) has suggested that the appropriate flow law for stresses less than about
0.05 MN m~2 is a two-term equation given by

és = Ao+ Bon. (16)

Here, 4 and B are constants and n is about 4.5. A similar relation was tried by Butkovich and
Landauer (1960), who assumed 7 to be 3. Mellor and Smith (1967) also described their creep
data in the form of Equation (16) with n = 3.5.

It is of considerable interest that Equation (16) bears a close resemblance to Equation (13),
which also contains a linear stress-dependent term. If ¢ in Equation (13) is fixed at some
convenient value, then the two equations are identical.

Lliboutry (1969) proposed a polynomial relation of the type

és = Ao+ Bo3-}-Cas, (17)

this is an extension of Equation (16). Colbeck and Evans (1973) used Equation (17) to fit
their experimental data, which are rather scattered. Nonetheless, they found that

€ = 0.216-4-0.146%-}0.05545 (18)

satisfied their experimental results in the range of stress from 0.006 to 0.1 MN m-2.

It may be seen that the first term of Equation (18) is the major contributor to strain-rate
in the low stress range. This is exactly the same situation as for the first term of Equation (13)
in relation to the second term during the first part of the deformation.

https://doi.org/10.3189/5002214300003361X Published online by Cambridge University Press


https://doi.org/10.3189/S002214300003361X

470 JOURNAL OF GLACGIOLOGY

DiscussioN

The technique (Sinha, 1978) developed for observing the microstructure of ice shows that
grain-boundary sliding is the major contributor to strain during early creep. Preliminary
investigations indicate that delayed elasticity is primarily controlled by sliding and resistance
to sliding brought about by the interaction between grain boundaries, accommodation at
triple points, and grain deformation and re-arrangement. Microstructure observations of
deformed ice showed the formation of jogs or steps in the grain boundaries, development of
small-angle boundaries, vein-like and cellular structures due to basal and non-basal disloca-
tions, and the pile-up of basal dislocations against grain boundaries and internal grain
obstructions. The deformation process is further complicated by the initiation of fracture at
jogs in the grain boundaries and at triple points. The formation of these microstructural
features depends on stress, temperature, and time, and these structural changes cause changes
in the macroscopic flow properties.

The rheological relationship proposed here was developed primarily to relate the total
deformation to the measurable elastic, recoverable, and permanent deformation, and its
representation, given in Equation (2), was the result of both necessity and desired convenience.
Observations indicate that the contribution of delayed elasticity to the total strain, however,
depends on microstructure, crystallographic orientation, and previous strain history. Equation
(2) provides a reasonable method for analysing the measurements of deformation behaviour
and the results presented here indicate its general applicability.

Analysis suggests that there is continuity of behaviour in spite of the fact that previous
investigations sometimes appear to be inconsistent, if not irrational. Analysis has further
confirmed that the near-linear relation observed between creep rate and stress at low stresses
may be due to measurements being made in the transient region. If this hypothesis is correct,
then the permanent creep strain that remains after complete relaxation following prolonged
creep could be used to calculate the average strain-rate for the steady-state flow condition.
This method was used by the author on 8-2 ice in the intermediate stress range and the results
agree well with those of Gold (1973) on the same type of ice. Available data obtained at low
stresses show creep but not recovery, and this makes it difficult to judge the validity of the
proposed method of analysis for this condition.

CONCLUSION

A clear distinction has been made between the Young’s modulus of ice, which can be
measured only at high frequencies, and the effective modulus, which is determined by static
methods. The effective modulus represents a combination of truly elastic (recoverable) and
mixed viscoelastic response that depends upon load, time, and temperature.

There is a limited period after loading during which ice can be considered to be an elastic
material, irrespective of its temperature. For S-2 ice loaded perpendicular to the columns,
this time is found to be about 1 s for loads up to 2 MN m~2 and about 20's for stresses less
than 0.5 MN m2. Analysis shows that the effective modulus will decrease with increased
temperature and stress level, although the magnitude of its variation will depend upon
experimental conditions.

There is a strong indication that the failure of previous investigators to observe power-law
creep reported at low stresses could be the result of either inaccurate measurement or ter-
minating the tests too early. A reported stress dependence which is nearly lincar at low
stresses and an associated increase in the stress exponent with stress are both consistent with
the rheological model now introduced. The proposed relation to describe this model (Equaticn
(2)) seems to be consistent with the observed behaviour of ice, and its first derivative (Equation
(13)) seems appropriate to describe creep-rate.
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DISCUSSION

D. TaBor: As I understand it, this paper applies the ideas of polymer rheology to the flow of
ice. In polymers there are two very distinct mechanisms responsible for the elastic deforma-
tion of the polymer chains. But with a crystalline material such as ice I do not see how there
can be the equivalent of a relaxed and non-relaxed elastic modulus. Could the author explain
the physical basis for these two elastic moduli?

N. K. Sinua: Creep of polyerystalline ice is a part of a larger field of study—creep of materials.
The ideas applied here brings the analysis of the transient creep in line with the larger subject
of rheology of materials, and the physical bases of this model are similar to what has been
developed to explain the rheology of other polycrystalline materials. It is hoped that our
further studies of simultaneous deformation and microstructure will lead us to a clear explana-
tion of the various mechanisms.

R. W. Baker: What was the average crystal size used in your tests on columnar-grained ice?
Also you mentioned in your talk that you made studies of the microstructure after testing
samples. Did you find any microstructural evidence for diffusional creep in your studies?

SinHA : The average grain size (cross-sectional) of the columnar grained specimens tested was
about 3 mm in diameter. Examination of the microstructure after deformation, by the
etching and replicating technique developed, showed extreme grain-boundary migration
when the load was small (less than 0.5 MN m~2) without any pile-up for creep strains of
about 10-2. It appears that the deformation of the grain boundaries are related to slip in the
neighbouring grains and some sort of diffusional accommodation processes in these regions.
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P. DuvaL: Have you verified over long time periods that the recovery creep represents the
whole transient creep? I am thinking about the Andrade creep found in granular ices.

Smvaa: The rheological model presented was developed mainly by examining the recorded
creep and recovery curves for several loading times at various loads and temperatures. The
transient creep in this model represents the recoverable creep. The experiments were, how-
ever, not conducted for very long times—say, days or so. The morphological changes in
microstructure (we are beginning to see, after long times, creep conditions) are expected to
have profound influence on the recoverable amount of the creep. This is precisely what we are
examining now and I hope we will be able to understand the phenomena better in the near

future.
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