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We present a detailed analysis on the extent of the errors in the intensity measurements
of low signal-to-noise narrow emission lines. Our first goal is to determine a model for the
probability distribution function (p.d.f) associated with the measured intensities of a line
characterized by its signal-to-noise ratio. Our final purpose is to provide an error domain: - for
the measured signal-to-noise ratio of an observed line; - for the ratio of two lines in terms of
their signal-to-noise ratios, and eventually (with the knowledge of the noise energy) to get
errors on the corresponding intensities and intensity ratios.

To reproduce a real emission line intensity measurement process, we have designed a
program based on a Monte-Carlo simulation procedure. For the purposes of this simulation,
the knowledge of the true line parameters (the Intensity - imposed by the true signal-to-noise
(S/N),.., the position, and width) and the noise characteristics were necessary. Each spectrum
was modeled by the sum of an emission line plus a continuum of a known constant level, this
sum being considered as the mean of a certain stochastic process. The line was a Gaussian
profile. To this model was added a non-correlated noise (“white noise”) following the Student
distribution.

Our simulation was divided in two main parts: the first, called detection, tells if a line is
suspected to be present in a specific segment of the spectra; the second tries to measure the
detected line, that is, to give estimates of the intensity, position and width of the suspected line.
Once a line is suspected in one of the samples, the program proceeds to a fitting algorithm. The
line model is also a Gaussian, the parameters of which are known only to lie within reasonable
bounds. The adjustment is made through a standard X? minimizing routine. Once the minimum
is attained a X? rejection test is performed on the residuals of the fit. If the test is satisfied, a
Gaussian line is detected.

We made at least 1000 simulations for each (S/N),,,.. For each signal-to-noise (S/N),,,., we
calculated the intensity of each line in the detected lines sample. We call it “observed” intensity
and denote it by S,,,. These intensities are then normalized to the known true intensity, S,
and we call this normalised intensity, i, i.e., i = S.,/S,... Fits made for each (S/N),,, led us to
consider the log-normal distribution as a possible model for S /S, ..., which proved to give very
reasonable results. We computed, for each normalised sample, a few statistics, the “true” signal-
to-noise ratio, the mean of the sample (normalised to the true intensity), its variance and the
square-root of the mean quadratic error calculated relative to one (the true normalised intensity
value). Our results show clearly that for (S/N),,.. up to three, there is a strong bias (> 50%)
towards overestimation of the values of the “observed” intensities.

365

A. G. Davis Philip et al. (eds.), New Developments in Array Technology and Applications, 365-366.
© 1995 International Astronomical Union. Printed in the Netherlands.

https://doi.org/10.1017/5S0074180900056825 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900056825

366 Claudia Rola and Didier Pelat

In practice, the observer’s interest is to determine from the knowledge of (S/N),,, a
plausible range where (S/N),,,. may be found. In other words, one would like to know what
are the limits which contain S, with probability of . These error bars can be easily calculated
since we know for each value of (S/N),,, the distribution followed by (S/N),. By a change
of variable it is easy to derive the distribution followed by (S/N),,, which is also a log-normal.
This parameter has the advantage of being a non-dimensional universal one. By integrating the
(S/N)4ps p-d.f. corresponding to each (S/N),... up to a confidence level 4 we obtain the chart
presented in Fig. 1, where the continuous thick line delimits the confidence intervals for v =
0.683 (or one o), and the thin line, the one for v = 0.954 (or two o). This chart was
constructed horizontally, but must be used vertically with the following reasoning: an observer
measures a line of (S/N),, and obtains vertically the range on the (S/N),,,. values determined
with confidence level . This chart shows clearly that, for example, at the one ¢ confidence
level (or ¥ = 0.683), a line measured with (S/N),,, = 4 is compatible with 0 < (S/N), < 5.
One cannot then rule out the possibility that a noise fluctuation was mistaken for a line.
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Fig. 1. Chart for the interval estimation of the (S/N),,., given an observed value (S/N).

Furthermore, we calculated that a ratio of measured intensities or signal-to-noise ratios
also follows a log-normal distribution and as such is subject to strong biases. Additionally, we
determined the error domain on the ratio of a signal-to-noise ratios, which can be converted
in an intensities ratio with the knowledge of the rrespondent noise energy ratio.
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