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A NOTE ON THE LEAST QUADRATIC NON-RESIDUE
OF THE INTEGER-SEQUENCES

M.Z. GARAEV

In this paper we consider the problem of an upper bound estimate for the least
quadratic non-residue modulo prime number on special arithmetic sequences such as
/(n) = [an] and f(n) = [nc].

1. INTRODUCTION.

Throughout the text p denotes a prime number. We also use the following notations:
A <C B means that |yl| < cB for some positive number c which may depend only on

a,... ,b

a,. . . , 6, (a/p) denotes the Legendre symbol, and d denotes the least positive quadratic
non-residue (mod p) that is, the least positive integer for which (d/p) — - 1 .

The problem of an upper bound estimate for d originates in the work of Vinogradov
[10], where he gave the estimate

d < p

Vinogradov based his proof on the inequality

discovered by him and independently by Polya [6]. Currently the best upper bound for
d is due to Burgess [1] where he obtained the estimate

(1) d « p 1 / ( 4 ^ + £ .

Such problems for special arithmetic sequences have been considered by Preobrazhenskii
[7, 8].

DEFINITION: ([8].) Let / be a real-valued function on the natural numbers. The
family of integers [f(n)] is called the integer-sequence.

We denote by nmin(/) the least positive integer n such that the number [/(n)] is a
quadratic non-residue (mod p).

Received 13th May, 2002

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 SA2.00+0.00.

1

https://doi.org/10.1017/S0004972700037369 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037369
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THEOREM. ([8]) Let f(n) = an where a is a reai irrational number and assume that
the incomplete quotients of the continued fraction expansion of a are bounded. Then for
any e > 0 the estimate

(2) nm i n( / ) «

holds.

In other words if qk+\/qk are bounded then (2) holds, where by qk we denote the
denominators of the convergents of a, arranged in increasing order. It should be pointed
out that the proof of the above Theorem is of use to obtain (2) also for a with qk+\ < q\+e

for large k. This holds for algebraic a in view of Roth theorem. But it is also true for
almost all a in the sense of Lebesgue measure. The following statement is a consequence
of [3, Theorem 32]:

THEOREM. ([3]) Let e be any fixed positive number. Then for almost all a the
inequality

a-P-
q q,2+e

has at most a finite number of solutions for integers p and q (q > 0).

By taking p/q = Pk/qk where pk/qk is a convergent of a, and using

Pka 1

qkQk+1

we see that for almost all a and for all k > ko{a,e) we have qk+\ < ql+e. Therefore in
view of the proof of the Theorem of [8] we conclude that estimate (2) in fact holds for
all irrational algebraic as well as for almost all a.

2. STATEMENT OF THE RESULTS

The following Theorems 1, 2 and 3 are the results of our note:

THEOREM 1 . Let the integer-sequence [f{n)] be such that

where <t>(n) is an increasing sequence and assume that there is a positive integer M such

that / ( I ) < <£(M) < p - M and

Then

nmin(/) ^ M.

Using arithmetic properties of the sequence [an] we can improve the estimate of

Theorem 1 for this special case:
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THEOREM 2 . Let f(n) - an where a > 0. Tien for any e > 0 tiere exists c(e) > 0
such that the estimate

nm i n(/)
a

is valid for all primes p,p > (a2 + (l/a))c(e).

Our estimate is less precise than (2), however it is valid for all a > 0.

Theorem 1 gives an upper bound for nmjn(/) when f(x)/x increases very slowly. For
example if f(n) = n(logn)1"4 then for any small positive numbers e, 6 one has

nm i n( / )<<p1 / 2 + £ .

A corresponding question naturally arises for functions f(n) which grow faster than
nlogn, say for f(n) — nc with non-integer c, c > 1. In this regard we prove the following
result:

THEOREM 3 . Let f(n) = nc where 1 < c < (12/11), and e > 0. Tien

e,c

for all sufficiently large p.

3. PROOF OF THEOREM 1

The following statement is a particular case of a general celebrated result of Weil
[12] (see also [11, p. 11, Lemma 2C; p. 45, Theorem 2G]).

LEMMA 1 . Let h(x) — (x-ai)... (x-ak) where the integers a i , . . . , o* are different
(mod p). Then

p—i i / \

x=0

LEMMA 2 . Let N, M be any integers 0 ^ M ^ p — 1. Tien under t ie conditions

of Lemma 1 we iave
N+M

x=N

PROOF: Since for integers x, 6 one has

y ^ W X - W P ) f 1. i f * = 6 (mod P)
0, ifx&S (modp)
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then
N+M

x=N
N+M

p-l p-l

)\

=N i=0 o=o

N+M , |P -1
j™<««/ri k

11 x=0

Applying Lemma 1 we have

p - l N+M

S=N

Picking up the term corresponding to a = 0, and evaluating the sum over 6 for 1 ^ a
^ p - 1 we obtain

N+M , , , i p - l

The latter sum is not greater than plogp (see for example [4, p. 109-110]). Therefore

i=JV

Let us now prove Theorem 1. Consider the function

n = l

where hn(x) — 1 — ((x + n)/p). We have that

M M

- • - 1^—' V " '
i = l !i=l

The function H{x) - 1 is a sum of 2MMM+1 - 1 functions of the type ±(h{x)/p) with
h(x) subject to the conditions of Lemma 1 and 2 (the roots of h(x) are distinct (mod p)
since <f>(M) < p). Therefore applying Lemma 2 each time with N — 1 we obtain

M

] T F{x) >M- 2*(M)+2 ((/>(M) + 1) p1'2 log p > 0.

D
Since > 0 then F(x) ^ 0 for some x, 1 ^ x ^ M and hence

p ) \ p
Theorem 1 now follows from the conditions

= - 1 .

/(I) [f(n + 1)] - [/(„)
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4. P R O O F O F T H E O R E M 2

We need a well-known result of Burgess [1]:

LEMMA 3 . Let S, e be any fixed positive numbers. Then for all sufficiently large p

and any N, we have
N+H

provided H>

As we agreed before d denotes the least positive quadratic non-residue (mod p).

For the proof of Theorem 2 we distinguish 3 cases:

CASE 1. a is an irrational, a > 1.

Let

a = +

be an expansion of a into a continued fraction and denote by Pi/<7i,P2/<72, • • • the conver-

gents of a. If we set po = 1> Qo = 0 then we can write

Pi = Oi = [o], 9i = 1, Pfc+i = Gfc+iP/t +Pfc-i,

There exists a number k such that qk ^ d < qk+l. From the properties of continued

fraction we have
9

Qk QkQk+i

where 0 < 9k < 1 for odd k, and - 1 < 9k < 0 for even k.

If k is odd integer then from qk+i > d we have

[a?*] = Pfc> [udqk] = dpk.

Since d is a non-residue (mod p),pk < ad < p then one of the numbers pk,dpk is a

quadratic non-residue (mod p). Now the required estimate follows from

dpk ^ d2 < p1 / ( 2^+£

where we used (1).

Let k be an even integer. Consider 2 possibilities,

(a) qk+i ^ pt1/4)"1"5. Then we can write

_ Pk+i 0/t+i
a — ~r

Qk+l ik+lQk+2

where 0 < 6k+\ < 1. We have as before

[aqk+i] = pf c + 1 , [adflfc+i] = pt+irf, p*+i < a p ( 1 / 4 ) + £ < p.
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Now the required estimate follows from

(b) qk+\ > p(1'4'+e. Put H — pW*>+t and let n = xqk where x runs through integers

x < H. Since — 1 < 6k < 0 then [an] = xpk - 1. Also note that pk < 2agfc < p.

We make use of Lemma 3. Taking 6 = 1/2 we have that

H

where p\ is defined from pkp*k = 1 (mod p). Hence among the numbers xpk -1 with 1 ̂  x
^ p(i/4)+e there exists a quadratic non-residue (mod p). Therefore

Case 1 is thus treated completely. D

C A S E 2. a is rational, a > 1.

In this case the number of convergents of a are finite. Let P\/q\,... ,pr/qr be all
convergents of a. If qr ^ d then we prove Theorem 2 by taking n = qr or n = dqr. If
qT > d then from qi = 1 we deduce that qk^ d < qk+i for some fc < r. The remainder of
the proof is the same as in Case 1 and we omit it here.

C A S E 3. 0 < a ^ 1.

The case a = 1 is classical and the desired estimate follows from (1).

Let 0 < a < 1. Then for n0 = [d/a] +1 we have

an0 = a[d/a] +a — d + a ( l - {d/a}),

when [an0] = d. Therefore n m i n ( / ) ^ n0 <

Theorem 2 is thus proved. D

5. P R O O F OF T H E O R E M 3

The following two Lemmas are well known and can be found for example in [2,

p. 255]:

LEMMA 4 . For any real number t we have

where g{t) = 1/2 - {t}.
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LEMMA 5 . Let M = H log if, H > 10. Then

where |cA| < (log H / H)e

Let 0 < a < /3 < 1, and
defined as

logH

= cr(a,/3,i) be a periodic function with period 1

(3)

Then

0, otherwise.

This equality together with Lemma 4 and 5 gives

LEMMA 6 . Let X > 10, H > 10. Then for some 1 < N
€ [N, 2N] we have

r(g(x)) > ^ X - Rlog2 H£
where

In fact, for any real 7 we have

2nihg(x)

X/2<x^X

HlogH and m

* K.S £
XlogH

H

which proves Lemma 6. D

LEMMA 7 . (Van der Korput). Let k be a positive integer, k ^ 2. Suppose that
F(x) is a real-valued function with k continuous derivatives on [X/2, X], X ^ 1. Further
suppose that

0 < X ^ F(k) ^hX, K = 2k~l.

Then

where the implied constant is absolute.

For the proof see [5, p. 378].
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Now we are ready to proceed to prove Theorem 3. Let e\ be a positive number which

is considerably smaller than ((12/11) - c)e. For a large prime p we distinguish two cases

depending on the value of d.

C A S E 1. d^p£i.

Put

Since (7c — 6/6 - 4c) +e\ < 1 then all numbers of the form dx with x ^ X are quadratic
non-residue. Our aim is to find x, (X/2) < x ^ X such that [rf] = dx for some n. It
would then follow that

nmin(f) < (d<3c/6-4<0^)1/c

which together with (1) proves Theorem 3.

The equation [nc] — dx is equivalent to the inequality

This holds if

since ((dX)<1/c)-1)/4 < (dx + \)ll° - (dx)1'*. Therefore it is enough to prove that

where a(t) is defined from (3) with a = 0, /3 = ((dX)^-1)/*. Taking 3(1) = (dx +1)1/0

and applying Lemma 6 we obtain

(5)

where

*«§ 2H\ogH.

We can choose H as we please, provided H > 10.

In order to estimate R we make use of Lemma 7. Here we take F(x) — m(dx + l)1 /c

and k = 3. For X/2 < x ^ X we have

Therefore A x Ndx/cX(x'c)-z. From TV < /flogif it follows that

rt « f £ + Hi/*di/*cXumm,u) + r(i/6c)Xi-(i/6c)^ l o g i /
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We choose now H = X3/Mi/7<0d-(i/7c) a n d r e c a l l (4) Obviously we have H > 10 and

R < (d(4c-3/6-4c)+((4c+l)£l)/7c + d(14c-13)/(2(6-4c))+((6c-l)£i)/6c

From the other side

Since
4 c + 1 1 14c - 13 4c - 3

7c < c ' 2(6 - 4c) K 6 - 4c

then by (5) we have the estimate

which proves the Case 1 in Theorem 3. D

C A S E 2. 2 ^ d<peK

Now our starting point is that dx2 is a non-residue for all x,x < p . We suppose
X/2 < x ^ X and choose X = p1'100.

The equation [nc] = dx2 is equivalent to the inequality

(dx2)1/c ^ n < (dx2 + l) 1 / c .

This holds if

' J ^ 10
Therefore it is enough to prove that

where a{t) is defined from (3) with a = 0,/? = ((dX2)^-1)/^. Analogously to Case 1
we apply Lemma 6 by taking g(x) = (dx2 + l)ll°. We have

(6) E °{(dx2 + I)1") > *""»- ;*""- _ R]0g
2 H,

E

where we can choose any H,H > 10.

In order to estimate R we apply Lemma 7 for F(x) = m(dx2 + l ) l / c and k — 3. It

is easy to see that for X/2 < x ^ X we have

F<3>(x)
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Therefore we can take A x NdllcX^2lc^~3. Then using N ^ H log H we have

e,c \H ) ° g '

We choose now tf = x 3 / 7 - 2 / 7 ^ - 1 / ^ and recall that X = p1/100. Obviously we have
H > 10 and

From c < 12/11 it follows

4 2 2 1 2
- + — < - - 1, 1 < - - l .
7 7c c 3c c

Now the estimate

follows from (6) using d < pei.

Theorem 3 is proved. D

REMARK. TWO kind of problems arise in connection with Theorem 3. One is further
improvement on the range of n m i n ( / ) , and another one is improvement on the range
of c. One is able to apply the method of exponential pairs. It would give after some
consideration the following result:

Let (K, A) be an exponential pair. Then for any c < 2/(1 + n + A) we have

m i n ( / ) P

In 1955 Rankin [9] proved that for some 6 with

0.32902135684 ^ 0 < 0.32902135688

there exists an exponential pair (/c, A) = ((9/2) + e, 1/2 + 9/2 + e) for any small positive
e. Hence we have admissible range for c as

and

c< Y +0.00257... .

nmin(/) ^~ P

where 02 — 0.66451 Both estimate are slightly better than that one of Theorem 3.
However this improvement is not strong enough. One can expect that there is another
way to treat the problem which would make considerably better improvement than we
have just discussed.
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