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Abstract. We extend the results of Hasselblatt and Schmeling [Dimension product struc-
ture of hyperbolic sets. Modern Dynamical Systems and Applications. Eds. B. Hasselblatt,
M. Brin and Y. Pesin. Cambridge University Press, New York, 2004, pp. 331–345]
and of Rams and Simon [Hausdorff and packing measure for solenoids. Ergod. Th.
& Dynam. Sys. 23 (2003), 273–292] for C1+ε hyperbolic, (partially) linear solenoids
� over the circle embedded in R3 non-conformally attracting in the stable discs Ws

direction, to nonlinear solenoids. Under the assumptions of transversality and on the
Lyapunov exponents for an appropriate Gibbs measure imposing thinness, as well as the
assumption that there is an invariant C1+ε strong stable foliation, we prove that Hausdorff
dimension HD(� ∩Ws) is the same quantity t0 for all Ws and else HD(�) = t0 + 1.
We prove also that for the packing measure, 0 < �t0(� ∩Ws) < ∞, but for Hausdorff
measure, HMt0(� ∩Ws) = 0 for all Ws . Also 0 < �1+t0(�) < ∞ and HM1+t0(�) = 0.
A technical part says that the holonomy along unstable foliation is locally Lipschitz, except
for a set of unstable leaves whose intersection with every Ws has measure HMt0 equal to
0 and even Hausdorff dimension less than t0. The latter holds due to a large deviations
phenomenon.
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1. Introduction. Statement of main results
We consider the solid torus

M = S1 × D, D = {(y, z) ∈ R2 : y2 + z2 < 1},
where S1 = R/2πZ.

Consider a mapping f : M → M of class C1+ε, that is, with its differential being
Hölder continuous, given by the formula

f (x, y, z) = (η(x), λ(x, y)+ u(x), ν(x, y, z)+ v(x)), (1.1)

with λ(x, 0) = ν(x, 0, 0) = 0. Assume that f has period 2π with respect to x so that it is
well-defined on M. Assume that η has degree d > 1.

Denote η′ = dη/dx, λ′ = dλ/dy, ν′ = dν/dz. Assume that 0 < ν′ < λ′ < 1 and 1 <
η′ < 1/λ′ (some of these inequalities will be weakened later on to inequalities between
Lyapunov exponents on �, that is, integrals with respect to certain Gibbs measure). We
could allow here −1 < λ′ < 0 (the same for ν′), but we assume it is positive to simplify
the notation. We assume also that f : M → M is injective (using sometimes the name
embedded).

Such a solenoid in the linear case (or at least if η′ ≡ d) can be called a uniformly
thin solenoid (for the definition of a thick linear solenoid, where η′λ′ > 1, see e.g. [15]).
Compare the stronger uniform dissipation condition in §1.4.

Then

� :=
∞⋂
n=0

f n(M)

is an invariant hyperbolic set, so called an expanding attractor. The assumption f is injective
on M can be weakened to the assumption f is injective on �, by replacing M with a solid
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torus being a sufficiently thin neighbourhood of �. However, for clarity, we assume the
injectivity of f directly on M.

For each p = (x, y, z) ∈ �, the disc Ws
x = Ws(p) = {(x′, y′, z′) : x′ = x} is a (prin-

cipal) component (in M) of the stable manifold of p and the interval Wss
x,y = Wss(p) =

{(x′, y′, z′) : x′ = x, y′ = y} is a (principal) component of strong stable manifold of p.
Unstable manifolds Wu(p) are more complicated, each is dense in � and for each
x, x′ ∈ R1, the unstable lamination of� defines the holonomy map hx,x′ : Ws

x/2πZ ∩� →
Ws
x′/2πZ ∩�.
Sometimes we writeWs

x in place ofWs
x/2πZ. Denote by πx the projection (x, y, z) �→ x.

The part of global Wu(p), which is the lift of [x, x′] ⊂ R for πx , will be denoted
Wu

[x,x′](p). For [x, x′] equal to [0, 2π ] or slightly bigger, clear from the context, we shall
sometimes just write Wu(p).

Denote by πx,y the projection (x, y, z) �→ (x, y). We assume in this paper the following
transversality assumption: each intersection of two distinct πx,y(W

u(p)) and πx,y(W
u(q))

is transversal.
Let μ = μt0 be the Gibbs measure (equilibrium state) on � for the potential t0 log |λ′|,

where t = t0 is zero of the topological pressure t �→ P(f , t log λ′). The measure μ can
be called geometric or SRB in the stable direction or just stable SRB-measure. Denote by
μsx its conditional measures on Ws

x for each x, see explanations following Lemma 3.6.

Definition 1.1. (Thin solenoid) The solenoid � for injective f : M → M as in equation
(1.1) satisfying χμ(ν′) < χμ(λ

′) < −χμ(η′) for μ being the stable SRB-measure on �,
for Lyapunov exponents χμ(ξ) := ∫

log ξ dμ for ξ = ν′, λ′ and η′, respectively, is called
a non-uniformly thin, or just thin, solenoid.

We prove the following theorems.

THEOREM 1.2. Let � be a non-uniformly thin solenoid for f : M → M as in the
definition above, which satisfies the transversality assumption. Then, for HD denoting
Hausdorff dimension and for every x ∈ S1:
(1) HD(� ∩Ws

x ) = t0;
(2) HD(�) = 1 + t0.

THEOREM 1.3. Under the assumptions of Theorem 1.2, for �t denoting packing mea-
sure in dimension t, for every x ∈ S1, it holds 0 < �t0(� ∩Ws

x ) < ∞. Moreover, 0 <
�1+t0(�) < ∞.

THEOREM 1.4. Under the assumptions of Theorem 1.2, for HMt denoting Hausdorff
measure in dimension t, HMt0(� ∩Ws

x ) = 0 for every x ∈ S1. Moreover, HM1+t0(�) = 0.

Now we need the following definition.

Definition 1.5. (Bunching condition) We say that our thin solenoid � satisfies the
bunching condition if η′(x) > λ′(x)/ν′(x) for every x ∈ �.

A theorem used in particular to compare sizes of � ∩Ws
x for varying x, is the

following.
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THEOREM 1.6. Under the assumptions of Theorem 1.2, if the bunching condition
is satisfied, then all the holonomies hx,x′ for x, x′ ∈ R are uniformly Lipschitz
continuous.

If the bunching condition is not assumed, then for each R, there exists Lip(R) > 0 such
that for each x, there is a set Lx ⊂ Ws

x ∩� such that for all x′ satisfying |x − x′| < R, the
holonomies hx,x′ are locally bi-Lipschitz continuous with a common constant Lip(R) and
μsx(� ∩Ws

x \ Lx) = 0.
In fact, μsx(NL

w ∩Ws
x ) = 0 for a certain weak non-Lipschitz set NLw invariant under

all hx,x′ for 0 ≤ x, x′ ≤ 2π , which, intersected with Ws
x , is bigger than the complement of

Lipschitz Lx . Moreover, HD(NLw ∩Ws
x ) < t0.

Here ‘local’ means for every p ∈ Lx , there exists δ such that for all q ∈ Ws
x ∩� ∩

B(p, δ) and |x′ − x| < R, the Lipschitz condition with the constant Lip(R) holds for hx,x′ .
The bunching condition above appeared in a related setting in [13], see also [6, Theorem

4.21] for a stronger conclusion that the unstable foliation is C1.
Some of the assertions above hold also for the projections to the {(x, y)} plane, in

particular the following.

THEOREM 1.7. Under the assumptions of Theorem 1.2, HD(πx,y(� ∩Ws
x )) = t0 and

HD(πx,y(�)) = 1 + t0.

We do not know if 0 < �t0(πx,y(� ∩Ws
x )) < ∞ or 0 < �1+t0(πx,y(�)) < ∞.

The assertions of Theorem 1.2 almost automatically hold for Hausdorff dimension
replaced by the upper box dimension BD. Indeed, the estimates from below follow
from HD ≤ BD. The estimate BD(� ∩Ws

x ) ≤ t0 follows from Lemma 4.3. The estimate
BD(�) ≤ 1 + t0 follows from the proof of Theorem 4.2, Step 3.

1.1. On the linear case. The mapping f in equation (1.1) is called lower triangular
(because such is the differential Df in the y, z direction) nonlinear. Our paper comple-
ments the study of the linear diagonal case

f (x, y, z) = (dx(mod 2π), λy + u(x), νz+ v(x)), (1.2)

with 0 < ν < λ < 1/d. It was done by Hasselblatt and Schmeling in [9], where, never-
theless, there were hints concerning the nonlinear situations, and by Rams and Simon
[17]. Namely, Theorems 1.2,1.3, and 1.4 generalize [9] and Theorem 1.4 generalizes [17].
It should be noted that Theorem 1.3 was proved in [17] only for Lebesgue almost every
(a.e.) x.

1.2. Transversally conformal case. This is the case where f is conformal on every
Ws well understood. Theorems 1.2 and 1.3 hold, though the dimension t0 can be larger
than one (in a thick case). Packing and Hausdorff measures on Ws in dimension t0

are equivalent. In fact, this is a transversally complex one-dimensional (1D) situation,
whereas our non-conformal case corresponds after πx,y-projection to a transversally real
1D situation with overlaps.
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FIGURE 1. Geometric picture of the solenoid.

1.3. Motivation. Let us present a geometric picture of the solenoid. It helps to think
not of the solenoid itself (which is locally just a Cantor bouquet of almost parallel lines
and is hard to analyse with an untrained eye) but of its approximations f n(M). Each of the
approximations is a tube, winding around along S1 and going around dn times. Thus, every
section of f n(M) with a disc Ws

x = {x} × D is a disjoint union of dn components, where
each disc is a (slightly deformed) ellipse with exponentially increasing ratio of the large
semiaxis to the small semiaxis, and all the large semiaxes pointing roughly in the same {y}
direction. See Figure 1. As already mentioned, the approximate ellipses are disjoint, but
there are plenty of sections in which some of the ellipses are very close to each other, in a
distance exponentially smaller than their diameters. One of the main concerns in our study
will be the understanding of the way those ellipses ‘move’ as we move the section plane
around S1.

This picture closely resembles the picture of an affine iterated function system, or maybe
even better: the averaged picture of many different but similar affine iterated function
systems (as each ellipse in the section comes with a different backward path, and is
thus produced by a different collection of non-conformal contracting maps). An important
element of the picture is that the contracting maps in the sections satisfy a version of the
domination property, that is, the strong contracting direction in one iteration stays close
to the strong contracting direction in the following iterations. That is, we clearly have two
different negative Lyapunov exponents in our system.

This picture lets us expect a behaviour similar to the known generic behaviour of affine
iterated function systems. We expect the Hausdorff and packing and box dimensions of
each section to be given by Falconer’s singular value pressure formula, which, in our
‘thin’ case, should depend only on what happens in the expanding and weakly contracting
directions (in particular, the dimensions should be preserved by the projection to the
{(x, y)} plane). Moreover, like in simpler solenoid cases, we expect that the situations
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when two ellipses pass nearby (which are unavoidable owing to the very geometry of
the solenoid) should have an effect strong enough to zero the Hausdorff measure, but
the packing measure should stay positive and finite. Those are exactly the statements we
eventually prove in Theorems 1.2–1.4 and 1.7.

Hasselblatt and Schmeling stated in [9] (see some history and other references there, in
particular [3]) the following.

Conjecture 1.8. The fractal dimension of a hyperbolic set is the sum of those of its stable
and unstable slices, where ‘fractal’ can mean either Hausdorff or upper box dimension.

For solenoids, in [9] and here, an affirmative answer on Hausdorff dimension has been
proven. Hausdorff dimension in the stable direction is t0 and in unstable 1, that is, 1 + t0

together. Notice that this is dimension t0 of conditional measures of μ geometric (SRB)
in the stable direction (see above) and of dimension 1 of an SRB measure in the unstable
direction. Both SRB measures are usually different (even mutually singular), unless (e.g.)
in the diagonal linear case, where both measures coincide with the measure of maximal
entropy.

For any invariant hyperbolic measure ν, indeed HD(ν) = HD(νs)+ HD(νu), see [1],
but even supremum of HD(ν) over invariant ν on� can be less than HD(�). See e.g. [16].
So in a general case, one is forced to use both the SRB measures.

Finally note that Hasselblatt and Schmeling relax the assumption of transversality to the
assumption that the intersections of πx,y projections of Wu are non-flat. This in particular
holds for all real analytic (that is, with the functions u, v real analytic) linear solenoids,
see [9]. A natural challenge would be to generalize our nonlinear theory to a general
real-analytic (non-transversal) case.

1.4. Outline. In §3, we prove a part of Theorem 1.6 saying that the points in Ws
x ,

where a holonomy hx,x′ is not locally bi-Lipschitz, have measure μ equal 0. This follows
(and clarifies) [9]. In fact, we prove that a bigger set has measure 0, the set of p which
are not strong Lipschitz, called above weak non-Lipschitz. For such a p, the projection
πx,y(W

u(p)) intersects some πx,y(W
u(q)) values for q /∈ Wu(p) arbitrarily close to

Wu(p). Equivalently, p is strong Lipschitz if Wss
loc(p) = {p}, so counting Hausdorff

dimension only Es/Ess counts, so HD(� ∩Ws) = hμ(f )/− χμ(λ
′) = t0, where hμ(f )

is the measure (Kolmogorov’s) entropy, [10]. This is done in §4, and yields Theorem 1.2.
Again we roughly follow [9].

In §3, Theorem 1.6 is in fact proved under the assumption stronger than χμ(λ′) <
−χμ(η′), namely under the assumption sup λ′ < 1/ sup η′, called uniform dissipation.

Note that Lipschitz property is related to Theorem 1.2 on Hausdorff dimension a
little bit by chance, saying however that HD(Ws

x ∩�) does not depend on x. In fact,
holonomy being Lipschitz is a weak condition, e.g. it holds for all holonomies hx,x′
provided η′ > λ′/ν′, as in Theorem 1.6 (well known), as a twisting, hurting Lipschitz
property cannot develop if f−n squeezes (by (η′)−1) too much. The Lipschitz property
is crucial to conclude HD(Ws

x ∩�) = t0 ⇒ HD(�) = 1 + t0 in Theorem 1.2. Compare
Conjecture 1.8 above.
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Theorem 1.3 is proved in §5. The proof has common points with [17]. Analysis is more
delicate than in the proof of Theorem 1.2. We prove that for μ-a.e. p for a sequence of
n values, the πx,y-projection of the tube f n(M) (truncated to [0, 2π ]), called of order n
containing p, intersects only a bounded number of other projections of tubes of order n.

Theorem 1.4 is proved in §6, again using an idea from [17]. It uses the fact of arbitrarily
high multiplicity of overlapping of projections of tubes of order n for μ-a.e. p.

The estimate HD(NLwx ) < t0 in Theorem 1.6 is proved in §7, together with a more
precise estimate, following from a large deviations estimate concerning Birkhoff averages.

Theorem 1.7 follows from other theorems because the assertions on dimensions are
verified on the sets where the projection πx,y is finite-to-one.

Section 7 also contains a remark on general Williams 1D expanding attractors and a
remark on a possibility of integrating general solenoids to triangular as in equation (1.1).

2. Holonomy along unstable lamination
Definition 2.1. We will now introduce a symbolic description on the attractor, defining an
‘almost bijection’ ρ : �d → �, where �d = {0, 1, . . . , d − 1}Z is the usual two-sided
full-shift space on d symbols. Why it is only an ‘almost bijection’ will be explained
soon. Moreover, it will be done in such a way that ρ semi-conjugates the left shift
ς acting on �d to f |�, namely ρ ◦ ς = f ◦ ρ. Denote else the elements of �d by
i = (. . . , i−n, . . . , i0|i1, . . . , in, . . .), where the vertical line separates entries with
non-positive indices from the entries with positive indices.

Let us start with closer explanations from the x coordinate. Looking at equation
(1.1), we see that if (x′, y′, z′) = f (x, y, z), then x′ does depend only on x, not on y
or z. The restriction of f to the first coordinate is the d-to-1 expanding map η. Denote
by a0, . . . , ad−1, ad = a0 the points of η−1(0) ∈ R/2πZ = S1 numbered in increasing
order. We can assume that a0 = 0 = η(0). For i = 0, 1, . . . , d − 1, we denote V|i :=
[ai , ai+1] × D; those sets will be called vertical cylinders of level 1. We can then define
for every n = 1, 2, . . . the vertical cylinders of level n, by

Vi1,...,in = {p = (x, y, z) ∈ M : f k−1(p) ∈ V|ik for k = 1, . . . , n}.
For every sequence (i1, i2, . . .) ∈ {0, . . . , d − 1}N, there exists exactly one x ∈ S1, such
that

∞⋂
n=1

V|i1,...,in = {x} × D, (2.1)

and vice versa: for all except countably many points x ∈ S1, there exists exactly one
sequence (i1, i2, . . .) ∈ {0, . . . , d − 1}N such that equation (2.1) holds. The exceptions
are the points x such that ηk(x) = 0 for some k ∈ N. For each of those points, one can find
exactly two sequences satisfying equation (2.1). We note that f k−1(p) ∈ V|ik is equivalent
to ηk−1(x) ∈ [aik , aik+1], so what we described up to this point is the usual construction
of a symbolic description for an expanding map of the circle.

Let us now define the horizontal cylinders of level n = 0, 1, 2, . . . by

Hi−n,...,i0| := f n+1(V|i−n,...,i0),
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and then define

ρ(i) := lim
n→∞ V|i1,...,in ∩Hi−n,...,i0|.

The fact that ρ semi-conjugates ς to f |� is clear from the definitions.
We will denote by V (n) and H(n) the sets of all vertical (respectively horizontal)

cylinders of level n. For a given p ∈ �, we will denote by Vn(p) and Hn(p) the vertical
and horizontal cylinder of n, containing p. Sometimes we will just write Hn and Vn if we
do not specify p.

We note that ρ(i) = (x, y, z), with x depending on i1, i2, . . . and (y, z) depending on
x and on i0, i−1, . . .. It makes sense to write �d = �−

d ×�+
d with �−

d , �+
d denoting the

one-sided shift spaces on d symbols, the former given by non-positive entries and the latter
by the positive entries. We then denote

Wu(i) =
∞⋂
n=0

Hi−n,...,i0|, Ws(i) =
∞⋂
n=1

V|i1,...,in .

Clearly, ρ(i) = Wu(i) ∩Ws(i). We will also use the notation Wu(p), Ws(p) for p ∈ �,
as the shortcut for Wu(ρ−1(p)), Ws(ρ−1(p)). We note that as η is expanding and λ, ν
are contracting, Wu(p) and Ws(p) are pieces of the unstable and stable manifolds at p ∈
�—which explains the notation used. This notation has been already introduced in §1,
together with the notation Ws

x for x ∈ S1.

Definition 2.2. Denote f̂ := πx,y ◦ f ◦ (πx,y)
−1, where πx,y is the projection (x, y, z) �→

(x, y), see §1. This definition makes sense, since f preserves the foliation {Wss
x } (vertical

intervals here).
To simplify notation, we will sometimes denote objects being the projection of objects

in M by πx,y by adding a hat over them, e.g. �̂ := πx,y(�) or p̂ = πx,y(p).
A reminder that the projection (x, y, z) �→ x is denoted by πx , see §1. For any p ∈ M ,

the point πx(p) will be sometimes denoted by x(p).
Denote � := {p̂ ∈ �̂ : there exists (. . . , i0|) and there exists (. . . , i′0|) with i0 
=

i′0, such that Ŵu(ρ(. . . , i0|)) and Wu(ρ(. . . , i′0|)) intersect at p̂. Here Wu =
Wu

[−Lη−1
n ,2π+Lη−1

n ]
, where the ‘margins’ Lη−1

n will be defined in Notation 2.4 and
Definition 2.5.

In words, � is a Cantor set, consisting of the intersections of the πx,y-projections of
Wu belonging to different (slightly extended) horizontal cylinders of level 0. It discounts
intersections of the projections of Wu being in the same cylinder of level 0. See Figure 2.

2.1. (Unstable) transversality assumption. All intersections of these lines (that is,
projections by πx,y of unstable manifolds) with different i0 values are, in this paper,
assumed to be mutually transversal.

Remark 2.3. Notice that by the compactness argument and the continuity of the
sub-bundle Eu�, by the transversality assumption, all the intersection angles are bounded
away from 0, say by α0.
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̂H ′
0

̂H0

̂Hn

̂Hn

̂H ′
n

̂H ′
n

Vn Vn Vn Vn Vn

FIGURE 2. Projection to the (x, y)-plane. Here, Hn = Hi−n ,...,i0|, H ′
n = Hi′−n ,...,i′0|, Vn = V|i1,...,in .

Also, by compactness and continuity of Eu on �, there exists r0 > 0 such that if for
p, p′ ∈ � ∩Ws , their mutual Euclidean distance is r < r0 and their i0 values are different,
then the distance of their πx,y projections from �, more precisely from the intersection
Ŵu(p) ∩ Ŵu(p′), which is in particular non-empty, is bounded by 2r/ tan α0.

Remember that we consider f in the form of equation (1.1) and write η′ := ∂η/∂x,
λ′ := ∂λ/∂y and ν′ := ∂ν/∂z. Then we have the following.

Notation 2.4. We write ξ+
n (p) = ξ(p)ξ(f (p)) . . . ξ(f n(p)) for ξ = η′, λ′ or ν′. Write

also ξ−
n (p) := ξ+

n (f
−n(p)).

Definition 2.5. A point p ∈ � is said to be strong locally Lipschitz if there is L > 0 such
that for all n big enough, denoting (η−

n (p) by ηn,

dist( ̂Vn(f−n(p)), � ∩ Ŵu

[−Lη−1
n ,2π+Lη−1

n ]
(f−n(p)) ≥ Lη−1

n , (2.2)

with the distance in Wu measured between the projections by πx in R.
Equivalently, we could replace here ̂Vn(f−n(p)) by f̂−n(p). It would influence the

constant L only.
By the unstable transversality and transversality of intersection of stable and unstable

foliations, this is equivalent to the distance in the {(x, y)}-plane satisfying

dist(f̂−n(p), Ŵu(p′) ≥ Const Lη−1
n (2.3)

for all p′ having i0 different from the i0 for f−n(p).
We call all points p which are strong locally Lipschitz with the constant L such that

equation (2.2) holds for all q ∈ Wu(p) in place of p strong locally bi-Lipschitz.
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Notice that this definition allows to say that the whole Wu(p) is strong locally
bi-Lipschitz and write

dist( ̂f−n(Wu(p)), � ∩ Ŵu

[−Lη−1
n ,2π+Lη−1

n ]
(f−n(p)) ≥ Lη−1

n . (2.4)

Remark 2.6. Notice that if for L̂ > 0 strong locally Lipschitz condition, dist(f̂−n(p), � ∩
Ŵu(f−n(p))) ≥ L̂ηn(f

−n(p))−1 holds and q ∈ Wu
[0,2π ](p), then dist(f̂−n(q), �) ≥

(L̂− Const)ηn(f−n(q))−1. So for equation (2.2) satisfied at p with L̂ > 2 Const, the
strong locally Lipschitz condition holds for all q ∈ Wu(p), with L = L̂/2. So p is strong
locally bi-Lipschitz.

Definition 2.7. For every p ∈ � and q ∈ Wu(p) \ {p}, one defines the holonomy map
hx(p),x(q) : Ws(p) → Ws(q) along unstable foliation (lamination) Wu by hx(p),x(q)(v)
being the only intersection point of Wu(v) with Ws(q).

THEOREM 2.8. For every L2 > 0, there exists L1 > 0 such that for each p strong
locally (bi)Lipschitz with the constant L = L1, there exists n(p) such that for each
q ∈ Wu

[0,2π](p), the holonomy between Ws(p) ∩� and Ws(q) ∩�, in Hn(p)(p) ∩�, is
locally bi-Lipschitz continuous at p with Lipschitz constant L2.

Here, at p means that for every p′ ∈ Ws(p) ∩Hn(p)(p) ∩�, we have

L−1
2 dist(p, p′) ≤ dist(hπx(p),πx(q)(p), hπx(p),πx(q)(p

′) ≤ L2 dist(p, p′),

where dist is the euclidean distance in D.

Proof. We repeat (adjust) the calculations in [9]. Consider q ∈Wu(p) and p′ ∈Ws(p)∩�.
Define q ′ := hx(p),x(q)(p

′). Let p′ ∈ Hn(p) \Hn+1(p), that is, p−n = f−n(p) and p′−n =
f−n(p′) are in different H0 (Figure 3).

Local Lipschitz continuity of the holonomy hx(p),x(q) at p would follow from the
existence of a uniform upper bound of

dist(q, q ′)/ dist(p, p′) (2.5)

for p′ close enough to p, that is, n defined above, large.
It is comfortable to consider the distance d = d1 + d2, the distances in the y and z

coordinates.
We shall use the triangular form of the differential Df |{y,z} =

[
λ′ 0
a ν′

]
. Due to

ν′ < λ′, we have Df n|{y,z} =
[

λ′
n 0
an ν

′
n

]
, where |an| ≤ Const λn. Write, according

to the decomposition d = d1 + d2, d(f−n(p), f−n(p′)) := �p = �1p +�2p and
d(f−n(q), f−n(q ′)) := �q = �1q +�2q.

We estimate

d(q, q ′) = λn(f
−n(q))�1q + |an(f−n(q))�1q + νn(f

−n(q))�2q|
≤ λn(f

−n(p))�1p + |an(f−n(p)))�1p + νn(f
−n(p))�2p|

+ λn(f
−n(p))A/ηn(f−n(p))
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FIGURE 3. Holonomy twist.

for a constant A depending on the angle betweenWu andWs . Here, λn, an, νn are averages
of derivatives λn, an, νn, respectively, on appropriate intervals, namely integrals divided
by the lengths of the intervals, horizontal along y for two first integrals and vertical along
z for the last one.

On the other hand,

d(p, p′) = λn(f
−n(p))�1p + |an(f−n(p))�1p + νn(f

−n(p))�2p|.
To obtain an upper bound of equation (2.5), it is sufficient to assume the existence of an

upper bound of the ratio of the above quantities, namely (omitting (f−n(p)) to simplify
notation)

1 + Aλn/ηn

λn�1p + |an�1p + νn�2p| .
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We needed bars over λ, ν, a to reduce above a fraction to the summand 1. From now on
these bars (integrals) are not needed.

We conclude calculations with sufficiency to assume the existence of an upper
bound of

1
(�1p + (|an�1p + νn�2p|/λn))ηn

(2.6)

or to assume that the inverse(
�1p + |an�1p + νn�2p|

λn

)
ηn

is bounded away from 0.
Thus, Lipschitz property follows from either of

�1p ηn ≥ Const > 0 (2.7)

or

|an�1p + νn�2p|
λn

ηn ≥ Const > 0. (2.8)

The condition equation (2.8), in the diagonal case an = 0, means that the contraction in
the space of stable leaves Ws by f−n, along the coordinate x, due to small η−1

n is strong
enough to bound the twisting effect caused by log νn/ log λn, which implies the Lipschitz
continuity of all the holonomies at p along unstable foliation of a bounded length leaves
(e.g. by 2π ). This is for�1(p) ≈ 0 (hence�2(p) large). Otherwise the Lipschitz condition
holds automatically.

The condition equation (2.7) is equivalent to the strong locally Lipschitz equation (2.2)
in Definition 2.5 by the transversality condition, see Remark 2.3 and equations (2.2) and
(2.3). This implies that the distance betweenWs(f−n(p)) andWs(f−n(q)) is bounded by
Const ×�1(p) so �1(q) ≤ Const �1(p) so d(q, q ′) ≤ Const d(p, p′) so just Lipschitz
property of hp,q at p.

By Remark 2.6 for Const above large enough, we obtain a strong bi-Lipschitz
property.

We denote the set of all strong locally bi-Lipschitz points in � by Ls and Ls ∩Ws(p)

with x(p) = x by Lsx . Sometimes we write �s(τ , L, n) for specified n, see equation (2.2).
The following has already been mentioned in Theorem 2.8.

LEMMA 2.9. hx,x′(Lsx) = Ls
x′ for all x, x′ ∈ S1 for the holonomy hx,x′ along unstable

foliation. The holonomy is locally Lipschitz on Ls .

Notation 2.10. We call the set complementary to Ls in � weak non-Lipschitz, and denote
it by NLw. By Lemma 2.8, this condition is weaker than non-Lipschitz. It includes some
Lipschitz (e.g. if the bunching condition holds, see Theorem 1.6).

Later on, we shall need the following fact easily following from the definitions.
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LEMMA 2.11. For every p ∈ Ls , there exists n such that

Wss(p) ∩� ∩Hn(p) = {p}.
Proof. Notice that the existence of p′ ∈ Wss(p) ∩� ∩ (Hn(p) \Hn+1(p)) is equivalent
to πx,y(f

−(n+1)(p)) ∈ �. If it happens for n arbitrarily large, it contradicts p ∈ Ls .

3. Lipschitz versus geometric measure
Definition 3.1. Let t = t0 be the only zero of the pressure function t �→ P(f−1, t log(λ′ ◦
f−1)). Since λ′ < 1, this function is strictly decreasing from +∞ to −∞. Denote by h∗
the entropy of the equilibrium measure μ = μt0 for the potential t0 log(λ ◦ f−1) (called
also stable SRB-measure, see §1).

A geometric meaning of this is that for an arbitrary Ws , replacing λ′ by a function
having logarithm cohomologous to log λ′ (denote it also by λ′), not depending on future
(|i1, . . .), the quantities log λn(f

−n(p)) for p = ρ(. . . i0|i1, . . .) are approximately
diameters of f n(Ws(f−n(p))) provided ν′ < λ′. The quantity t0, which would be
Hausdorff and box dimensions in the conformal case, here, in the non-conformal case,
is only the upper bound of the dimensions of Ws ∩�, so-called ‘affinity dimension’, [8].
The aim of this and the next sections is to prove that t0 is in fact the Hausdorff dimension
of all Ws ∩�.

We start now with the following.

Definition 3.2. For each i = (i−n, . . . , i0), define

hn(i) := 1
n

log #
{
(i1, . . . , in) : Ĥi−n,...,i0| ∩ B(V̂|i1,...,in , L1η

−1
n (πxρ(i)))

∩
⋃

i′n,...,i′0 
=i0
Ĥi′−n,...,i′0| 
= ∅

}
,

where L1 is the constant from Theorem 2.8. Define also

hn := sup hn(i) and h := lim sup hn. (3.1)

Similarly the following.

Definition 3.3. For infinite i = (. . . , i−n, . . . , i0|) and Hi = Wu(p) for p ∈ ρ(i),

h∞
n (i) := 1

n
log #{(i1, . . . , in) : Ĥi ∩ V̂|i1,...,in ∩ B(� ∩ Ĥi , L1η

−1
n (πxρ(i))) 
= ∅},

compare equation (2.2), and

h∞
n := sup h∞

n (i) and h∞ := lim sup h∞
n . (3.2)

The following follows easily from the definitions and the transversality assumption.

PROPOSITION 3.4. h∞ and h are independent ofL1 large enough. Moreover h∞ ≤ h. The
opposite inequality also holds if sup λ′ < 1/ sup η′ and ν′(p) < λ′(p) for every p ∈ �,
the property we name: uniform dissipation.
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LEMMA 3.5. Assume transversality and χμt0 (λ
′)) < − log sup η′ (call it half-uniform

dissipation). Then

h∞ < h∗. (3.3)

Proof. For an arbitrary ε > 0 and n large enough, denoting by BD the upper box
dimension, we easily get

h∞
n (i) ≤ (BD(Ĥi ∩ �)+ ε)(log sup η′), (3.4)

for every i = . . . , i0|, that is, Wu = Wu(p) for any p ∈ ρ(i).
To prove this, we cover Wu by pairwise disjoint (except their end points) arcs of the

same length equal to 1/(sup η′)n (up to a constant) and use the definition of box dimension.
A difficulty we shall deal with below is, however, to pass in equation (3.4) to a uniform

over i version, that is, with supi h
∞
n (i) in equation (3.2).

Notice that

BD(Ĥi ∩ �) ≤ t0 = h∗/(−χμt0 (λ′))

≤ h∗/(− sup log λ′) < h∗/ log sup η′. (3.5)

The first inequality uses the ‘Lipschitz holonomy’ along Ŵ
u

(in fact only local) between
an arbitrary Ŵ s and Ŵu = Ŵu(p). (Formally this is not even a holonomy, because of
intersections of the leaves. However it is Lipschitz in the sense of varying all the lengths of
the uniformly transversal sections of each strip Ĥn for all n, by at most a common factor.)
We shall prove it more precisely below.

Let p′ ∈ Ws ∩� be such that p′ = p′(i′) is the only point of the intersection ρ(i′) ∩
Ws . Assume that i′0 
= i0. Denote by A(f ) supremum over all p, p′ as above of the
number of the intersection points of Ŵu(p) and Ŵu(p′). It is finite by the transversality
assumption, see e.g. [14, Proposition 4.6].

For every n ≥ 0 we have, due to ν < λ,

diam(Ĥn(p′) ∩Ws) ≤ Const λn(f
−n(p′))

for n large enough to kill a twisting effect which may be caused by ∂ν/∂y. Hence, due to
the transversality assumption,

diam Comp(Ĥn(p′) ∩Wu(p)) ≤ Const λn(f
−n(p′))

for every component Comp of the intersection.
By the definition of t0 we have, summing over all (i′−n, . . . , i′0|) with i′0 
= i0,∑

n,p′
λn(f

−n(p′))t ≤ C(t) < ∞ or = ∞

for t > t0 and constant C(t) or t < t0, respectively.
For each r > 0 and q̂ ∈ Ŵu(p)) ∩ �, where q ∈ ρ(. . . , i′0|), find n = n(q) the least

integer such that the length satisfies l(Ŵ u ∩ Ĥi′−n,...,i′0) ≤ r; by the length (denoted above
by diam) we mean here the length of the projection by πx to R (of course we can
alternatively consider the lengths in Ŵu(p) or Wu(p)).
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Denote Ŵu ∩ Ĥi′−n,...,i′0 by I (q, r). Consider in Ŵu the ball (arc) J (q, r) = B(̂q, r).
Choose a family J (qk , r) of the arcs of the form J (q, r) covering Ŵu ∩ �, having
multiplicity at most 2, namely that each point in Ŵu belongs to at most two arcs. Then
I (qk , r) ⊂ J (qk , r) for all k. On the other hand, by the definition of n(q), there is a constant
K such that Kl(I (qk , r)) ≥ l(J (qk , r)).

Finally notice that for two different qk and qk′ , it may happen that n = n(k) = n(k′)
and the nth codings i−n, . . . , i0 are the same; in other words, the nth horizontal cylinders
coincide. Then however, J (qk) and J (qk′) intersect so the coincidence of these codings
may happen only for at most two different k and k′.

Thus, for all t > t0,∑
k

(2r)t ≤ K−t ∑
k

l(I (qk , r))t ≤ 2 Const K−1
∑
n,k

λn(f
−n(qk))t ≤ Const C(t) < ∞.

(3.6)

Hence, as our estimates hold for every r > 0, we obtain the first inequality in equation
(3.4)

BD(Wu(p) ∩ �) ≤ t0.

This has been a Moran covering type argument.
Another variant of this proof would be to consider for each n the partition of Wu into

dn := 2π/rn arcs of length r = rn = 1/([sup η′n] + 1) and consider the family of those
arcs which intersect �. Denote them by Jk . For each k, choose an arbitrary qk ∈ � such
that q̂k ∈ Jk ∩ � and qk belongs to some ρ(i′) with i0 
= i′0. Then consider Ik as above.
Finally, notice that each interval Ik , as shorter than rn for n large enough, can appear at
most twice.

Finally, by equation (3.6), the estimate (3.4) is uniform, that is, n for which it holds
is independent of i. Indeed, for each i and n, we obtain for r = 1/(sup η′)n, denoting
ε = 2(t − t0),

(exp nh∞
n (i))(2r)

t0+ε ≤ (2r)ε/2 Const C(t) < 1

for n large enough.
So h∞

n ≤ (t0 + ε)(sup η′) for each ε > 0 and n large enough, hence h∞ ≤ t0 sup η′. By
equation (3.5), we have h∗ > t0 sup η′. Thus h∞ < h∗.

The simplest uniform dissipation, namely if η−1
n ≡ d−n, provides the partitions of S1

into arcs of equal lengths to be used in estimating BD. In more general cases, the partitions
of S1 into arcs between consecutive ηn preimages of a fixed point cause difficulties and
a necessity to assume the half-uniform dissipation assumption using sup η′ rather than
η′. They will be overcome in §4 in the proof of Theorem 4.1 by replacing h by certain
hreg by restricting in the definition to μt0 -Birkhoff regular points with respect to log η′,
restricting �.

Now, assuming the uniform dissipation, using h < h∗ following from Lemma 3.5 and
Proposition 3.4, we can obtain the following.
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LEMMA 3.6. Assume that the transversality and the uniform dissipation condition (intro-
duced in Proposition 3.4) hold. Then μsx(L

s) = 1 for (πx)∗(μ)-a.e. x ∈ S1, where μsx are
conditional measures of μ for the partition of � into Ws

x ∩�.
The same holds for all x, where μsx is (hx′,x)∗(μsx′) for x′, where μs

x′ has already been
defined as a conditional measure.

Remark that for μ-a.e. p, p′ the holonomy hx,x′ for x = πx(p), x′ = πx(p
′) maps μsx

to μs
x′ , that is, (hx,x′)∗(μsx) = μs

x′ .
Note that these measures coincide also with the factor measure μ− := �∗(μt0), where

� maps the two sides to the one-sided shift to the right, on the space of sequences
(. . . , i−n, . . . , i0) (projected to f−1 by ρ). In fact, we can write μ in place of μ−
considering its restriction to the σ -algebra generated by horizontal cylinders.

Then the assertion of Lemma 3.6 says that μ−(�(Ls)) = μ(Ls) = 1.

Proof. By the Shannon–McMillan–Breiman theorem [12] applied for f−1 and by ergod-
icity, denoting as before by Hn(p) the horizontal cylinder of level n containing p,
we get

1
n+ 1

log μ(Hn(p)) → h∗

for μ-a.e. p ∈ �, so for every ε > 0 and n large enough,

exp −(n+ 1)(h∗ + ε) ≤ μ(Hn(p)) ≤ exp −(n+ 1)(h∗ − ε). (3.7)

Given arbitrary ε > 0 and n, denote the set of p values (a union ofHn(p) values) where
equation (3.7) does not hold, by Yε,n. Thus, the irregular set

Y
irreg
ε := lim sup

n→∞
Yε,n =

⋂
n

⋃
k≥n

Yε,k (3.8)

has measure μ equal to 0. Its ε-regular complement lim infn→∞ Xε,n = ⋃
n

⋂
k≥n Xε,k

for Xε.k = � \ Yε,k has full measure μ for each ε.
Remark that for our Gibbs measure, we can use Birkhoff’s ergodic theorem for f−1 and

log λ′ in place of the Shannon–McMillan–Breiman theorem:

Const−1 exp((n+ 1)(t0 + ε)χμ(λ
′)) ≤ Const−1(λ−

n+1(p))
t0

≤ μ(Hn(p)) ≤ Const(λ−
n+1(p))

t0 ≤ Const exp((n+ 1)(t0 − ε)χμ(λ
′)),

where χμ(λ′) = ∫
log λ′ dμ.

Denote by Zε,n the family of all horizontal cylinders H2n, whose πx,y-projections Ĥ2n

have ‘horizontal extensions’ to (−L2π , (L+ 1)2π) intersecting f̂ n(�) and else which are
in Xε,2n. The constant L is the one that appeared in equation (2.2).

Claim 3.7. The upper bound of #Zε,n is roughly exp(nh+ (n+ 1)h∗) (‘roughly’ means:
up to a factor of order at most exp nε).

Indeed, the number exp nh comes from f n(H) for each H ∈ H(n), more precisely
from f̂ n-images of the rectangles Ĥ ∩ V̂|i1,...,in counted in Definition 3.2. The number
exp(n+ 1)h∗ comes from the number of ‘regular’H ∈ H(n) roughly as in equation (3.7),
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that is, being f n+1-images of ‘regular’ Vn. More precisely, of those H values for which
some H2n+1 ⊂ f n(H) are in Xε,2n+1 ∩Xε,n. (Notice that this does not depend on the
choice ofH2n+1, due to equation (3.9). Notice also that H satisfying this, need not exhaust
all H satisfying equation (3.7).) The measure μ of each such H is lower bounded for
p ∈ H by

Const λ−
n+1(p)

t0 = Const λ−
2n+1(f

n(p))t0/λ−
n (f

n(p))t0

≥ exp((n+ 1)χμ(λ′)− (3n+ 1)ε)t0 = exp(−(n+ 1)h∗) exp(−(3n+ 1)εt0), (3.9)

due to chain rule f−(n+1)(p) = f−2n+1(f n(p)) ◦ f n(p), compare equation (4.4), and
Gibbs property of μ (used already above to reformulate equation (3.7) to the language
of λ′).

The number of our ‘regular’ Hn values is bounded by the reciprocal of the bound in
equation (3.9). Thus,

#Zε,n ≤ exp n(h+ ε) exp((n+ 1)h∗) exp((3n+ 1)εt0).

The claim has been proven.
Thus,∑

H∈Zε,n
μ(H) ≤

(
sup

H∈Zε,n
μ(H)

)
(#Zε,n)

≤ exp(2n+ 1)(−h∗ + ε) exp(n(h+ ε)+ (n+ 1)(h∗ + 3t0ε)

≤ exp((n+ 1)(h− h∗)+ (3n(1 + t0)+ 2)ε).

So, for an arbitrary ε > 0 small enough,

lim
N→∞ μ

( ⋃
n≥N

( ⋃
Zε,n ∪ Yε,n

))
= 0,

so μ(NLw) = 0, see Notation 2.10.

4. Hausdorff dimension
THEOREM 4.1. (Theorem 1.2) Assume χμ(ν′) < χμ(λ

′) < −χμ(η′). Then, for HD denot-
ing the Hausdorff dimension, for �x denoting � ∩ ({x} × D) = � ∩Ws

x :
(1) HD(�x) = t0 for every x; and
(2) HD(�) = 1 + t0,

where t0 = h∗/− χμt0
(λ′).

First, we prove this theorem under stronger assumptions.

THEOREM 4.2. (Theorem 1.2, uniformly dissipative setting) Assertions of Theorem 4.1
hold if sup λ′ < 1/ sup η′.

We start with a general (not only in the uniformly dissipative) case.
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LEMMA 4.3. For every p ∈ �, all r > 0 and balls (discs) Bs in the stable manifold
Ws
πx(p)

,

μsπx(p)(B
s(p, r)) ≥ Const(diam Bs(p, r))t0 .

In particular,

lim inf
r→0

log μsπx(p) (B
s(p, r))

log diam(Bs(p, r))
≤ t0.

One can even replace liminf by limsup.

Proof. Lemma 4.3 follows from

μsπx(p)(B
s(p, λn(f

−n(p)))) ≥ Const(λn(f−n(p)))t0 . (4.1)

One uses the definition of μs (Gibbs property) and the fact that the diameter of each
Bs(p, r) is comparable to λn(f

−n(p)), by bounded distortion. The conditional measures
μs were discussed after the statement of Lemma 3.6.

More sophisticated is the opposite inequality.

LEMMA 4.4. For μ-a.e. p ∈ �, the local dimension satisfies

δs := lim inf
r→0

log μsπx(p) (B
s(p, r))

log diam(Bs(p, r)
≥ t0.

Proof. One uses the Ledrappier–Young formula [10]

hμ(f ) = δss(−χμ(ν′))+ (δs − δss)(−χμ(λ′))

and the fact that δss = 0 since for p ∈ Ls the local manifold Wss consists only of the
point p, see Lemma 2.11. Remember also, Lemma 3.6, that μsx(L

s) = 1 for all x ∈ S1, so
μ(Ls) = 1. Hence,

hμ(f ) = δs(−χμ(λ′)), so δs = hμ(f )/− χμ(λ
′) = t0.

Proof of Theorem 1.2, uniformly dissipative setting.
Step 1. HD(�x) = t0 for every x follows from Lemmas 4.3 and 4.4 and from Frostman

Lemma, see [12, Theorem 8.6.3].
Step 2. Since by Lemma 3.5 and Proposition 3.4 h < h∗ := hμt0

(f ), we know by
Lemma 3.6 that there exists x (in fact for all x) μsx(L

s) = 1. By Lemma 2.9, all
the holonomies hx,x′ for 0 ≤ x′ ≤ 2π are locally bi-Lipschitz on Ls(x). Change the
coordinates on � by F(x′, y, z) := (x′, h−1

x,x′(y, z)), mapping � to the cartesian product
[0, 2π)×� ∩Ws

x . Then this change is locally Lipschitz on
⋃

0≤x′≤2π hx,x′(Lsx) = Ls .
Hence, HD(�) ≥ HD(Ls) = 1 +HD(Lsx) = 1 + t0.

More precisely, F is locally Lipschitz, in the sense that there exists L > 0 such that
for every p ∈ Ls , there exists measurable r(p) > 0 such that for every r ≤ r(p) and q ∈
B(p, r), dist(F (p), F(q)) ≤ L dist(p, q). This is sufficient to not increase dimension by
splitting the space into a countable number of pieces.
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Step 3. The opposite inequality is implied by Lemma 4.3. Indeed, notice that for every
r = λn(p) and x′ ∈ B(x(p), r), we have

{x′} × Bs(πy,z(p), (C + 1) · r) ⊃ hx(p),x′(Bs(πy,z, r),

where C := tan �(Eu, Es). Hence

μs({x′} × Bs(πy,z(p), (C + 1) · r)) ≥ μshx(p),x′(Bs(πy,z, r).

Hence, for

μ̂ := dμsxd Leb1(x), (4.2)

for every p ∈ �,

μ̂(B(p, (C + 1)r)) ≥
∫ r

−r
(μsx′(Hn(p) ∩�x′) d Leb1(x

′) ≥ r · Const λt0n .

and in conclusion, μ̂(B(p, Cr)) ≥ Const r1+t0 yielding the required upper estimate
HD(�) ≤ 1 + t0.

Definition 4.5. A point p = ρ(. . . i−n, . . . , i0, . . . , in, . . .) ∈ � is said to be Birkhoff
(ξ , ε, N)-backward regular for an arbitrary ε > 0 and for ξ = ν, λ or η, if for all n ≥ N ,

exp n(χμ(ξ)− ε) ≤ ξ−
n (p)) ≤ exp n(χμ(ξ)+ ε)), (4.3)

see Notation 2.4.
Analogously p ∈ � is said to be Birkhoff (ξ , ε, N)-forward regular if the above

estimates hold for ξ+
n (p) in place of ξ−

n (p).
When we mean just equation (4.3), we say (ξ , ε, n)-forward (backward) regular,

omitting “Birkhoff”. Compare the Shannon–McMillan–Breiman property in the proof of
Lemma 3.6.

By bounded distortion, the property (4.3) for p = ρ(. . . i−n, . . . , i0, . . . , in, . . .)
depends only on (i−n, . . . , i0), provided we insert constant factors before exp, so it
can be considered as a property of a horizontal cylinder Hn. Analogously for the
forward regularity, this is a property of vertical cylinders Vn. We call these cylinders
(ξ , ε, n)-forward or backward regular, and all other points or level n cylinders irregular.

Proof of Theorem 1.2. We shall modify (generalize) the definition of irregular sets Yε,n in
Lemma 3.6 and follow the strategy of the proof of that lemma.

Recall the notation ξ−
n (p) := ξn(f

−n(p)). Notice that for all integers m > 0,

ξ−
m (f

−n(p) = ξ−
n+m(p)/ξ−

n (p), (4.4)

so for p being (ξ , ε, k)-backward regular for k = n and k = n+m, we have

exp(n+m)(χμ(ξ)− ε))/ exp n(χμ(ξ)+ ε)) ≤ ξ−
m (f

−n(p)
≤ exp(n+m)(χμ(ξ)+ ε))/ exp n(χμ(ξ)− ε)).

Hence

exp m
(
n+m

m
(χμ(ξ)− ε)− n

m
(χμ(ξ)+ ε)

)
≤ ξ−

m (f
−n)(p) ≤ · · · . (4.5)
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Hence

exp m
(
χμ(ξ)− ε

(
2
n

m
+ 1

))
≤ ξ−

m (f
−n(p)) ≤ exp m

(
χμ(ξ)+ ε

(
2
n

m
+ 1

))
.

(4.6)

For each n, m ∈ N denote by Xε,n,m the union of all Hn+m horizontal cylinders
of (ξ , ε, n)-backward regular points in � for all ξ = ν, λ and η, and yet (λ, ε, n+
m)-backward regular.

Write also Yε,n,m := � \Xε,n,m for irregular sets. Now, as in §3, in the proof of Lemma
3.6, the idea is to remove (due to the uniform dissipation assumption, we needed to remove
there less than here) for each n the irregular set Yε,n,m for m to be defined later on, and
estimate the number of remaining cylinders Hn+m, which are regular contaminated by
other regular cylinders in the sense below in equation (4.7).

A point (and cylinder) p ∈ Hn+m regular as above is said to be (�reg
n,m)-contaminated if

for p̃ := f−n(p)

πx,y(p̃) ∈ Bu(�reg, L1η
−1
n (p̃)), (4.7)

compare Definition 2.5. Here Bu denotes a ball in Ŵu(p̃). The set �reg is defined
as � in Definition 2.2, but restricted to p̂ being a πx,y image of q = ρ(. . . , i0|) and
q ′ = ρ(. . . , i′0|) such that f n(q) and f n(q ′) are in Xε,n,m.

As in Definition 2.5, we can say equivalently that V̂n(p̃) is �reg
n,m-contaminated if it does

not satisfy equation (2.2), with � replaced by �reg
n,m. We can say also that the rectangle

Ĥm ∩ V̂n is contaminated, as in Definition 3.2. See also §7.4.
Here it is comfortable to look for m > 0 as small as possible so that

λ−
m(f

−n(p) < (η−
n (p))

−1, (4.8)

compare equation (5.3) later on. Taking into account that both f n(q) and q are in Xε,n,m,
we obtain using equation (4.6) the sufficient condition

exp m
(
χμ(λ)+ ε

(
2
n

m
+ 1

))
< exp n(−χμ(η)− ε).

It follows that for ε > 0 small, it is sufficient

m/n ≈ χμ(η
′)/(−χμ(λ′))+ ε′ (4.9)

with ε′ > 0 also small.
Summarizing: for given Hm(p̃) with p = f n(p̃) ∈ Xε,n,m, we define h

reg
n :=

1/(n+ 1) log Zn, where Zn is the number of �reg
n,m-contaminated V̂n in Ĥm(p̃) (by Hm(q̃)

with the i0 symbols different from that for Hm(p̃), with q = f n(q̃) ∈ Xε,n,m).
The number Zn is bounded by a constant times the number of Hm above, taking into

account L in equation (2.2) and the observation that regular Hm, as ‘thinner’ than Vm, can
intersect at most two (neighbour) Vm values.

Hence

exp nhreg
n ≤ Const exp mh∗,
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so using equation (4.9),

hreg ≤ h∗(χμ(η′)/(−χμ(λ′)))+ ε′. (4.10)

The rest of the proof repeats the proof of Theorem 4.2.
In particular, by Birkhoff ergodic theorem for an arbitrary ε>0,μ(lim supn→∞Yε,n)=0

and the complementary set inNLw, for ε > 0 small enough, where hreg < h∗, has measure
μ also equal to 0. �

The above proof finishes also the proof of Theorem 1.6 in the general setting, saying
that μsx(NL

w) = 0, compare Lemma 3.6 in the uniform dissipation case. Compare also
equation (3.8).

5. Packing measure
For the definition of packing measure, we refer the reader to [12, §8.3]. Denote packing
measure in dimension t by �t .

We shall prove the following.

THEOREM 5.1. Under the assumptions of Theorem 4.1 (Theorem 1.2), namely if

χμ(ν
′) < χμ(λ

′) < −χμ(η′),

for the Gibbs measure μ = μt0 on �, then for every p ∈ �, it holds that

0 < �t0(W
s(p) ∩�) < ∞. (5.1)

Moreover, the density d�t0/dμ
s
t0

is positive μsπx(p) almost everywhere (recall that μsπx(p)
is the conditional measure on Ws(p)).

Also,

0 < �1+t0(�) < ∞ (5.2)

and moreover d�t0+1/dμt0 is positive μt0 almost everywhere on �.

This generalizes the analogous theorem proved for linear solenoids in [17].

Proof.
Step 1. Regular contaminated rectangles. Given an arbitrary ε > 0, denote by H(ε, t)

the union of all Ht containing points in � satisfying the backward regularity condition in
equation (4.3) for t (denoted there n) and ξ = λ, ν.

Analogously, denote by V(ε, t) the union of all Vt containing points in � satisfying
the forward regularity condition analogous to equation (4.3) for t (denoted there by n) and
ξ = η and by V(ε, t).

We sometimes call Ht and Vt as above, just regular.
Consider an arbitrarym ∈ N and given ε > 0, define n = n(ε, m) as the biggest integer

n such that, compare equations (4.9) and (4.8),

n

m
≤ −(χμ(λ′)− ε)

χμ(η′)+ ε
. (5.3)

We consider ε small enough that the latter fraction is bigger than 1.
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Later on, we shall consider an arbitrary α : 0 < α ≤ 1 and the integer [αn] in place of
n (the square bracket means the integer part), sometimes writing just αn. Finally, we shall
specify α. Of course, equation (5.3) is satisfied for [αn] in place of n.

Notice that for an arbitrary (λ, ε, m)-backward regular p ∈ Hm ⊂ H(ε, m), therefore
for regular Hm(p); the diameter of its intersection with any Ws is at most exp(m(1 −
ε)χμ(λ

′)) (up to a constant related to distortion).
For all i = (. . . , i0|), writing ρ(i) = Wu(i) = Wu, we obtain the uniform (over i)

estimate (3.4) on h∞
n (i) as in Lemma 3.5 forWu restricted to the intersection with V(ε, n).

We write h∞,reg
n (i).

Indeed, we can then use, for every forward regular Vn, the property diam(Wu ∩ Vn) ≥
exp −n(χμ(η′)+ ε). (We accept that one ε can differ from another if it does not lead to a
confusion.) In equation (3.5), we use then χμ(λ′) < −(χμ(η′)+ ε).

Defining h∞,reg := limn→∞ lim supi h
∞,reg
n analogously to Definition 3.3, we get for ε

small enough

h∞,reg < h∗.

We obtain the same estimates, in particular hreg < h∗, if in place ofWu, thicken it toHm
restricting ourselves to backward regular p ∈ Hm ⊂ H(ε, m), because then, if p ∈ V[αn]

backward regular, for n = n(ε, m),

diam πx,y(Hm(p) ∩Ws) � diam πx,y(V[αn](p) ∩Wu)

due to

exp m(χμ(λ′)+ ε) < exp −[αn](χμ(η′)+ ε),

see Definition 3.2 and the transversality.
In words, the number of forward regular vertical cylinders V[αn], whose πx,y projections

V̂[αn] intersect the ‘rhombs’ Ĥm(p) ∩ Ĥ ′
m with H ′

m = ρ(i′−m, . . . , i′0), i′0 
= i0 as in
Definition 3.2 widened by their L1th neighbours in Ĥm(p), is bounded by exp [αn](hreg +
2ε). This estimate is uniform over our regular Hm values.

Then their union denoted by V[αn](Hm) has measure μ upper bounded by

exp [αn](hreg + 2ε) exp(−[αn](h∗ − ε))

≤ exp([αn](hreg − h∗)+ 3[αn]ε) ≤ Const exp [αn](hreg − h∗ + 3ε) (5.4)

again uniformly for regular Hm values, and for m large enough, exponentially decreasing
as m → ∞, for ε small enough.

By the Gibbs property, the same estimate holds for conditional measure μ in Hm,
namely μ(V[αn](Hm) ∩Hm/μ(Hm), or just for μ restricted to Hm, summed over regular
Hm values.

Step 2. Close cylinders. We keep n, m and arbitrary α ≤ 1 as above and consider
an arbitrary integer 0 < k ≤ m. We take care of intersections of Ĥm with Ĥ ′

m values
with i−k 
= i′−k but it = i′t for all t = 0, . . . , −(k − 1). Consider f−k(Hm) as one of the
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summands of the union

Hm−k := Hi−m,...,i−k | =
⋃

i−k+1,...,i0

Hi−m,...,i−k | ∩ V|i−k+1,...,i0 .

By the estimate in Step 1 for m− k, we cover the union of intersections Ĥm−k ∩ Ĥ ′
m−k

with margins by a family of πx,y-projections of Vαn(ε,m−k) values being (η, ε, [αn(ε, m−
k))]-forward regular, leaving aside the part covered by irregular vertical ones, for
Hm−k backward regular. The union of this family has μ-conditional measure in Hm−k
bounded by

Const exp[αn(ε, m− k)](hreg − h∗ + 3ε).

So, the union of these Hm−k ∩ V[αn(ε,m−k)] values has exponentially shrinking measure
μ = μt0 for each m and for m− k growing from m0 to m. So the sums over k =
0, . . . , m−m0 are bounded by a constant independent of m, say by 1

2 . By f -invariance
of μ, the same bound by 1

2 holds for
⋃
k=0,...,m−m0

f k(R(m, k)), where R(m, k) is the
union of all regular Hm−k ∩ V[αn(ε,m−k)] above.

By construction, all f k(Hm−k ∩ V[αn(ε,m−k)]) (regular and not regular) are unions of
‘rectangles’ Hm ∩ V[αn] because [αn(ε, m− k)] ≤ [αn]. So their f [αn]-images are unions
of entire H[αn]+m values.

The conclusion is that for each m, n = n(ε, m), the union Hb(m, reg) of all ‘regular’
(more precisely f [αn]+k-images of regular, see also Step 3) Hm+[αn] values whose
πx,y-projections intersect at most bounded number of others in the same H[αn], not only
‘regular’ Ĥ ′

m+[αn] values, together with the union of all ‘irregular’ ones, to be estimated in
Step 3, has measure μ at least 1

2 . (In the proof of Lemma 3.6 and in the proof of Theorem
4.1 (Theorem 1.2), we just removed irregular horizontal cylinders, with union given n of
measure tending to 0 by Birkhoff ergodic theorem, and eventually with lim supn→∞ of
measure 0. These unions could be even proven to be of exponentially decreasing measure
μ if we referred to the large deviations Lemma 7.1. Here we have additional summing over
k which makes these irregular unions of measure larger than a positive constant for all n
and depending on n. If we removed them, we would risk removing everything.)

We write ‘bounded number’ rather than not intersecting at all, since we have not taken
care of intersections of Ĥm−k ∩ Ĥ ′

m−k form− k < m0, that is, after acting by f̂ k+[αn], the
intersections of Ĥ ′

m+[αn] and Ĥm+[αn] are ‘close neighbour’ cylinders with coding different
at most on positions −(m+ [αn]), . . . , −(m+ [αn] −m0).

Step 3. Remote cylinders. We discussed above Ĥm+[αn] intersecting bounded number
of Ĥ ′

m+[αn] values in the same Ĥ ′
[αn]. We do not know how to avoid intersections of

Ĥm+[αn] and Ĥ ′
m+[αn] having (i−[αn], . . . , i0|) different from (i′−[αn], . . . , i′0|). However,

for each (ξ , ε, [αn])-backward regular for ξ = λ′, ν′ and p ∈ H := Hm+[αn] and p′ ∈
H ′ := H ′

m+[αn] in different horizontal cylinders H[αn] and in each Ws
x ,

Bs(H ∩Ws
x , Cλ−

m+[αn](p)) ∩ Bs(H ′ ∩Ws
x , Cλ−

m+[αn](p
′) = ∅ (5.5)

for arbitrary constant C > 0, m, n large enough, ε small, provided

exp[αn]χμ(ν′) � exp(m+ [αn])χμ(λ′),
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that is, we assume

α <
χμ(η

′)
−χμ(ν′)+ χμ(λ′)

. (5.6)

Step 4. Irregular sets. Above ‘regular’ means: in
⋃

0≤k≤m−m0
f [αn(ε,m−k)+k(R(m, k)),

that is, in H1(m, k, reg) := f [αn(ε,m−k)+k](H(ε, m− k)) and in H2(m, k, reg) :=
f [αn(ε,m−k)+k](V(ε, n(ε, m− k))) for all k = 0, . . . , m−m0, and additionally not in
H3(t , irreg) for all t large enough, see below.

Denote the complementary ‘irregular’ sets in
⋃{Hm+[αn(ε,m)} by H1(m, k, irreg) and

H2(m, k, irreg).
Due to large deviations Lemma 7.2, see (7.1),

μ(H1(m, k, irreg)) ≤ Const exp −(m− k)τ

and

μ(H2(m, k, irreg)) ≤ Const exp −[αn(ε, m− k)]τ

for a constant τ > 0 depending on ε, and the functions λ′ and η′.
When we take unions over 0 ≤ k ≤ m−m0, we obtain an upper bound for measure

μ of the unions Hi (m, irreg) for i = 1, 2 of these ‘irregular’
⋃{Hm+[αn(ε,m)} values by a

small constant, say 1
8 , for m0 large enough, for each n (formally for each m, but then each

n is counted by a bounded number of times).
Finally, we distinguish another irregular set in

⋃{Hm+[αn(ε,m)}, for each m large enough,
namely the complement H3(m, irreg) of the set of all (ξ , ε, m+ [αn)]-backward regular
cylinders Hm+[αn] for ξ = ν and λ. By Birkhoff ergodic theorem, we can assume that
μ(

⋃
t>N H3(t , irreg)) < 1

8 . for N large enough (compare μ(lim supn→∞ Yε,n) = 0 in the
proof of Lemma 3.6).

Step 5. The conclusion in stable manifolds. Denote H(m, reg) := Hb\⋃3
i=1 Hi (m, irreg).

To conclude the proof of our theorem, use now [17, Lemma 3] for the conditional measure
μsx on Ws

x . It yields in our case that due to μ(H(m, reg)) ≥ 1
2 − 3 · 1

8 = 1
8 for m large

enough, hence μsx(H(m, reg) ∩Ws
x ) ≥ Const · 1

8 , for a positive measure μsx subset W
of Ws

x , for every q ∈ W there is a sequence mj such that Hmj+[αnj ](q) ∈ H(mj , reg).
In particular, there is a sequence of ‘regular’ horizontal cylinders containing q of level
tending to ∞, whose πx,y-projections are each at most boundedly intersecting the family
of projections of other horizontal cylinders of the same level, provided they are both in
H[αn](q).

Therefore, for q ∈ W by Gibbs property, due to χμ(ν′) < χμ(λ
′), equation (5.6), and

regularity, there is a sequence rj ↘ 0 such that

μsx(B(q, rj )) ≤ Cr
t0
j . (5.7)

Hence �t0(W) ≥ Const C−1μsx(W), see e.g. [12, Theorem 8.6.2].
The density d�t0/dμ

s
x is positive μ almost everywhere since the set W can be found

of measure μ arbitrarily close to 1. This can be achieved by replacing the constants 1
2 and

1
8 by arbitrarily small positive constants, by increasing m0 adequately. This increases the
allowed bound of the multiplicity of intersections of Hm+[αn] values, thus increasing C.

https://doi.org/10.1017/etds.2021.94 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.94


3482 R. Mohammadpour et al

Another variant of this part of the proof is to use ergodicity of f.
Finally, the existence of an upper bound of d�t0/dμ

s
x , in particular finiteness of

�t0(W
s ∩�) follows from the uniform boundedness from below of μsxB(q, r)/rt0 for

r small enough, see Lemma 4.3. We again refer to [12, Theorem 8.6.2].
Step 6. Packing measure in �. To prove 0 < �1+t0(�) in equation (5.2), notice that for

an integer n0 and every q ∈ W, every kj := mj + [αnj ], as at the beginning of Step 4, and
every p1, p2 ∈ Wu(q), we have the following inclusion of intervals:

πx,y(Hkj+n0(q) ∩Ws
πx(p1)

) ⊂ πx,y(Hkj (q) ∩Ws
πx(p2)

),

provided dist(p1, p2) < r ′j , where r ′j := λ−
kj+n0

(q).
In words: each square of sides of order r ′j , namely

[πx(p1), πx(p2)] × (Ĥkj+n0(p1) ∩Ws
πx(p1)

)

is a subset of a piece of Ĥkj (q) of length r ′j (along the x-axis), with vertical (along the y)
sections of length of order rj , where rj := λ−

kj
(q).

Hence, for a ‘skew product’ μ̂ as in equation (4.2),

μ̂(B(p1, Const r ′j ) ≤ Const r1+t0
j .

We used here the fact that for Const > 0 small enough,

πx,y(B(p1, Const r ′j ) ∩Ws
πx(p1)

) ⊂ Ĥkj+n0(p1) ∩Ws
πx(p1)

.

Applying Frostman lemma finishes the proof of the left-hand side inequality of equation
(5.2). The right-hand side inequality follows from Lemma 4.3.

Remark 5.2. When we take the f k or f n+k image, the conditional measures stay the same
by the f -invariance of μ.

The phenomenon which manifests and helps is the affinity of the mapping when we
measure distances with respect to invariant measures after passing to conditional measures
on unstable foliation.

Remark 5.3. Notice that in estimating from below the local dimension δs of � ∩Ws(p)

for a.e. p, we referred to Ledrappier–Young formula, using Wss
loc(p) ∩� = {p},

Lemma 2.11.
In fact, we knew there only that Ĥ2n(p) did not intersect Ĥ2n(p

′) such that H2n(p
′) ⊂

Hn−1(p) \Hn(p), but we did not exclude the intersecting for H2n(p
′) ⊂ Hn(p). To avoid

intersections, we splitHn(p) intoHn+1(p) and the complement, splitting both intoH2(n+1)

and getting disjointness for H2(n+1)(p
′) ⊂ Hn(p) \Hn+1(p), and so, splitting Hn+1(p),

Hn+2(p) . . .. This allowed the local disjointness of Ŵu values as in the preceding
paragraph.

We coped with the disjointness of entire Ĥn values in §5 on packing measure, but for
each Wu, the disjointness of the consecutive cylinders containing it has been proved only
for a sequence of n values.
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For a sequence of n values, multiple self-intersections happen, thus leading to a proof
that Hausdorff measure of each Ws ∩� in dimension t0 is 0, see [17] in the affine case.
See the next section.

6. Hausdorff measure
THEOREM 6.1. For f like in Theorems 1.2 and 4.1, Hausdorff measure in dimension t0,
denoted by HMt0 on each Ws

x , satisfies

HMt0(W
s
x ∩�) = 0, (6.1)

and

HM1+t0(�) = 0. (6.2)

Proof. Two horizontal cylindersHn,1, Hn,2 of level n are said to overlap if for each x ∈ S1

the set Ĥn,1 ∩ Ĥn,2 ∩ Ŵ s
x is non-empty (remember that the ‘hat’ means the projection by

πx,y).
Such a pair exists. Indeed, take Wu(p1) and Wu(p2) for p1, p2 ∈ � so that their πx,y

projections intersect at πx,y(p1) = πx,y(p2) (such an intersection point exists, see [2]).
Thicken them by Hk,1, Hk,2 and consider vertical Vm containing p1 and p2. If m is large
enough, then Hk+m,1 := f m(Hk,1) and Hk+m,2 := f m(Hk,2) overlap.

Here, Hn,0 is said to have an order d overlap if there exist Hn,i , i = 1, . . . , d horizontal
cylinders of order n such that for all x ∈ S1 and i = 1, . . . , D,

Ĥn,0 ∩ Ĥn,i ∩ Ŵ s
x 
= ∅.

Such a family exists for every d and some n. Indeed, suppose we found alreadyHn,0 having
an order d − 1 overlap with Hn,i , i = 1, . . . , d − 1. Take Hn,d with i′0 
= i0, the zero
symbols for Hn,0 and Hn,d , so that the intersection Ĥn,0 ∩ Ĥn,d ∩ Ŵ s

x is non-empty, say
contains a point q = (x, y). Then consider vertical Vm whose πx,y projection contains q.
Then as above, for m large enough, f m(Hn,i ), i = 0, 1, . . . , d , is the required family.
(Notice that the latter intersection contains a point in �̂ provided q ∈ �̂; however we shall
not use this observation.)

Choose now an arbitrary Birkhoff forward regular p̃ ∈ Hn,0 ∩�. Replace the over-
lapping cylinders Hn,i , i = 0, . . . , d by Hn+k,i = f k(Hn,i ∩ Vk) for Vk � p and k large,
to use time convergences in Birkhoff ergodic theorem. So, for p := f k(p̃), we have for
each i = 0, . . . , d , Hn+k,i ∩Ws(p) ⊂ Bs(p, Const λ−

n+k(p)). This is so due to χμ(ν′) <
χμ(λ

′) since then ν−
k (p) � λ−

n+k(p) for all k large enough (depending on p̃). Therefore
this property is forward invariant under f.

We conclude that for r = Const λ−
n+k(p)) for x = πx(p), and adequate constant C,

μsx(B(p, r)) ≥ C(d + 1)rt0 . (6.3)

The set A(d) of these p has positive measure μ and is invariant under holonomies hx,x′ .
Therefore, invoking also ergodicity of μ, equation (6.3) holds in every Ws

x for μsx-a.e. p ∈
Ws
x and r = r(p, d). If we consider A = ⋂

d∈N(
⋃
n∈N f n(A(d))), then using Frostman
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lemma, we prove equation (6.1) for� replaced by A. Finally, use Lemma 4.3, by which for
each x, for A′ := � \ A, μsx(A

′) = 0 implies HMt0(A
′) = 0.

Similarly, compare the proof of Theorem 4.2, Step 3, one proves equation (6.2).

7. Final remarks
7.1. Large deviations. We refer to the following lemma, see e.g. [7, Theorem 1.1].

LEMMA 7.1. (On large deviations) Let F : X → X be an open distance expanding map
of a compact metric space, see [12, §4.1]. Then, for any Hölder continuous potential
� : X → R, let μ� denote the unique Gibbs invariant measure for �, see [4]. Consider
arbitrary Hölder functions φ, ψ : X → R. Then, for every t ∈ R,

lim
n→∞

1
n

log μϕ

({
x ∈ X : sgn(t)Snψ(x) ≥ sgn(t)n

∫
X

ψ dμϕ+tψ
})

= −t
∫
X

ψ dμϕ+tψ + Ptop(ϕ + tψ)− Ptop(ϕ),

where by Ptop we denote topological pressure, see e.g. [12].

Writing
∫
ψ dμϕ+tψ − ∫

ψ dμϕ := ε, we can rewrite the above formula as follows:

lim
n→∞

1
n

log μϕ

({
x ∈ X : sgn(t)Snψ(x) ≥ sgn(t)n

( ∫
ψ dμϕ+tψ + ε

)})

= −t
∫
X

ψ dμϕ+tψ + Ptop(ϕ + tψ)− Ptop(ϕ) := I (±ψ , ε).

The latter I (ε) measures the nonlinearity of t �→ Ptop(ϕ + tψ).
A basic example of such F is ς : �+

d → �+
d being the left shift map on the one-sided

shift space with the standard metric dist(i, i′) = ∑
n∈N |in − i′n|d−n.

Symmetrically, one considers the right shift map ς−1 : �−
d → �−

d on the space of
sequences (. . . , in, . . . , 0|). We can consider two-sided sequences or e.g. our solenoid
� identifying sequences with the same future, or past as for our Ws values and f−1.
Compare Definition 2.1.

In particular, the following holds.

LEMMA 7.2. For every Hölder φ and ψ , for every ε > 0, there exist C > 0 and τ > 0
such that for every n ∈ N,

μϕ

({
x ∈ X :

∣∣∣∣Snψ(x)− n

∫
�+
d

ψ dμφ

∣∣∣∣ ≥ nε

})
≤ C exp(−nτ). (7.1)

In §§3 and 4, proving e.g. that μsx(NL
w ∩Ws

x ) = 0 in Lemma 3.6, we did not use
large deviations. In §5, we already did (the qualitative version of Lemma 7.2. Now we
shall show how the usage of large deviations, Lemma 7.1, allows to estimate from above
Hausdorff dimension of the set in each Ws

x where the holonomy is not locally Lipschitz,
thus strengthening Lemma 3.6. See also notation in and after Lemma 2.9.
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PROPOSITION 7.3. For every Ws
x , the strict inequality HD(NLw ∩Ws

x ) < t0 = HD(� ∩
Ws
x ) holds. More precisely,

HD(NLw ∩Ws
x ) ≤ inf

ε>0
max{Aε, Bε}, (7.2)

where

Aε = t0 − (Iε(log λ′, ε)/χμ(λ′))
/(

1 + −χμ(λ′)− ε

χμ(η′)− ε

)

and the same with log λ′ replaced by − log η′. Also, with the latter fraction above replaced
by its inverse,

Bε = t0 − t0(1 − ε/χμ(λ
′)− (χμ(η

′)+ ε)/(−χμ(λ′)− ε))(−χμ(λ′))
(1 + (χμ(η′)+ ε)/)−χμ(λ′)− ε))(−χμ(λ′)+ ε)

.

Here, Aε bounds Hausdorff dimension of the irregular part and Bε bounds Hausdorff
dimension of the regular non-Lipschitz part.

For ε ≈ 0, the number Aε is bigger. On the other end, for (χμ(η′)+ ε)/(−χμ(λ′)− ε)

almost 1, the number Bε dominates. Optimum is in between.

Proof. First we prove the estimate (7.2) for Bε. We rely on §5, the proof of Theorem 5.1,
Step 1. The coefficient α is not needed, since NLw is a local property and overlappings of
remote cylinders do not count (see the proof of Theorem 5.1, Step 3).

We obtain the uniform estimate for every (λ, ε, m)-backward regular Hm, with n
satisfying equation (5.3) Its ‘contaminated part’ can be estimated as follows, see equations
(5.4) and (4.10),

μ(Vn(Hm) ∩Hm)/μ(Hn) ≤ C(n) exp
(
nh∗ χμ(η)+ ε

−χμ(λ)− ε

)
· exp(−n(h∗ − ε))

≤ C(n) exp nh∗
(
χμ(η)+ ε

−χμ(λ)− ε
− 1 + ε

h∗

)
, (7.3)

where C(n) grows sub-exponentially. We used here, as already e.g. in equation (5.4),
the fact that Const−1 μ(Hm ∩ Vn)/μ(Hm)μ(Vn) < Const following from Gibbs property
of μ.

Now by summing over regular Hm with weights μ(Hm), we get the same estimate for
μ(

⋃
Hm
(Vn(Hm) ∩Hm)) and by the f -invariance of μ, the same estimate for H′(n) :=

f n(
⋃
Hm
(Vn(Hm) ∩Hm)) for n = n(ε, m), built of cylinders Hm+n.

Now we shall translate the measure estimate above for all m, n(ε, m), to an estimate of
Hausdorff dimension.

Denote μ(H′(n)) by μn. By Gibbs property of μ = μt0 and using normalized restric-
tions μn := μ|H′(n)/μn, considering conditional measures onWs (not changing notation),
we get for each Hn+m ⊂ H′(n) and p in it,

μn(Hn+m) ≥ Const(λ−
n+m(p))t0/μn ≥ exp((n+m)(χμ(λ

′)− ε)(t0 − ϑn), (7.4)
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where ϑn := log μn/((n+m)(χμ(λ
′)− ε)), with m expressed by n maximal possible to

satisfy equation (5.3). So, for any x ∈ S1,∑
Hn+m⊂H′(n)

diam(Hn+m ∩Ws
x )
(t0−ϑn)κ ≤

∑
Hn+m⊂H′(n)

μn(Hn+m) = 1, (7.5)

where κ = (χμ(λ
′)− e)/χμ(λ

′). By an arbitrarily small change of κ , we can assure the
bound by 1 replaced by numbers tending exponentially to 0 asm → ∞, allowing summing
over m.

So, taking ε → 0, for ϑ := lim infn→∞ ϑn,

HD(NLw ∩Ws
x ) ≤ HD

(
lim sup
n→∞

H′(n)
)

≤ ϑ .

This, after simple calculations, yields the estimate by Bε in our Proposition. For an
explanation of the structure of Ls complementary to the set NLw ⊂ lim supn→∞ H′(n),
(with 2n there in place of m+ n here), see Remark 5.3.

Now we estimate the irregular (backward) part, related to Aε. For this, we define
similarly to Hi in §5 but with k = 0 and α = 1. We add λ, η and ε in the notation of
Hi . We consider

H1(λ, ε, m, irreg) ⊂
⋃

Hm+n

and

H2(η, ε, n, irreg) ⊂
⋃

Hm+n.

We define also as in the proof of Theorem 5.1, Step 3, the set

H3(ξ , ε, n, irreg) ⊂
⋃

Hm+n for ξ = λ, ν.

Applying Lemma 7.1 for ψ = log λ′, replacing m by n+m, we get for H1,

HD(lim sup H1(λ, ε, m, irreg)) ≤ t0 − (I (log λ′, ε)/χμ(λ′))
/(

1 + −χμ(λ′)− ε

χμ(η′)+ ε

)
,

for H2, replacing n by n+m,

HD(lim sup H2(η, ε, n, irreg)) ≤ t0 − (I (− log η′, ε)/χμ(λ′))
/(

1 + χμ(η
′)+ ε

−χμ(λ′)− ε

)

and for H3,

HD(lim sup H3(λ, ε, n, irreg)) ≤ t0 − (I (log λ′, ε)/χμ(λ′))
/(

1 + χμ(η
′)+ ε

−χμ(λ′)− ε

)
.

7.2. Generalization to one-dimensional expanding attractors. All the theorems in this
paper hold also for hyperbolic expanding attractors in dimension 3 with one-dimensional
unstable manifolds, non-uniformly thin (see definition in §1) and satisfying the transver-
sality assumption, of which our solenoids are examples. The only exception is the
Theorem 6.1 on singularity of Hausdorff measures, where the assumption that for some
p, q ∈ �, a non-empty intersection of projections Ŵu(p) and Ŵu(q) is needed. For our
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solenoids, it holds automatically, but for extensions to R3 of say Plykin or DA attractor, it
is not so. See [18].

Proofs are the same since these attractors are extensions of expanding maps on branched
1-manifolds and Markov coding can be used.

7.3. More on solenoids—coordinates. In fact, Theorems 1.2–1.6 hold for

f (x, y, z) := (η(x, y, z), λ(x, y, z)+ u(x), ν(x, y, z)+ v(x)), (7.6)

of class C1+ε, injective, such that f (cl M) ⊂ M , satisfying λ(x, 0, 0) = ν(x, 0, 0) = 0,
with hyperbolic attractor �, and satisfying transversality, the non-conformal form more
general than f in the triangular in equation (1.1).

Indeed, we are interested in a non-conformal solenoid, so we assume that the tangent
bundle on M, or at least on �, splits into T�M = Eu ⊕ Es , Df invariant, where Es , the
stable one, splits further into weak stable and strong stable T�M = Eu ⊕ Ews ⊕ Ess , or at
least Es contains a strong stable Ess . Note that Es is dynamically defined on the whole M,
not only on�, by Es(p) := lim Df−n(Cs(f n(p))), where Cs denotes a stable cone taken
equal to a cone at a point in � near f n(p). Similarly, one proves that the bundle Es on
M is integrable to a stable foliation Ws of M. As having codimension one, it is C1+ε, see
[11]. Therefore, under an appropriate C1+ε change of coordinates, it becomes the foliation
of M by vertical discs Ws

x = {x} × D.
Additionally, strong stable foliation Wss (of the whole M as obtained as a limit from

the future) can be made consisting of vertical intervals, that is, with x, y constant. This
foliation is known to be C1+ε in Ws , see [5], so, after a change of coordinates so that it
becomes vertical, our diffeomorphism is C1+ε in eachWs . However, we do not know what
is the smoothness of f in the new coordinates in the whole M.

Therefore, to deduce this general case from our triangular case by change of coordinates,
we just assume Wss is C1+ε in M. A question stays open whether this assumption is
needed, that is, whether we really use f being C1+ε in the triangular coordinates.

The following completes the topological picture. Suppose f is already in the triangular
form.

LEMMA 7.4. There exists on M a change of coordinates �(x, y, z) = (x, y, ψ(y, z),
bi-Lipschitz continuous, such that the foliation into the sets x, z constant is invariant and
its �−1-image is a central stable foliation Wsc with leaves C1 smooth.

Proof. Extend f to f̃ : S1 × R2 → S1 × R2 so that λ and ν are linear with respect to y
and z, respectively, far from M.

Next find Wsc as a limit of f̃ n(Wy), where Wy is the foliation of M into the intervals
x, z constant. By bounded distortion, one gets Lipschitz property of the limit and, in
particular, a true foliation (leaves do no glue partially to each other in the limit).

Our Df in these coordinates would be diagonal which would ease estimates. Unfortu-
nately, this central stable foliation and, therefore, f in the new coordinates seems usually
not C1+ε.
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7.4. Summary of our strategies. The key objects in the paper are ‘rectangles’ being
intersection of horizontal and vertical strips Ĥm and V̂n, ‘cylinders’ of level m and n,
projections to the plane (x, y) of tubes and thickened discs. Such Markov rectangles are
basic objects in hyperbolic dynamics.

Horizontal strips can intersect transversally other horizontal strips. An issue is to
estimate how the large part of any horizontal strip is intersected, ‘contaminated’ by other
horizontal strips, measured in a number of contaminated (with margins) rectangles. The
tool is going backward by f−m or forward by f n to large scale, so that the rectangles
become full (that is, over [0, 2π ]) horizontal strips and results do not depend on sections
by stable discs Ws . We distinguish Birkhoff irregular sets among full unstable manifolds
(over [0, 2π ]) and prove they have stable SRB-measure 0 and even Hausdorff dimension in
eachWs less than the dimension of� ∩Ws . We estimate also the size of the contaminated
set of Birkhoff regular unstable manifolds. In each section, the choice of m to n (or vice
versa) and auxiliary k is different, depending on our needs.
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