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Abstract

Gas furnaces are the prevalent heating systems in Europe, but efforts to decarbonize the energy sector advocate for
their replacement with heat pumps. However, this transition poses challenges for power grids due to increased
electricity consumption. Estimating this consumption relies on the seasonal performance factor (SPF) of heat pumps,
ametric that is complex tomodel and hard tomeasure accurately.We propose using an unpaired dataset of smart meter
data at the building level to model the heat consumption and the SPF. We compare the distributions of the annual gas
and heat pump electricity consumption by applying either the Jensen–Shannon Divergence or the Kolmogorov–
Smirnov test. Through evaluation of a real-world dataset, we prove the ability of the methodology to predict the
electricity consumption of future heat pumps replacing existing gas furnaces with a focus on single- and two-family
buildings. Our results indicate anticipated SPFs ranging between 2.8 and 3.4, based on the Kolmogorov–Smirnov
test. However, it is essential to note that the analysis reveals challenges associated with interpreting results when there
are single-sided shifts in the input data, such as those induced by external factors like the European gas crisis in 2022.
In summary, this extended version of a conference paper shows the viability of utilizing smart meter data to model
heat consumption and seasonal performance factor for future retrofitted heat pumps.

Impact Statement

Reducing carbon emissions in residential heating is a major concern until the mid-21st century. To estimate the
annual electricity consumption of future retrofitted heat pumps that replace gas furnaces, we need to know the
expected seasonal performance of these heat pumps.With the availability of more andmore smart meter data, we
propose and evaluate a new method to estimate the seasonal performance of future heat pumps. This method
involves converting current annual heat consumption measures, based on annual gas consumption, to the
electricity consumption that a retrofitted heat pump would require. The novelty of this method is the use of
either the Jensen–Shannon Divergence (JSD) as an instance of a distance measure or the Kolmogorov–Smirnov
(KS) test as an instance of a statistical test on an unpaired dataset of annual gas and heat pump electricity
consumption values.

1. Introduction

In the following years, the number of installed heat pumps in the residential sector is expected to increase
strongly, replacing existing gas furnaces, especially in Europe, in order to decarbonize the building sector
(Rosenow et al., 2022). The European Union (EU) pursues this goal politically with vigor (European
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Parliament, 2023). For instance, Germany aims to reach net climate neutrality by 2045, where heat pumps
will be themain driver in the decarbonization of the residential heat sector (FederalMinistry for Economic
Affairs and Climate Action (BMWK), 2022). As highlighted, for example, byWatson et al. (2023), these
new heat pumps will substantially increase the electricity demand. This increased demand puts additional
stress on all levels of the electricity system, including the distribution networks, causing voltage drops or
overloads in the substations (Alpízar-Castillo et al., 2023). Thus, utility companies need to predict the
impact of these retrofitted heat pumps on their distribution grids. Based on this prediction, possible grid
bottlenecks and overloads can be identified at an early stage. As a result, grid expansion can be carried out
early and in a targeted manner.

For the analysis of the effect of new heat pumps either on the building level or on the distribution grid
level, utility operators need to know the heat consumption over a given period of time, and they need an
assumption on the average efficiency of heat pumps in their supplied city. In this context, the most
important metric is the (heating) seasonal performance factor (SPF). It is the amount of heat produced by a
heat pump in a given year divided by the required electricity consumption. Existing analyses show that the
SPF depends on the typical climatic conditions of a given city (Nouvel et al., 2015; Rossi di Schio et al.,
2021) and changes from year to year due to varying weather conditions (Huchtemann and Müller, 2012).
Knowing the SPF for an average heat pump in a given year allows for quick calculation of the electricity
required by a heat pump to heat a building based on its annual heat consumption. However, measuring the
SPF of existing heat pump installations is costly and effortful, for example, due to the installation of an
additional heat meter in the heating circuit (Kelly and Cockroft, 2011). Moreover, the widely deployed
electricity smart meters can only meter the electricity consumption of a heat pump, ignoring the heat
output. On the other hand, the amount of gas consumed by a building can simply be converted to the heat
consumption on the building level, assuming furnace efficiency and the gas heating value. Therefore,
while smart meter data on heat pump electricity and gas consumption are readily available nowadays, the
actual heat produced by heat pumps remains unknown.

In this article, we propose a novel method for estimating the average SPF of existing heat pumps on an
annual level by utilizing two unpaired datasets—the heat pump electricity and the gas consumption smart
meter data across all residential single- and two-family buildings in a city.We aim to find the average SPF
value that maximizes the similarity between these two datasets. However, the challenge lies in the fact that
these two datasets are not paired, as each building has only one heating system, either a heat pump or a gas
furnace. Therefore, we need to determine if it is possible to find at least one SPF value where both
distributions are similar in a statistically significant way.

In detail, we answer the following research questions in this paper:

1. How can we predict the mean SPF over all existing heat pump installations based on an unpaired
heat pump electricity and gas consumption dataset using either the Jensen–Shannon Divergence
(JSD) or the Kolmogorov–Smirnov (KS) test?

2. Which of the estimated SPF values result in a significant similarity of the given distributions using
the KS test?

3. How much electricity would be consumed by heat pumps that replace existing gas furnaces based
on the previously estimated SPF?

In order to address these research questions, we present a novel approach using either the JSD or the KS
test to compare the heat pump electricity and gas furnace consumption distributions. Amajor contribution
of the work is that the validity of the assumptions is also justified with the help of the KS test, which
provides a statement about the statistical significance of the similarity of the two distributions.

The estimated SPF values can serve as a basis for estimating the future heat pump electricity
consumption in order to analyze their effect on the local distribution grid. In contrast to existing works
that must rely on assumptions about the actual SPF that are not aligned to existing data or weather
realizations like Lechowicz et al. (2023) or Damianakis et al. (2023), our work can be used to simulate the
heat pump retrofit in a given city where such data is available for multiple, recently past years. Thus, the
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variance in the SPF over different years caused by different weather realizations can be estimated
properly.

The subsequent parts of this paper have the following structure. First, we will discuss the additions in
this publication, which is an adapted version of a conference paper. Thereupon, we present related work
dealing with similar research questions in Section 2. We follow with details on our methodology in
Section 3 and present the results in Section 4. Subsequently, we discuss these results in Section 5,
highlighting both the advantages and the limitations of this novel approach. Finally, we conclude the
paper in Section 6.

Adaptations of the original conference paper

This paper is an extended version of Bayer and Pruckner (2023b) published in the Proceedings of the 10th
ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. In
this version, we extend the existing methodology of estimating the SPF by using the KS test to get a
statistical confidence interval for the estimated SPF values. Moreover, we include the data from 2022 into
our analysis, showing a limitation of the presented methodology. The different methods for the data-
driven estimation of the SPF are discussed at the end of the paper.

2. Related Work

Realmeasured gas consumption data is used byKolter and Ferreira (2011) to predict and visualize the heat
demand on the building level. Ko (2013) also utilizes heat data measured on the building level to provide
an statistical analysis of heat and energy usage in the urban sector, including an overview of techniques for
modeling urban energy usage. When hourly heat demand data for a building is available alongside
weather data, the model proposed by Lumbreras et al. (2022) can be employed for long-term, hourly heat
demand predictions.

Several models exist that estimate either the Coefficient of Performance (COP) (Shin and Cho, 2021;
Priarone et al., 2020) or the SPF (Nouvel et al., 2015) based on theoretical computations or laboratory
measures. In the latter, for instance, the authors present a model for estimating the SPF of a highly
simplified sample building located in various regions of Europe, illustrating how location-specific
climatic conditions can affect the SPF. This variation in SPF across different regions is also investigated
by Rossi di Schio et al. (2021), who demonstrate that air-source heat pumps experience changes in
performance due to the varying number of defrosting cycles required in different climates. Meanwhile,
field studies on the electricity consumption and SPF of real-world heat pump installations, such as those
by Huchtemann and Müller (2012), Miara et al. (2014) or Ruschenburg et al. (2014), reveal notable
differences in the SPF from the theoretical computed values. Finally, Carroll et al. (2020) provide a
detailed review of field studies on air-source heat pump efficiencies, highlighting notable variations in the
resulting SPF values depending on the region under consideration.

Given that the SPF is heavily influenced by both the geographic location and the specific year due to
weather fluctuations, and real-world SPF values often differ notably from theoretical calculations, an
accurate estimation of the SPF is crucial for effective energy planning. Computing the SPF in a field trial
requires metering the actual heat produced by a heat pump, which can be labor-intensive and costly.
Therefore, using smart meter data to estimate the SPF appears to be a promising approach for computing
average SPF values at the city level, especially since the SPF can differ from one region to another, as
mentioned in the previous paragraph. So far, only a few recent works have used real gas consumption data,
assuming these gas furnaces should be replaced by heat pumps. For example, Lechowicz et al. (2023) use
gas consumption data of a city to compute the residential energy demand on a household level using an
assumed COP. They focus on selecting regions of the city where heat pumps should replace all existing
gas furnaces to save maintenance costs at the gas grid level. Wamburu et al. (2022) present an analysis of
gas consumption in a residential area based on real data. Additionally, they propose an optimization
framework for reducing carbon dioxide emissions. Also, other publications focusing on the effects of a
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heat pump retrofit use assumed values for the COP or SPF that are not aligned to the concrete weather
conditions of a year like Walker et al. (2022) or Jenkins et al. (2009). The disadvantage of using SPF
values that are not aligned with the actual weather conditions occurs in cold winter. There, the actual
performance is overestimated, leading to an underestimation of the required electricity consumption of the
heat pumps (Petrović and Karlsson, 2016). Thus, the estimation of the SPF that is aligned with the actual
annual weather and consumption behavior patterns is an important topic.

Contribution of this work

Up to now, existing gas consumption data has not yet been combined with heat pump electricity
consumption data to estimate the performance of current heat pump installations and assess the impact
of heat pump retrofits in future energy system states. As heat pumps become increasingly popular, a data-
driven approach for estimating their performance offers a promising avenue to foster the analysis of the
potential effects of widespread heat pump retrofits. However, direct metering of the individual heat pump
performance remains effortful, further emphasizing the need for efficient data-driven estimationmethods.
In this publication, we present the estimation of the seasonal performance of retrofitted heat pumps
replacing existing gas furnaces based on an unpaired dataset of annual heat pump electricity and natural
gas consumption within the same city and building class. We, therefore, propose two different methods to
determine the SPF at which both distributions are most similar. Both methods are based on well-known
statistical metrics.

The novelty of this work is that the selected statistical metrics have not yet been used for the analysis of
two unpaired datasets on building heat consumption. Additionally, the methods involve additional
methodological advancements. A distinct approach was developed around each applied test and utilized
metric, particularly the JSD and KS tests. This encompasses the addition of a smoothing process and the
minimization of the KS-test metric, which is not commonly done. This customized methodology
enhances the accuracy and reliability of estimating the SPF, thereby providing a more robust analysis
of heat pump performance in retrofitted systems.

COP and SPF: Measurement and calculation scope

Whereas the COP typically measures the heating power produced by a heat pump at a given moment in
time, the SPF measures the thermal energy, i.e., the heat, produced by a heat pump over a year divided by
the electricity required to operate the heat pump (Hailu, 2021). The COP is ameasure of the efficiency of a
heat pump measured in a laboratory environment. The SPF, on the other hand, evaluates the actual
physical work performed by a heat pump in a year. Gleeson and Lowe (2013) report different definitions
of the SPF, depending on the scope of the measurement. As in most of the publications, we include the
complete electricity consumption of a heat pump, especially including the reheat coil, for the SPF
calculation. As a COP model typically does not include additional components like reheat coils, the
conversion of a model-based COP time series to an annual SPF value is not directly possible.

3. Methodology

LetHGas be the set of buildings with existing gas furnaces that should be replaced by heat pumps andHHP

be the set of buildings with already existing heat pumps. Based on the existing gas consumption data of
year j, we can compute the thermal energyQj hð Þ produced by a gas furnace in a building h∈HGas similar
to Lechowicz et al. (2023) using

Qj hð Þ=Rj hð Þ � z � ν �ηg (1)

where Rj hð Þ is the volume of gas consumed in year j, z is the pressure factor, ν is the heating value of the
gas, and ηg is the efficiency of the gas furnace. In this paper, we expect that the heat consumption follows
the heat demand.
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The heat consumption of a building is highly dependent on its individual insulation level. The insulation
level between gas and heat pump heated buildingsmight be different, due to two reasons. Firstly, it is possible
that a building’s insulation level will be improved if a gas furnace is replaced by a heat pump, as it is reported
in a field trial byKelly andCockroft (2011). Secondly, new buildings are generally better insulated than older
buildings. However, it can be assumed that gas heating systems tend to be installed in older buildings, as heat
pumps have started to becomewidespread in private buildings in the last decade. Therefore, we introduce the
parameter γ hð Þ, which denotes the heat demand reduction that goes along with the replacement of the gas
furnace in building h∈HGas. The heat consumption QΔ

j hð Þ after the retrofit is thus given by
QΔ

j hð Þ =Qj hð Þ � 1� γ hð Þð Þ (2)

According toHailu (2021),we define the SPFof a heat pump installed in buildingh∈HHP in the year j as

SPFj hð Þ= QHP
j hð Þ
Ej hð Þ (3)

denotes the heat (i.e., thermal energy) produced by this heat pump in year j. We note that the considered
heat pumps produce domestic hot water (but no cooling loads) during summer in our considered location.

The first assumption for this methodology is that the annual heat consumption of a building currently
heated by a gas furnace does not change upon a heat pump retrofit except for contemporaneous building
insulation retrofits, i.e.,QΔ

j hð Þ=QHP
j hð Þ. We will discuss on this assumption in Section 5.2. Thus, we can

compute the electrical energy that a retrofitted heat pump in building h∈HGas would consume by
combining Equations (1), (2), and (3):

Ej hð Þ=Qj hð Þ � 1� γ hð Þ
SPFj hð Þ|fflfflfflffl{zfflfflfflffl}
≕ B�1

j hð Þ

(4)

As mentioned in the Section 1, measuring the heat produced by a heat pump can be very challenging.
Nevertheless, the electricity consumption of an existing heat pump can be metered much more quickly if a
separate smart meter is installed. As a result, calculating the SPF for individual buildings becomes
impossible without dedicated meters to measure the annual heat output of their heat pumps. However, as
we have data on the electricity consumption of heat pumps on one hand and, on the other, data on the annual
heat consumption of buildings from the same class from gas smart meter data, we compute the average SPF
in the following by shifting our focus from the individual building level to all buildings. In the further course,
the distribution of the annual heat consumption over all single- and two-family buildings might be denoted
as Qj. The heat consumption distribution of those only heated by a heat pump is denoted as QHP

j , with
QHP

j ⊂Qj, and those only heated by a gas furnace are denoted by QGas
j , with QGas

j ⊂Qj.
Over the complete building stock of a city, the individual annual heat consumption values typically

show a high degree of variation, as the annual heat consumption of a residential building depends on
multiple, often hidden parameters (Lim and Zhai, 2017). The most important parameters are as follows:

• the weather conditions,
• the building size (Kolter and Ferreira, 2011),
• the household size and income (Sardianou, 2008),
• the user behavior and their preferred temperature (Delzendeh et al., 2017),
• misconfigurations of the heating system (Weigert et al., 2022), and
• the insulation standard.

This leads to a broad distribution of the actual heat consumption over the complete residential building
stock in a given city (see for example Figure 1). Even though early publications reported less impact of the
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insulation on the building heat consumption, especially in the case of an increase of the insulation level
during a retrofit (Capper and Scott, 1982), more recent approaches report notable impacts dependent on
the climatic conditions (Pan et al., 2012).

Themain idea of this work is to assume that the influence exerted by the above-listed parameters on the
annual heat consumption of an individual building is independent of the specific heating system type. This
assumption implies a uniform impact of these factors on energy consumption, regardless of the underlying
heating system. In other words, the distribution of the annual heat consumption over all buildings heated
with gas furnacesQGas

j and heatedwith heat pumpsQHP
j is assumed to be drawn from the same underlying

distribution Qj of all heat consumptions that only depends on the above-listed parameters but is
independent of the heating system type, i.e.,

∀j∈ J : Qj �QHP
j �QGas

j (5)

where J denotes the set of considered years and the tilde denotes the equality of two distributions.We note
that we only consider heat pumps and gas furnaces as heating systems in this paper. Nevertheless, themain
assumption does not imply that the above-listed parameters would not have any impact on the residential
heat consumption or the efficiency of heat pumps itself. As reported in relatedworks likeHuchtemann and
Müller (2012), the concrete weather conditions in a given year impact the seasonal performance of heat
pumps notably. Since the other parameters mentioned above that affect heat consumption in residential
buildings do not change frequently between years for a given building, it can be assumed that the main
cause of varying heat pump performance is the changing weather conditions.

Let us further assume that the SPF divided by 1� γ hð Þ (i.e., B�1
j hð Þ in Eq. (4)) is independent of the

actual heat consumption Qj hð Þ of an arbitrary building h. Finally, it can be assumed that the influence of
the weather on the SPF affects all heat pumps equally. This implies that QHP

j =Ej �Bj holds with Ej

denoting the distribution of the metered annual heat pump electricity consumption and Bj denotes the
average value of Bj hð Þ overall existing heat pumps in year j with Bj only influenced by the changing
weather conditions. Then, Eq. (6) follows from Eq. (5) for the distributions computed over the obtained
dataset:

∀j∈ J : QHP
j =Ej �Bj �QGas

j (6)

Obtaining statistically significant similarities between Ej �Bj and QGas
j for at least one Bj for every

considered year j provides evidence of the assumptions’ validity (see Section 4 and Table 1).

Figure 1.Histogram of the annual gas (orange) and heat pump electricity consumption (green) from our
dataset in 2020 in the upper row. Lower row: The scatter plot of the annual consumption values across all
single- and two-family buildings plotted against the corresponding building size. The solid black line is

the result of the linear regression.
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3.1. Find optimal B

To get the value of Bwhere both distributions of Eq. (6) overlap best, we propose two different methods.
First, we select the value for Bj minimizing the JSD between the two distributions Ej �Bj andQGas

j . In the
second step, we use the KS test statistic to find the value ofBj where both distributions are most similar. In
both methods, we calculate the statistics over a predefined and sufficiently large discrete set of values for
Bj, within which we assume the minimum value is located. If the minimum value is not included in this
predefined discrete set, we would notice that the minimum value is either at the lower or upper boundary
of the set, indicating that the range for exploration was chosen too narrowly.

We explicitly note that this minimization should be applied for every year j individually, as the SPF can
differ in different years. Suppose we add an assumption about the mean reduced heat demand γ hð Þ over all
buildings with a heat pump h∈HHP, e.g., based on a heat cadaster. In this case, we can directly estimate
the mean SPF over all existing heat pumps. We validate our approach by comparing our results to field
trials for SPF computation.

3.1.1. Find B minimizing the distance using the JSD
The first approach to find the B∗

j where both distributions are most similar is to compute the JSD between
Ej �Bj andQGas

j for a high resolved, discrete set of values of Bj, and take the Bj minimizing the JSD, which
we denote asB∗

j . The JSD is a symmetric measure for the similarity of two distributions (see Lin (1991) for
theoretical details)

JSD P∥Rð Þ= 1
2
DKL P∥Rð Þþ1

2
DKL R∥Pð Þ (7)

where P and R are two distributions and DKL denotes the Kullback–Leibler Divergence. It takes smaller
values the more similar the distributions are and reaches 0 if and only if both distributions are equal. The
upper bound of the JSD is given by log x2 with x being the basis of the logarithm used in the computation
of the JSD (Lin, 1991; Nielsen, 2020). In this paper, we use x= e. To smooth the histogram of both
distributions, we apply a kernel density estimation using an exponential kernel. We define the optimal
value B∗

j for Bj based on the JSD as

B∗
j ≔ argmin

Bj

JSD Ej �Bj,Q
Gas
j

� �
: (8)

3.1.2. Find B minimizing the KS test statistic
A disadvantage of finding B by minimizing the JSD between Ej �Bj andQGas

j is that this method does not
provide a range of values for B where both distributions are similar in a statistically significant way.

Table 1. Results (first section), changes of the mean value of the input data for different years (center
section) and exogenous variables (last section) for the four evaluated years

B∗
j with minimal Range1 of B∗

j

Relative change
in mean

annual consumption2

Average daily
outdoor temperature

in wintern3

Year JSD KS stat. p< 0:05 natural gas heat pump el. Mean Min

2019 3.3 3.1 [3.0, 3.1] �6.0% 3.3% 3.6 °C �4.7 °C
2020 3.5 3.4 [3.2, 3.8] 0.0% 0.0% 4.1 °C �2.1 °C
2021 3.0 2.9 [2.8, 3.1] 3.6% 16.3% 2.4 °C �10.3 °C
2022 3.1 2.8 [2.8, 2.8] �14.2% �1.7% 4.1 °C �5.2 °C
1p-value of KS test
2Compared to the reference year 2020
3The winter is defined as the period from 01.01. until 20.02. and 01.11. until 31.12. of each year
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Therefore, we introduce another method for finding an optimal B based on a goodness-of-fit test. These
tests can be divided into two groups, namely parametric and nonparametric tests. As we do not want to
make an assumption about the underlying distributions of Ej �Bj and QGas

j , we employ an nonparametric
goodness-of-fit test. According to Arnold and Emerson (2011), the most popular one in this group is the
KS test. Compared to other nonparametric goodness-of-fit tests, the KS test is also robust to outliers
(Arnold and Emerson, 2011). In our case, we utilize the two-sample variant of the KS test. This means,
that an empirical distribution, here Ej �Bj, is compared against another empirical one, in this case QGas

j .
Thus, the tested null hypothesis has the form

H0 :FEj �Bj =FQGas
j

(9)

whereFX denotes the empirical cumulative distribution function of a variableX. TheKS test statistic dK is
defined as

dK FEj �Bj ,FQGas
j

� �
= sup

t∈ℝ
FEj �Bj tð Þ�FQGas

j
tð Þ

���
��� (10)

following the literature (Lehmann and Romano, 2022, Chapter 16.3). Consequently, we define the
optimal value B∗

j for Bj based on the KS test as

B∗
j ≔ argmin

Bj

dK FEj �Bj ,FQGas
j

� �
: (11)

The advantage of using theKS test as an instance of a statistical test compared to the JSD is that we get a
range of values for Bj in which the two distributions overlap significantly at a given significance level.
Therefore, we compute the KS test statistic dK FEj �Bj ,FQGas

j

� �
fromEquation 10 for every value ofBj in the

predefined range of values to query and check, if the null hypothesis holds by checking

m �n
d

� dK FEj �Bj ,FQGas
j

� �
≤ jα (12)

denotes the greatest common divisor for m and n, and jα denotes the critical value for rejecting the
hypothesis given a significance level α. A detailed discussion on the computation of the jα can be found for
example in Comment 38 in Hollander et al. (2014) or in Hodges (1958). The most important aspect from
Equation (12) is that the distribution of jα is independent from the empirical distributions Ej �Bj andQGas

j ,
and the number of samples m and n.

3.2. Dataset

Our analysis is based on about 1400 smart meter time series of gas meters with a daily resolution and
73 time series of electricity meters exclusively metering a heat pump with an hourly resolution from 2019
until 2021. The data were measured in Haßfurt, a small city in Southern Germany, including most of the
residential single- and two-family buildings there. For all of the obtained time series, we know the location
of the meter and surplus information about the building, like its volume. The annual consumption of
natural gas or electricity is computed by summing over the time series values measured by the smart
meters. The histogram of the total gas and heat pump electricity consumption in 2020 is depicted in the
upper row of Figure 1. A correlation analysis between the building volume as main parameter of the
building size and the annual natural gas or heat pump electricity consumption results in
r gascons:,volumeð Þ= 0:58 and r heat pumpel:cons:,volumeð Þ= 0:66, respectively, for 2020 (see the
lower row in Figure 1). Such low correlations highlight the impact of the other parameters as listed
above. Moreover, related works show similar correlations between the building size and its energy
consumption for heating. For example, Kolter and Ferreira (2011) report a correlation of r = 0:611
between the annual heating energy consumption and the living area. The reasons for the high variation
of annual heat consumption have been discussed multiple times in the literature (Lim and Zhai, 2017),
which are mainly caused by the parameters as discussed in Section 3.
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Additionally, we conducted a survey among all customers of the utility company, which we validated
against the building volume of all buildings (t(5824) =�0.36, p = 0.72, d =�0.01). The response rate was
around 17%. For the buildings, that are already heated by a heat pump, we additionally asked about the
type of the heat pump. Thus, we are able to identify the share of installed heat pump types, showing that
76% are air-source (n = 70) and 24% (n = 22) are ground-source heat pumps.

Themetered gas consumption of our dataset might include the consumption of additional gas-powered
appliances like gas stoves used for cooking. For this analysis, we treat the complete metered gas
consumption as caused by the heating system, neglecting especially cooking demands, as cooking is
only responsible for 6.3% of the final energy consumption in households in Europe in 2022 (European
Statistical Office, 2022) and only a small fraction of around 6% of all households in Germany use gas
stoves in 2018 according to the Federal Statistical Office of Germany (2018). Moreover, related works
like Kolter and Ferreira (2011) also ignore possible additional gas consumers in the residential buildings.

3.2.1. Dataset validation
In order to validate the dataset, we first analyze the individual heat pump as gas consumption profiles on a
daily level. Secondly, we present the criterion for a profile to be included in our analysis. Our dataset
shows a correlation between themean daily heat pump electricity consumption and themean daily outside
temperature of r = �0:95 for 2021 and r = �0:92 for 2019 and 2020. When comparing the mean daily
gas consumption with the mean daily outside temperature, we still get a correlation of r = �0:92 for 2020
and 2021 and r = �0:93 for 2019. These results go along with related publications. For example,
Wamburu et al. (2022) show a correlation of r = �0:90 between the daily gas consumption and the
temperature time series. In terms of data quality, we ensured the robustness of our dataset by only
including time series from smart meters that hadmeasurements for at least 98% of all hours. This stringent
criterion helps to mitigate the impact of data gaps and ensures the reliability of our analysis. Any missing
data points were handled using linear interpolation, which is a common method for filling gaps in time
series data. This approach ensures that the continuity and trends in the data are preserved, minimizing any
potential biases due to missing values. After this preprocessing and validation step, there remain
between 62 and 66 smart meter time series on the heat pump electricity consumption per year and
between 992 and 1493 time series on the gas consumption.

3.2.2. Daily analysis
Using the data from 2019, the comparison between the average daily heat consumption from all gas
furnaces and the average electricity consumption of all installed heat pumps shows a strong correlation of
r = 0:99. For 2020 and 2021, the correlation remained high at r = 0:98 and r = 0:97, respectively. These
consistently high correlations across the years are beneficial for simulating the replacement of gas
furnaces with heat pumps in the future. They indicate that the daily energy consumption patterns for
both systems are very similar and that outdoor temperature has a comparable effect on both systems.

3.3. Determination of the minimal amount of required data points

The presented methodology requires a sufficiently large amount of data points for the annual gas and heat
pump electricity consumption. Our dataset shows that gas furnaces are the predominant heating system at
least in Europe, but the number of heat pump installations is still at a low level. Thus, we need to define the
minimal amount of required data points on the annual heat pump electricity consumption are required to
apply our methodology properly.

Therefore, we sample a random subsample of sizem from the original universe, i.e., the set of all annual
heat pump electricity consumption values in our obtained dataset, for every considered year and apply our
methodology as presented in Section 3.1.2 on the dataset with the reduced size. We gradually reduce the
subsample size m, starting at m = 60 until reaching a lower limit of m = 5. Since the sampling process is
random, we need to repeat this sampling process multiple times depending on m, the size of the
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subsample. For an arbitrary data point x from our universe, the probability of being selected in one
subsample of size m is m

n , with n being the size of the universe, as this sampling process can be described
using the geometric distribution.

For this analysis, we aim to sample enough subsamples so that we can expect to have an arbitrary data
point x at least in r = 3 subsamples. Thus, the number of required subsamples for a given subsample sizem
follows the expected value of the negative binomial distribution with r = 3 and a success probability of
p= m

n . Finally, the number of required subsamples Nm is Nm = r
p =

r�n
m . Additionally, we always sample at

least subsamples, even though Nm could be lower.

4. Results

Depending on the year of the analysis, different optimal values of B∗
j =

SPFj
1�γ are found by computing the

JSD and the KS test for a discrete set of values forBj, ranging from 1:5 to 4:0 in steps of 0:1. Table 1 shows
the values of Bj that achieve a minimal value of the JSD or the KS test for different years, along with
relevant metrics of the input data helping to explain the results, i.e., the mean outdoor temperature in the
winter (from January 1st to February 20th and from November 1st to December 31st) and the relative
change in the average annual consumption of the used input data. The concrete optimal values B∗

j range

from 3.0 to 3.5 using the JSD and 2.8 to 3.4 using the KS test. A plot of the JSD andKS test statistic values
for all evaluated values for Bj is depicted in Figure 2.

For all evaluated years, the fit of both distributions using the optimal value B∗
j based on the KS test

statistic falls within a significant range using a significance level of 5% (see the second and third column in
Table 1). This similarity of both distributions is visualized for all evaluated years in a histogram in Figure 3
using the optimal values based on the KS test. From 2019 until 2021, the analysis reveals an almost linear
relationship between the optimal value B∗

j and the mean outdoor temperature in the winter months. This

Figure 2. Plot of the JSD (left) and the KS test statistic (right) for different values of Bj for the different
years. The point of each line marks the minimal value.

Figure 3.Histograms of the annual heat demand computed from the gas consumption data (orange) and
using the described methodology for the heat pumps (green) annually grouped. The used values for B∗

j
from Equation (4) are the result minimizing the KS test statistics.
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relationship is plausible since our data contains lots of air-source heat pumps that show a reduced
efficiency during colder winters (Swardt and Meyer, 2001; Vocale et al., 2014). However, for 2022, the
projected value ofB∗

j does not alignwith the outdoor temperature. This is caused by the fact that on the one
hand the natural gas consumption of residential buildings dropped notably during the European gas crisis
in 2022 (Ruhnau et al., 2023). But on the other hand, we see no strong reduction in the average annual heat
pump electricity consumptions between 2020 and 2022. Thus, this one-sided reduction obscures the
effects of climatic conditions, leading to a reduced value of B∗

j .
The town council created a heat cadaster to evaluate the current state of building insulation within the

municipal area. Therefore, they randomly selected more than 1000 residential buildings and used a
questionnaire to assess both the heat demand and insulation level of each building. Based on this cadaster,
we can assume that buildings heated with a heat pump have a heat requirement of around γ= 10:5% lower
than buildings currently heatedwith a gas furnace. Utilizing this information, we can compute the average
SPF over all buildings to 3:0 for 2019 and 3:1 or 2:7 for 2020 or 2021 bymultiplying B∗

j with 1� γ. These
results fall within a reasonable and expected range, as field trials conducted in Germany report mean SPF
values ranging from 2:3 to 3:1 for air-source heat pumps and from 2:9 to 4:0 for ground-source heat pumps
(Huchtemann and Müller, 2012; Miara et al., 2014).

4.1. Annual demand

The estimation of the SPF is crucial for the estimation of the future electricity consumption of heat pumps
replacing existing gas furnaces. Let us assume that all existing gas furnaces in the residential buildings
were replaced by heat pumps, and the insulation level of all gas-heated buildings was equivalent to those
with a heat pump. Then, theywould have consumed 9:0GWh in 2019 and 8:0 or 9:5GWh in 2020 or 2021
in total using the estimated values for the SPF orB∗

j , respectively, based on theKS test. This corresponds to
an increase in electricity consumption over all gas-heated buildings between 140% in 2020 and 166%
in 2021. Only in 2022, the summed electricity consumption of all retrofitted heat pumps would be at a
lower level of 5:9 GWh. The ratio of the heat pump to building electricity consumption is visualized in
Figure 4 for all evaluated years. We might note that the building electricity consumption does not contain
the electricity consumption caused by the heat pump. Thus, a ratio smaller than one can appear. The
median of this household-to-heat-pump electricity demand ratio is higher for the future systems replacing
gas furnaces (center and right plot) than for the already installed heat pumps (left plot). Additionally, this
ratio shows a higher variance for future systems than for existing ones. The different variance magnitudes
are already present in the initial dataset. Assuming an insulation retrofit, the median of the heat pump to
residential electricity consumption ratio remains almost stable over the different evaluated years ranging

Figure 4. Boxplots of the share of heat pump electricity demand divided by the residential electricity
demand (excluding the heat pump) annually grouped. The left plot visualizes the share for existing heat
pumps. The center and the right plot visualizes the distribution of the share using the estimation of the SPF
with (center) andwithout (right) insulation retrofit. For the sake of clarity, the y-axis is clipped at a level of

6.4 and buildings with a electricity consumption lower than 500 kWh/a are excluded.
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between 1.46 for 2020 and 1.75 for 2021. Assuming no insulation retrofit, the median of the ratio
increases to a range between 1.63 for 2020 and 1.96 for 2021.

4.2. Determination of the minimal amount of required data points

To determine theminimal number of heat pumpmeasurements per year, we apply themethod as described
in Section 3.3.We accept a deviation of 0.1 below or above the value for B∗

j computed over the entire data
set to be acceptable as a result of applying the methodology with each subsample with reduced size (see
the gray band in Figure 5). When repeating the sampling and computing procedure Nm times given the
subsample sizem, we can report that for a subsample size of 55, at least 90% of the subsamples result in a
value forB∗

j within the given limits for the years 2019, 2021, and 2022.Only for the year 2020, evenwith a
subsample size ofm = 60, the estimates for B∗

j are only in 80% of the cases inside of the acceptable range.
A visualization of the distributions of the resulting estimates for B∗

j can be found in Figure 5.
If we want to have at least 50% of the subsamples to produce estimates of B∗

j within the defined band, a
subsample size between m = 30 and m = 45 is required. For lower sample sizes, the percentage of
subsamples that result in estimates of B∗

j within the acceptable range drops notably.

5. Discussion

First of all, the presented results reveal some general insights for the modeling of future retrofitted heat
pumps. Our heat consumption analysis reveals a notable variation in the annual heat consumption among
buildings of the same volume (see Figure 1). Consequently, any investigation of the annual electricity
consumption of a potentially retrofitted heat pump should be based on the specific heat consumption of
each individual building, when such data is available, as demonstrated by Lechowicz et al. (2023), rather
than relying solely on building parameters like its volume. Additionally, the strong daily correlation
between gas consumption and the electricity consumption of heat pumps suggests that gas consumption

Figure 5. Boxplots of estimated value for B∗
j minimizing the KS statistic over all subsamples grouped by

their size m. The result of B∗
j over the complete data set minimizing the KS statistic is visualized as the

dashed line. The gray band around the dashed line is the B∗
j þ=�0:1.
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profiles can be effectively translated into equivalent heat pump profiles in the case of modeling a heat
pump retrofit replacing a gas furnace.

Regarding the SPF estimates, our results for different years lie in a valid range when comparing our
results to field trials in Germany. However, the notable annual deviations of the average SPF argue against
using constant values for the SPF. Furthermore, the notable annual deviations that appeared within the
same city highlight the fact that analysis considering the effect of a heat pump retrofit on the electrical
distribution system should always consider multiple years with different weather realizations.

The results of this paper can be used to predict the electricity consumption of future retrofitted heat
pumps. On the one hand, such a prediction is helpful for analyses on the building level like Lechowicz
et al. (2023);Wamburu et al. (2022) or for developing city-scale digital twins like those presented in Bayer
and Pruckner (2023a). On the other hand, utility companies can use this methodology to estimate the
electricity demand produced by retrofitted heat pumps. This knowledge can help to optimally dimension
future distribution systems and thus help to save resources on our planet as companies can avoid wrong
energy system dimensioning. Generally, this paper shows that smart meter data on gas and electricity
consumption becomes very valuable when predicting the electricity demand of retrofitted heat pumps.

5.1. Differences of B*j using KS test and JSD

Using the two different methods to estimate the optimal B∗
j results in slightly different values, where B

∗
j is

generally higher using the JSD than using the KS test in our case. The results using the KS test seem to be
more plausible, as all of them are significant (using a significance level of 5%) meaning that we decide in
favor of the null hypothesis of cumulative distribution equality (Equation 9). In contrast, the estimates for
B∗
j using the JSD are not inside the range of significant values using the KS test for two out of four years

(2019 and 2022). The reason for this deviation of the results based on the KS test and the JSD is that the
first relies on the cumulative distribution functions of the given distributions. In contrast, the latter relies
on the smoothed histograms of the distributions, paying more attention to outliers and sampling
deviations.

5.2. Justification of the assumptions and advantages of the KS test

This paper requires four major assumptions, as stated in Section 3.We discuss these assumptions and their
implications in this section.

Independence of the heat consumption and the heating system type
At first, we assume that the heat consumption of a building is independent of its heating system type. Thus,
the heat consumption does not change if the heating system is changed during a retrofit. This assumption
seems valid as existing literature dealing with influencing factors of building heat consumption does not
report notable correlations of the heating system on building heat consumption. From a practical point of
view, the heating system type influences the demand side, not the consumption side. Based on the
obtained dataset, we note that buildings heated with an heat pump are currently better insulated than those
heated by gas furnaces, so we introduce a factor in Equation (2) to account for this. Nevertheless, the
insulation standard is not dependent on the heating system type itself.

Independence of heating system type and heat consumption influencing parameters
Second, we assume that the impact of multiple parameters influencing the annual heat consumption of a
residential building, like its size or the local weather conditions, is independent of the heating system type.
This is a specialization of the first assumption: If the heating system type is independent of the heat
consumption, it must also be independent of the factors and parameters that mainly influence the heat
consumption.

Without this one, the Equations (4) and (6) would not be necessarily valid. As a result, we find a B∗
j for

every year for which we can decide in favor of the null hypothesis from Equation 9 on the equality of both
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distributions. This provides empirical evidence for this assumption and strengthens the understanding of
the underlying factors that impact the heat consumption of residential buildings. If we did not find a value
for the parameter Bj for which we obtain a significant similarity between both distributions from
Equation (6), this assumption would be questionable, meaning that the choice of the heating system
would impact the building’s annual heat consumption.

Moreover, this fact highlights an advantage of the KS test compared to the JSD. If we could not find a
value of B∗

j for which we get significant results, we would have evidence that at least one of the
assumptions, as defined in Section 3, would be violated. Using the JSD, we always find a minimal value
over a discrete set of tested values for Bj without getting evidence of the significance of the result.

Independence of the SPF of the actual heat consumption
Third, we assume that the SPF and a potential insulation enhancement are independent of the actual heat
consumption. Without this assumption, Equation (6) might be invalid. The first part of the assumption,
i.e., the independence of the SPF from the heat consumption, seems justified by the fact that the size of
every newly installed heat pump is dimensions based on the (assumed or actual) heat consumption of a
building. For example, in Germany, this process is normed by the German Institute for Standardization
(2017). Nevertheless, an accidentally wrong sizing of a heat pump can reduce the seasonal performance
notably (Madonna and Bazzocchi, 2013). The second part of the assumption, i.e., the independence of the
insulation enhancement of the heat consumption, is based on the idea that the insulation increase during a
complete retrofit of a building should reach the best possible outcome at the moment and not depend on
the current heat consumption that is highly driven, e.g., by the current user behavior.

Equal impact of the weather on the performance over all heat pumps
Fourth, we assume that the influence of the weather on the SPF affects all heat pumps equally. This
assumption is grounded on several considerations. All heat pumps operate on the same thermodynamic
principles, which means that changes in outdoor temperature similarly affect their efficiency. Especially
the decrease in the COP that happens when the temperature differential between the heat source and sink
increases is a universal phenomenon, further indicating that weather affects the SPF of all heat pumps in a
similar way. Since we are considering heat pumps within a single city, we can assume that the weather
conditions are generally consistent across the entire city.

5.3. Generalization of the results and limitations

Our methodology is transferable to any other town or city in the world, requiring the presence of a
sufficient number of annual natural gas and heat pump consumption measurements. The building classes
of the buildings currently heated with heat pumps or gas furnaces should be the same to ensure the
assumptions as defined in Section 3 hold. The presented methodology can be used to compute the actual
heat pump performance for retrofitted heat pumps, which is especially required to estimate the heat pump
electricity consumption for future retrofitted heat pumps. Nevertheless, the results also show theoretical
limitations of the methodology. If there is a strong change in the consumption only affecting either the gas
furnace or the heat pump usage, but not both, the interpretation of B∗

j = 1� γð Þ as an exact estimation of the
average SPF of the already installed heat pumps might be misleading. This situation happened for
example in 2022 due to the energy crisis in Europe, where the users reduced their natural gas consumption
in the mean by 14.2% compared to 2020, but the occupants in already heat pump-heated buildings did not
notably change their heat consumption behavior (see Table 1). Thus, the estimation of B∗

j is 2.8 for 2022,
while the estimation is 3.4 for 2020 using the results based on the KS test. Following the weather
conditions of these two years, wewould expect a result for B∗

j in 2022 that is in a similar region as in 2020.
However, it is essential to note that assumptions about the electricity consumption of future retrofitted

heat pumps are not affected, assuming that there is no change in the heating energy consumption of the
buildings and all other parameters remain constant in the future. This means that for the year 2022, with
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the gas crisis, we assume that buildings currently having gas heating systems would not have reduced the
energy used for heating if they already had installed a heat pump. This fact is also visible in the boxplots of
the heat pump to residential electricity consumption ratio in Figure 4, where the distributions of the ratios
in 2022 (red boxes in the center and right plot) follow those from the previous years (blue, orange and
green boxes in the center and right plot). Moreover, when trying to estimate the actual SPF of the already
installed heat pumps out of an unpaired natural gas and heat pump electricity consumption dataset, we
require knowledge of different average insulation levels between the buildings with gas furnaces on the
one hand and heat pumps on the other hand.

The existing literature shows that the SPF differs notably between air- and ground-source heat pumps
(Wu et al., 2009; Huchtemann and Müller, 2012). It is, therefore, advisable to use the method presented
separately for air- and ground-source heat pumps. Nevertheless, we do not consider these two heat pump
types separately in this paper as we lack a sufficient amount of labeled data. From the 92 heat pumps with
known types based on our conducted survey (see Section 3.2), we can only attribute 15 labels per group to
separatelymetered heat pump profiles. As presented in Section 4.2, 15 samples per heat pump type are not
sufficient data to use the presented methodology properly.

6. Conclusion and outlook

The SPF is an important metric to estimate the annual electricity consumption of retrofitted heat pumps
replacing existing gas furnaces. This work presents a novel method to estimate the SPF based on an
unpaired dataset of energy consumption data of buildings within the same building class and located
within the same city, where one group is formed by the buildings currently heated by heat pumps and the
other group heated by gas furnaces. The SPF can be computed by minimizing either the JSD of these two
unpaired distributions or the KS test statistic. We apply our method to an exemplary, recent dataset and
validate the results with results from field trials. The resulting values using the KS test statistic for
estimating the average SPF or B, i.e., the SPF divided by the insulation difference between the buildings
with heat pump and those with gas furnace, are all statistically significant. The large differences in the
results of the estimated values for SPF or B for the various years under consideration emphasize the initial
assumption that different weather conditions have a massive impact on the performance of heat pumps.
Additionally, our analysis shows that shifts in consumption patterns as caused by the European gas crisis
in 2022 only affecting the heating patterns in gas-heating buildings reduce the interpretability of the
resulting SPF estimates. Moreover, we estimate the annual electricity consumption of future retrofitted
heat pumps that impact the local distribution system.

As discussed in the introduction, heat pumps will continuously replace gas furnaces in the future.
Whereas it is effortful to get measurements of the SPF of existing heat pump installations in a city, this
work helps researchers and utility companies to estimate the average SPF comparably easily based on a
unpaired dataset of gas and heat pump electricity consumption that is fast to obtain by reading the smart
meter values. Based on the SPF estimation, the additional electricity consumption caused by heat pumps
can be estimated for recently passed years and projected into the future, assuming that the weather
conditions seen in the years with data available will happen in the future again. Our results highlight that
using one average estimate for the SPF will not adequately reflect the strong year-to-year variability in
heat pump performance that our analysis has shown. Consequently, relying on an average year would fail
to capture the full diversity of conditions, potentially leading to inaccurate energy consumption estimates
and less reliable simulations. Thus, it is essential to consider the annual variations in SPF for more precise
and comprehensive modeling.

Therefore, the data-driven estimation of the SPF and electricity consumption of retrofitted heat pumps
can serve as a foundation for analyzing the potential carbon emission reductions when replacing gas
furnaces with heat pumps. For example, such an analysis as presented in Bayer and Pruckner (2024) is
based on such a data-driven SPF estimation. Another technical question that remains open is how the
average SPF will change with the ongoing development of smart grids. More sophisticated control
strategies for heat pumps, such as those aiming to maximize photovoltaic (PV) self-consumption as
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presented by Yousefi et al. (2021), or those trying to minimize the overall heat demand as showcased by
Bayer and Pruckner (2022), might change the SPF of an individual heat pump, as emphasized by Pospíšil
et al. (2019). Another aspect to consider is categorizing heat pumps based on their energy source, which
can also affect the SPF. Aswe do not know the heat pump type formost of the obtained electricity profiles,
we plan to develop a detectionmechanism based on pattern recognition to identify the different heat pump
types based on their hourly electricity consumption profile.
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