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ON THE EQUATION x' +y*=]]n/!
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Abstract. In this note we investigate the diophantine equation
X'yt = l_[nl-!

where x and y are odd and greater than 1. We prove that this equation has no inte-
ger solutions.
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0. Introduction. We study the diophantine equation
Xty = l—[”i!’ (1)

when x and y are odd. The case xy even is less interesting since then both x and y are
even and the terms x” and y* have a large greatest common divisor.

The main tool of our study is a result on linear forms in two 2—adic logarithms,
due to M. Laurent and Y. Bugeaud. This result enables us to show that equation (1)
has only a finite number of solutions. More precisely, we first get reasonable bounds
on x and y and then we have to “fill the gap”.

To solve the remaining computational problem was not at all trivial. For this
purpose, the elementary Proposition 1 below played an essential role in the sense
that it replaced a problem of quadratic cost by one of linear cost. Thus, the ver-
ification took a reasonable time.

Before proving Proposition 1 and using linear forms in 2—adic logarithms, we
gather a few elementary facts on factorials.

1. Preliminary results.

LEMMA 1. For each positive integer n and any prime number p, we have

n log(n+1)
p—1 logp

n
< vy(n!) SPTI-

Proof. See [1, Lemma 1].
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COROLLARY 1. For each positive integer n > 2, we have

<wn(n) <n.

wl:

Proof. Notice first that the function xi— log(y“) is non-increasing for x > 2.
Then, by Lemma 1| above, we see that the result is certainly true for n > 3. The
inequalities claimed are obvious for n = 2.

LEMMA 2. Suppose that x and y are rational integers with 1 < x < y. Let
h =y — x. Then, for x =2 one has

Y- =2(1-(27) > L2 for y=5,
while for x > 3 one has
X =yt > xy(l — (e/x)h).

Proof. For x = 2, the result follows from the fact that the function yi—y27/? is
non-increasing for y > 3. For x > 3, we have

¥ = yx — xy(l _ x—h(y/x)x)
and
(v/x)* = exp(xlog(l + h/x)) <e

LeEmMA 3. For any rational integer n > 2, we have
3.69(n/e)" < n! <3.77(n/2.5)"

and

n! < 2.83(n/e)" Y when n > 6.

Proof. We prove only the first two inequalities. The proof of the last one is
similar. The proof follows from Stirling’s formula

n! = ~2mn e’ (n/e)" with 0 <6 < 1/6.

More precisely, the left inequality is a direct implication of this formula (for n > 3
and it can be directly verified for n = 2) while the right inequality is implied by it for
n > 8 and an elementary verification can be used for the remaining values of n. One
may notice that the minimum of the constant appearing on the left is reached for
n = 2, while the maximum of the constant appearing on the right is obtained for
n==6.

PROPOSITION 1. Let a and b be odd integers and let n > 1. Then, the equation
ax’ + by* = 0 (mod 2") with x and y odd in Z/2"Z has exactly 2"~" solutions.
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Proof. We proceed by induction on n. When n = 1, the result is trivial.

Suppose that the result is true for some n > 1 and consider an odd solution
(x, y) of the equation ax” + by* = 0 (mod 2"). Let us search for the solutions (x', y")
(mod 2"y with X’ = x (mod 2") and y' = y (mod 2"). Equivalently, X' = x + af and
¥ =y + Bt with o, B €{0,1} and ¢t = 2" = p(2"*"). From Euler’s theorem and from
the fact that both x and y are odd, it follows that

ax” + by = ax” + by’ (mod 2",
It now follows, by the binomial formula, that

ax” + by = a(x + at) + b(y + )" = ax’ + by* + txy(aozxy’2 + b,Byx’Z)
= ax’ + by + t(ac + bB) (mod 2"*1).

If we put ax” 4+ by* = ut, we then get the congruence

u+aa+ b =0 (mod2)

which has, obviously, exactly two solutions.

COROLLARY 2. Let n > 1. Then the equation x’ — y* =0 (mod 2") with x and y
odd in Z/2"Z has only the solutions (x, x) with x odd in 7/2"Z.

Proof. The 2"~! pairs (x, x) are trivial solutions and, since the number of solu-
tions is exactly 2"~!, it follows that there can be no other ones.

REMARKS.

(1) The above proposition (as well as its corollary) is true for some other mod-
uli. For example, it is true modulo 3 - 2" when x and y are subject to the condition
ged(xy, 6) = 1.

(2) The proof of Proposition 1 can be adapted to imply the following stronger
result: Let a and b be odd integers and let ¢ be an even integer. Then, for any positive
integer n, the equation ax” + by* = ¢ (mod 2") with x and y odd in Z/2"Z has exactly
2"=1 solutions.

2. Application of 2-adic linear forms in two logarithms. Suppose that for two odd
integers x and y with y > x > 1 we have

k
A=x"+y"' = :I:l_[ni!.
i=1

From equation (1) and Lemma 1, we get that vo(x” £ »¥) > N/3, where N =) n,.
We now apply [1, Theorem 1]. With their notations, we have

p:27 D:g:g:[:l, VP(A)EN/(?

and
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=y, ow=x, b =x b=y
We take

A]:y, AQZX.

From [1, formula (2)], we have

vy(A) < 2(KL —1/2) = 2KL — 1 )
whenever K > 3 and L > 2 are integers such that

KL
2K(L — 1)log2 > 3log(KL) + (K — 1)logh + 2L(5 - ﬁ)(Rlogy + Slogx) (3)

where

a

b=

(R—=1Dy+(S—Dx 7, &KL
s ([1#)

1

k

and R and S are two positive integers such that K, L, R, S satisfy [1, inequalities (1)].
We distinguish two cases.

Case 1. x and y are multiplicatively independent.
We employ the method described in [1, Section 5.1]. Let

logy p _ logx
log2” “? " log2’

a) =

We choose K = |kLajay| + 1 where k is a positive parameter. From [1, Lemma 13],
we know that

by b 1 1+ vk
logh < log( 21 +22) — Ztogh — log2+ L log LT VE=DVE )
a  a 2 k—1
Using [1, Lemma 12], one may easily show that inequality (3) holds whenever
2
KL(L — Dayas >3log(kL ajay + L)  kLayaylogh 1\/%L2a1a2
2log?2 2log?2 (5)
2L3/24 fava;  L(a) + ap)
+ + :
3
(see [3] for detailed proof of the fact that inequality (5) implies inequality (3)).
In conclusion, from inequality (2), it follows that
N <3Q|kLajay]L+2L —1) (6)

whenever k and L are such that inequalities (4) and (5) are satisfied.
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From an elementary argument and from Lemma 3, we get

[ [t < M < 2.83(WN/e) M.

Moreover, it follows, by Lemma 2, that 4| > x*(1 — (¢/3)?). Hence, x* < 5.59 - |4]
and

(N+1)
- log(15.82 (N/e) )

()

log x

We first use the above inequality and [2, Corollary 3] to get a rough upper bound on
y, namely y < 107. We then refine this estimate by using the full machinery of [2,
Theorem 1] to obtain

y <3-10°.

More precisely, we choose suitable values of k €[0.8, 1.2] and L € {25, 26, 27, 28}
and we solve inequalities (4), (5), (6) and (7).

Case 2. x and y are not multiplicatively independent.

Write x* = y” for some coprime positive integers a and b. At least one of the
integers a and b, say a, is odd. Now computing the order at which 2 appears in 4 is
the same as computing the order at which 2 appears in

(xy)a + (yx)a — (xa)y :tyax — yby :tyax — Z(ye(byfax) + 1)’

where z = y* or z = —y" according to whether € = 1 or € = —1. It follows that

2(4) < max(va(y + 1), v2(y — 1)) + va(Jax — byl)
< logy(y + 1) + logy(y) + logy(max(a, b)).

It now suffices to notice that max(a, b) is precisely the largest exponent at which
some prime number appears in the prime factor decomposition of either x or y. In
particular, max(a, b) < log;(y). Hence,

v2(4) < logy(y + 1) + logy(y) + logy(logs () < 3logy (v + 1).

It follows, by Corollary 1, that N < 9log,(y 4+ 1). Combining this last inequality
with inequality (7) we get y < 211.

3. The computer verification.
(1) The “+ case.
We first consider the equation

X’ +y* = 0 (mod 2)

when x and y are odd, 1 <x <y <3-10° and k is a large enough integer. More
precisely, we used the algorithm described in the proof of Proposition 1 to write a
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C-program which verified, in about 40 minutes, that there are only 3982 pairs (x, y)
with x and y odd, 1 < x < y < 3 - 10° which verify the above congruence for k = 30.
Then, a second program—written in Pari—proved in a few minutes that all these pairs
satisfy x¥ + ¥ # 0 (mod 2*). These computations prove the following proposition.

PROPOSITION 2%, Let x, y be odd integers, 1 < x <y < 3-10°. Then

X’ 4 ¥ £ 0 (mod 24).

From the bound N < 3 - vy(A), we saw that N < 117. This implied x < 117!; hence,
¥ <403. We ran again our C-program which told us that in this range v,(A) < 17.
We now got N <51 and y < 138. A second application of the C-program gave
v2(A) < 14, which implied that ¥ <42 and y < 107. A third application of the C-
program gave v,(A) < 13, which implied that N < 39 and y < 97. A fourth applica-
tion of the C-program gave v,(A4) < 10, which implied N < 39 and y < 75. Finally,
we considered all the pairs (x, y) with x and y odd and 1 <x <y <75 and we
computed P(x’ + y*) where P(k) denotes the largest prime factor of k. It happens
that, in this range, P(x” + »*) > 239 (thus x¥ + y* cannot be a product of factorials
because P(J]n!) < P(N!) < N < 39), except for the pair (x, y) = (3, 9). However, this
last pair gives x¥ + y¥ = 22 x 3% x 7 which is, certainly, not a product of factorials.

(2) The “—" case.
We now consider the equation

X’ —y* =0 (mod 2%).

In this case, thanks to the Corollary of Proposition 1, we need no computation and
we get at once the following result.

PROPOSITION 27. Let x, y be odd integers, 1 <x <y <3- 10%. Then

x’ —y* %0 (mod 2?%).

By an argument similar to the one employed in the “+” case, we get N < 3 x 21.
Thus, y < |log(5.59 - 63!)/log 3| = 184. Now the Corollary of Proposition 1 implies
X’ —y¥ £ 0 (mod2%). Hence, N <21 and y <42. A further application of this
argument gives N < 15 and y < 27. Then, a trivial verification achieves the goal:
except for the pair (x, y) = (3, 9) we have P(x’ — y*) > 24 whenever x and y are odd
and 1 < x <y < 27. Since 3° — 9% =2 x 3% x 13 it follows, as in the previous case,
that this number is not a product of factorials.

(3) Conclusion.
The above arguments prove the following result.

THEOREM. The diophantine equation
Xty = :I:l_[n;!

has no odd solutions x and y with min(x, y) > 1.
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