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ON POLYGONAL PRODUCTS OF FINITELY GENERATED
ABELIAN GROUPS

GoaNsu KM

We prove that a polygonal product of polycyclic-by-finite groups amalgamating
subgroups, with trivial intersections, is cyclic subgroup separable (hence, it is resid-
ually finite) if the amalgamated subgroups are contained in the centres of the vertex
groups containing them. Hence a polygonal product of finitely generated abelian
groups, amalgamating any subgroups with trivial intersections, is cyclic subgroup
separable. Unlike this result, most polygonal products of four finitely generated
abelian groups, with trivial intersections, are not subgroup separable (LERF).
We find necessary and sufficient conditions for certain polygonal products of four
groups to be subgroup separable.

1. INTRODUCTION

Polygonal products of groups were introduced by Karrass, Pietrowski and Solitar
[6]. Using their result, Brunner, Frame, Lee and Wielenberg [5] determined all torsion-
free subgroups of finite index in the Picard group PSL(2, Z[i]). In [3], Allenby and
Tang proved that polygonal products of four finitely generated free abelian groups,
amalgamating cyclic subgroups with trivial intersections, is residually finite. Kim and
Tang [9] showed that certain polygonal products of four nilpotent groups, amalgamating
cyclic subgroups with trivial intersections, are residually finite. In this paper, we prove
that polygonal products of more than four polycyclic-by-finite groups amalgamating any
subgroups, contained in the centres of their vertex groups, with trivial intersections are
7e (Theorem 2.11), hence they are residually finite. Thus, polygonal products of more
than four finitely generated abelian groups, amalgamating any subgroups with trivial
intersections, are m.. It was relatively easy to prove the same result for those polygonal
products with four vertex groups and cyclic subgroups amalgamated [8]. Note that
polygonal products of four polycyclic-by-finite groups amalgamating cyclic subgroups,
contained in the centres of their vertex groups, with trivial intersections is conjugacy
separable [7]. Unlike the case for residual finiteness or for conjugacy separability, most
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polygonal products of four finitely generated abelian groups amalgamating cyclic sub-
groups with trivial intersections are not subgroup separable (Theorem 3.3). We also
find necessary and sufficient conditions for certain polygonal products of four groups to
be subgroup separable (Theorem 3.2).

Briefly polygonal products of groups can be described as follows {3]: Let P be a
polygon. Assign a group G, to each vertex v and a group G. to each edge e of P.
Let a, and 8. be monomorphisms which embed G, as a subgroup of the two vertex
groups at the ends of the edge e. Then the polygonal product G is defined to be the
group generated by the generators and relations of the vertex groups together with the
extra relations obtained by identifying g.a. and g.8. for each ¢, € G..

By abuse of language, we say that G is the polygonal product of the (vertex) groups
Go, G4, ..., G,, amalgamating the (edge) subgroups Hy, Hy, ..., H, with trivial in-
tersections, if G;NG;4y = H; and H; NH;y, = 1, where 0 € 7 £ n and the subscripts
i are taken modulo n + 1.

Finally, we note that a polygonal product can appear as a subgroup of a group, and
then the residual properties of the polygonal product determine the residual properties
of the whole group, as in the following example.

EXAMPLE 1.1: Let G = {a, b;[a, b~1ab], a™, b™), where n # 0. Clearly G is a
finite cyclic extension of (a)®. We note that {a)® = (ao, a1, -, @n_1;a%, [ai, ait1]),
where a; = b~*ab’ and the subscripts i are considered modulo n. For n > 3, we may
consider (a)® as the polygonal product of the abelian subgroups {a;, a;4+;) amalga-
mating the subgroups (a;y1), where the subscripts are taken modulo n. By Theorem
2.12, we can see that (a)® is m. for n > 4. If n = 1,2, 3 then (a)® is finite abelian.
Therefore, G is m. for all n # 0.

We shall adopt the following notation and terminology:

We use N <y G to denote that the normal subgroup N of G has finite index in
G and “f.g.” means “finitely generated”. We denote by A *xyg B the generalised free
product of A and B with the subgroup H amalgamated. If G= A*yg B and =z € G,
then ||z|| denotes the free product length of z in G. On the other hand, we use |z to
denote the order of z. If G is a homomorphic image of G, then we use Z to denote
the image of z € G in G.

Let H be a subgroup of a group G. Then G is said to be H-separable if, for
each z € G \ H, there exists N <y G such that z ¢ NH. A group G is locally
eztended residually finite (CERF or subgroup separable) if G is H -separable for all f.g.
subgroups H of G. '

A group G is eztended residually finite (ERF) if G is H-separable for all
subgroups H of G.
A group G is cyclic subgroup separable (w.) if G is (z)-separable for all
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z€G.

A group G is residually finite (RF) if G is (1)-separable.
Clearly, every LERF group is #., and every m, group is RF.
We shall use the following results:

THEOREM 1.2. [4],[1] If A and B are RF (n., LERF) and U is finite, then
Axy B is RF (7ey, LERF, respectively).

THEOREM 1.3. [1] Let G = N - H be a split extension of the normal f.g. sub-
group N by H. f N is ERF and H is (C)RF, then G is (L)ERF. If N and H
are both w. groups, then G is a 7. group.

THEOREM 1.4. [8] Let G = E xyg F. Suppose that

(a) E and F are n. and H-separable,
(b) foreach N <y H thereexist Ng <y E and Nr <y F such that NgNH =
NrNHCN.

Then G is m..

A group G is polycyclic-by-finite if it has a normal subgroup N such that N is
polycyclic and G/N is finite.

2. CYCLIC SUBGROUP SEPARABILITY (m.)

A group G is polycyclic-by-finite if it has a normal subgroup N such that N is
polycyclic and G/N is finite.

In this section we shall prove that a polygonal product of polycyclic-by-finite groups
Ag, A1, ..., A, (n 2 3), amalgamating any subgroups Hg, Hy, ..., H, with trivial
intersections, is m¢ if H;_1, H; C Z(A;) for all i. To prove this result, we have to study
some properties of the group E,, = A1 *g, Az *p, -+ *m,,_, Am, where H; = A;NAj4
for 1 <7 £ m—1, and each A; is a polycyclic-by-finite group containing subgroups
H;_; and H; such that H;_y N H; = 1, where H;—1, H; C Z(A;) for 1 < 1 < m.
Throughout this section E,, denotes the above group.

LEMMA 2.1. For given subgroups U <iy Ho and V <y H,,, there exists N <y
E,, suchthat NN Hy=U, NNH,,=V and NH,NNH,, = N.

PROOF: CASE 1: m > 1. There exists a homomorphism =: E,, — (A1/H\U) *
(Am/Hm-1V), since H;—y, H; C Z(4;). Now A;/H\U and A,,/H._1V are
polycyclic-by-finite, hence, E,, = Ep,m is RF. Thus, since Hy = HoH\U/H,U =
Hy/U and H,, = H,,/V are finite, there exists N Qg E,. such that 1 = NN H,.H,.
Let N be the preimage of N in E,.

CASE 2. m=1. Let U <y Hy and V <y H, be given. Since U, V C Z(A,), we can
consider A; = A;/UV. Then the subgroups Hy and H; of A, are finite. Since 4; is
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RF, there exists N 5 A, such that 1= NNH;H,. Let N be the preimage of N in
A
It is not difficult to see that N satisfies our requirements. ad

LEMMA 2.2. For any given M <y E,_, and N <y A,, there exist P Q5 E,_;
and Q <y A, suchthat PCM,QCN, PNH,_,=QNH,_,, PHoNPH, ; =P
and QHn_l n QH,. = Q.

ProoF: By Lemma 2.1, there exists M; <y E,_; such that M; N Hy = M N Hy,
MiNH,, =MNN, and MHy N MyH,,_, = M;. Similarly, there exists Ny <y A,
such that NNNH, y =MNN, NNNnH, =NnNnH,, and NyH,_; N N:H, = N;.
Let P=MNM; and Q = N N N,. Then it is easy to see that P and Q satisfy the

required conditions. 0

THEOREM 2.3. Let G = E xg F, where E, F are H-separable. Let S be a
subgroup of E and suppose that E is S-separable. Suppose, further, that

(W) foreach N <y H thereexist Ng <y E and Nr <y F such that NgNH =
NenNHCN.

Then G is S-separable.
PROOF: Let g € G be such that g ¢ §.

CAsSE 1. g € E. Since E is S-separable, there exists P <y E such that g ¢ PS.
Now, by (W), there exist P, <y F and @, <y F such that ,NH =@Q:NH C PNH.
Let Ng = PNP, and Np = Q;. Then Ng 5 E,VNF <z F,and NgeNH =P NH =
Q1 NH = NpNH. Thus, we have a homomorphism 7: E g F — E/Ng *3 F[NF,
where H = HNg/Ng = HNp/Np. 1t is clear that § ¢ S, where G = Gx. Since G
is LERF by Theorem 1.2, there exists M <y G such that g ¢ MS. Let M be the
preimage of M in G. Then, clearly, M <; G and g ¢ MS.

CASE 2. g€ F\H. Since F is H-separable, we can find Q <5 F suchthat g ¢ QH.
By (W), there exist P, <y E and Q; <y F suchthat PNH =Q:NH C QNH. Let
Ng =P; and Np = QN Q;. Then Ng <y E, N J F,and NgnNnH=P NH =
@Q:NH = NpNH. Now we consider 7: G — E/Ng *z F/Np as in Case 1. Then
gEF\H and SC E. It follows that § ¢ S. Asin Case 1, we can find M <5 G such
that g ¢ MS.

Cast 3. ||g|| > 2. Assume that g = e;f,---enfn, where e; € E\ H and f; € F\ H
(the other cases are similar). Since E and F are H-separable, there exist P <y E and
Q <y F such that e; ¢ PH and f; ¢ QH for all i. Considering PNQ <y H, by
assumption (W), we can find P, <y E and Q; <y F suchthat P\NH = @;NH C PNQ.
Let Ng = PNP; and Nrp = QNQ;. Then Ng <y E, Ngp <f F and NgNH = NpNH.
Thus we have a homomorphism 7: G — E/Ng *3 F/NF as in Case 1. Then we have
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Il = llgll = 2, where G = G=. It follows that § ¢ S. Now, as in Case 1, we can find
M <¢ G such that g ¢ MS. This proves the theorem. 0

If S = (1), then Theorem 2.3 proves that G = E g F is RF. Thus Theorem 2.3
is a generalised version of [11, Criterion] or [2, Lemma 3.1]. Furthermore, using the
above theorem, we can prove the following two results which are unavoidable for our

main result in this section.
COROLLARY 2.4. The group E, is Hy-separable and H,-separable.

PROOF: Note that E; and E, are LERF by [1, Theorem 5|. Hence the lemma
holds for n = 1, 2. Inductively, we assume that E,_; is Hp-separable and H,_;-
separable. Note that the A; are polycyclic-by-finite, hence A, is also H,,_;-separable.
By Lemma 2.1, for each Ny <1y H,_,, thereexist N <y E,_; and M <y A, such that
NNH,_y = Ny = MNH,_;. This proves (W) in Theorem 2.3 for E, = E,_1*H,_, An.
Thus FE, is Hy-separable by Theorem 2.3. By symmetry, E, is H,-separable. 0

COROLLARY 2.5. The group E, is 7.

ProOOF: Write E, = E,_; *u,_, An. Then E,_; and A, are H,_;-separable
(Corollary 2.4) and satisfy (W) in Theorem 2.3 as in the previous proof. It follows, by
induction and Theorem 1.4, that E,, is .. 1]

LEMMA 2.6. For given = € E,, such that z ¢ HoH,,, there exists N <y Ep,
such that z ¢ NHyH,,.

PRrRoOOF: For m = 1, the lemma is trivial, since E; = A; is polycyclic-by-finite
(hence, it is LERF) and since HoH, is a f.g. subgroup. For an induction, we assume
that the lemma holds for E,,;; that is, for given e € E,,—; such that e ¢ HyHp,_;,
there exists P <y E,,_; such that e ¢ PHoH,,_;. We consider E, = Epy_y *H,,_,
An.

CASE 1. Suppose that z ¢ HoH,, is implied by the syllable length of z; that is,

(1) =l > 3; or,
(2) |lz|l=2and 2 € A Epp—1 .

Consider the case z = €1ay - - - €pa,, Where €; € Epy_1\H;p—1 and a; € A\ Hp— (the
other cases are similar). Since E,,_,, A, are H,,_;-separable by Corollary 2.4, there
exist P, <y En_1 and @1 <y A, such that ¢; ¢ PPHpn_; and a; ¢ Q1Hpy, for
all i. Now, by Lemma 2.2, there exist P <y Ep,_; and Q <y A, such that P C Py,
Q C Q1, PnH,.,._l = QﬂH -1, PHonPH -1 :P, and QH _1ﬂQHm =Q.
Hence, considering the natural homomorphism #: Ep, — (Em—1/P) *H,_, (Am/Q),
where Hpy = Hp—1 P/P = H,,-1Q/Q, we have ||| = ||z|| and HoNHp—y = (1) =
H,..1NH,. Then clearly z ¢ HoH,,.
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CasE 2. ||zl =2 and z ¢ A E;—1; that is, 2 = ea where e € Epp—; \ Hpp—1 and
a € Am \ Hp-1. Thus, by Corollary 2.4, there exist P, <y Em_y and @y <y A such
that e ¢ PyH,,_y and a ¢ Q1 H,,—1. We note that z = ea ¢ HypH,, if, and only if,
one of the following is true:

(1) e ¢ HoHpp—y; or

(2) e=hyr and ra ¢ H,,, where h; € Hy and r € Hy,_; .

If (1) is true then, by the induction hypothesis, there exists P, <5 E,,_; such
that e ¢ PyHyHy—y. Then, by Lemma 2.2, there exist P <y Ep,_; and Q@ <5 Ap
suchthat PC PANP,, QC @, PNHyp 1y =QNHp_y, PHoNPH,,—; = P, and
QH,_1 NQH, = Q. Consider the homomorphism =: E,, —» Ep,_;/P *H A,./Q,
as above. Note that Ho N Hpoy =1 =H,p,_ 1N Hy, T=¢a and € ¢ HoH,,_,. It
follows that Z ¢ HoH,,.

If (2) is true then, since A,, is LERF, we can find Q2 <y Am such that re ¢
Q2H,.. As before, we can find P <y E,,_; and @ <y A, such that P C P,
QC@inNQ:, PNHyp 1 =QNHp_y, PHyNPH,,_y =P,and QHp—1 NQH® = Q.
Then, as before, we have Z = €@ ¢ HoHn,, where E,, = E,,,7.

CASE 3. ||z|]| = 1. Consider the case z € E,,1 \ Hn_1 (the other case being similar).
Since ¢ ¢ Hy, there exists Py <y E,n_; such that ¢ ¢ PHyU P H,,_:. Now, by
Lemma 2.2, there exist P Q¢ E,,_; and @ <y A, such that PC Py, PN Hp—y =
QNnH, 1, PHyNPH,_ 3 = P, and QH,,_1 N QH,, = Q. Then, we can easily see
that ¢ HoH,,, where E,, = E,,m as above.

CasE 4. ||z|| = 0. In this case we have z € H,,_; and z # 1. Since E,,_; is RF
(Corollary 2.5), there exists Py <y Ep— such that z ¢ P;. As in Case 3, we can find
P <y E,,_; and Q <5 A,, such that Z ¢ HyH,,, where E;, = Eppmr.

Consequently, we have found P <y E,,,_; and Q <y A, such that 7 ¢ HoHn,,
where E, = Epym = Em..l/P*—};m_1 A./Q. Since IFOI and IF,,.I are finite, and since
E,, is RF, it is not difficult to find N <y E,, such that Z ¢ NHoH,,. Let N be the
preimage of N in E,,. Then clearly, N < E,, and z ¢ NHyH,, as required. i

DEFINITION 2.7: [9] Let G = G, *y G2. Let X, Y be subgroups of G, G2
respectively. Let N = {(N;, M;);i € I} be a collection of pairs of normal subgroups of
G and G satisfying the following:

(1) N< Gy, M; <Gz,and ;N H =M;NH, forall iel.
(2) NiNXH = (N;NX)N;NH) and M;NYH = (M;NY)M;nH), for
aliel,

(3) (n N, N Maj) €N forall aj, ..., an € I, where n is finite,
=1 j=1
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(4) NNX=X, \NH=H, \MY=Y,and (\M;H=H,

el i€l sel iel
(5 \N:XH=XH and YMYH=YH.
i€l i€l

Then N is called a compatible filter of G with respect to the subgroups X and Y.

LEMMA 2.8. [9] Let G = Gy *u G2. Let X, Y be subgroups of G1, G2 re-
spectively, such that X N H =Y NH = 1. Let N be a compatible filter of G with
respect to X and Y. Then, for each g € G\ (X *Y) with |g|| > 1, there exists
(N, M) € N such that ||gr| = ||g|| and gn ¢ X« x Y=, where = is the canonical
homomorphism of G onto G = G, * G,, and where G; = G1/N, Gy = G2/M and
H=HN/N = HM/M.

For example, we can see, by Corollary 2.4 and Lemma 2.6 together with Lemma 2.2,
that N={(P,Q): P <4 Em—1,Q <5 A, PNHp_y =QNHm_1, PHoNPHp_, =
P, QH,_1 NQH, = Q} is a compatible filter of E,, = E;,_1 *H,, ; Am with respect
to Hy and H,,.

THEOREM 2.9. Let G = G, *y G2, and let X < G;, Y < G, be such that
XNH =1=YnNH. Suppose that G has a compatible filter N' = {(N;, M;) :i € I} of
G with respect to X and Y, where N; <y G, and M; <y G3, for all i, and suppose
further that

(W') for each Ny <5 H there exists (N;, M;) € N such that M; N H =
N;NH C Ny for some j € I.

Then G is X %Y -separable whenever H is RF.
PROOF: Let g€ G\ (X *Y).

CasEl. g€ H. Since g # 1 and H is RF, there exists Ny <y H such that g ¢ Ng.
By (W'), there exists (Nj, M;) € N such that N;NH = M;NH C Ny for some j € I.
Then, § ¢ X *Y where G = G1/N; ¢ G2/M; and H = N;H/N; = M;H/M;. Now,
G is LERF by Theorem 1.2. Hence, there exists N <y G such that § ¢ —N_(Y*?)
Let N be the preimage of N in G. Then N <y G and g ¢ N(X xY).

CASE 2. g ¢ H. By Lemma 2.8, there exists (N;, M;) € N such that g ¢ X +Y,
where G = G1/N; *i G2/M;. Then, as before, we can find N <y G such that
g¢ N(X+Y). 1|

LEMMA 2.10. For each N <y Hy * Hy,(m > 2), there exists Ng,, <f E,, such
that Ng,, N(Ho*x H,)=N.

PROOF: There exists a natural homomorphism #: E,, — A;/H) * Apy/Hpm—1,
obtained by defining zwr = 1,for all 2 € AU - UAp_1,if m > 3; or zr = 1,
for all z € Hy, if m = 2. Let Epu = Epnm = A, * Apn, where 4; = A;/H; and
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Zm = Am/Hm—1 . We note that ﬁo = Ho, Fm & Hm and N = W Q_f ﬁo*ﬁm. NOW,
considering 4, * A,, = A; *Ho (Ho*Hyn) *g, Am, we have a homomorphism

¢:Em - (Xl/-N.n_H_O) *ﬁo (FO *I_I-m/w) *I'_;m (Zm/wnﬁm)y

where Hy = Hy/NNnHy = HoN/N and H, = H,N/N=H,/NNnH,,. Since H,

and H,, are finite, therefore, Em¢ is RF. Note that (Ho*Hp)/N is finite. It follows

that there exists M <y qus such that Mﬂ ((ﬁo *ﬁm)/m =1. Now, let Ng,, be

the preimage of M in E,, under the homomorphism 7 o ¢. Then Ng,, <y En and

Ng,, N(Ho * Hy,,) = N as required. 0
Now we are ready to show our main result of this section.

THEOREM 2.11. Let G be the polygonal product of the polycyclic-by-finite
groups Ao, A1, ..., A, (n > 3), amalgamating any subgroups Hy, H1, ..., H,, with
trivial intersections, where H; C Z(A;) N Z(Ait1) for all i, and where subscripts are
taken modulo n+ 1. Then G is n..

PROOF: We write G = Exyg F, where E = Ay *g, - %y, _,An_1, F = Ag*n, An,
and H = Hy * H,_;. With G in this form, we can apply Theorem 1.4. For condition
(a) in the theorem, Corollary 2.5 proves that E and F are m.. Theorem 2.9, using

Lemma 2.1, proves that E and F' are H-separable. Also, Lemma 2.10 proves condition
(b) in the theorem. Hence, by Theorem 14, G is =.. 0

We immediately have the following result:

THEOREM 2.12. Let G be the polygonal product of the fg. abelian groups
Ao, Ay, ..., A, (n > 3), amalgamating any subgroups Hy, H:, ..., H,, with trivial
intersections. Then G is 7..

We note that the above two results are generalisations of Theorem 3.4 in [3].

3. SUBGROUP SEPARABILITY (LERF)

Now we consider the subgroup separability of polygonal products of f.g. abelian
groups. Throughout this section we assume that the amalgamated subgroups of polyg-
onal products are not trivial.

LEMMA 3.1. [1] If a group G contains a subgroup F, x F,, where F, is a free
group of rank 2, then G is not LERF.

THEOREM 3.2. Let P be the polygonal product of the four LERF groups A,
B, C, D, amalgamating the finite subgroups H,, Hs, Hy, H,, with trivial intersec-
tions, where the H; are contained in the centres of the vertex groups containing them.
Then P is LERF if, and only if, either |Hy| = |H3| =2 or |H,| = |Hys| = 2.
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PROOF: Let Py be the polygonal product of Ay = (H,, Ha), By = (H,, Hs),
Co = (Hs, H4), Do = (H4, H]) a.ma.lga.ma.ting Hz, Hs, H4, Hl . Let E = Ao *}'.[2 Bo,
F =Dy*y,Co and H =H,*Hs. Then E=H,xH, F=Hy;xH and P, = ExyF =
(Hz * Hy) x (H, x Hg).

(=) Note that H* Hs contains a free subgroup of rank 2 unless |Hp| = 2 = |Hy|
(10, p.195]. Similarly, H; * Hs contains a free subgroup of rank 2 unless |H;| =
2 = |Hs|. Now if P is LERF then Py is LERF. It follows from Lemma 3.1 that
|Hzl =2= |H4’ or |H1l =2= |H3|

(<=) Assume that [H;| = 2 = |H;s|. Then every subgroup of H; x Hy is f.g.,
hence, H, * Hy-is ERF. It follows from Theorem 1.3 that Py is LERF. Note that
P = (((Po *ay A) *B, B) *c, C) *p, D. Since Ay, By, Co, Dy are finite, by Theorem
1.2, P is LERF. |

THEOREM 3.3. Let P be the polygonal product of the four groups A, B, C,
D, amalgamating the subgroups H,, Hs, Hy, H,, with trivial intersections, where the
H; are contained in the centres of the vertex groups containing them. If P is LERF,
then either |Hy| = |Hs| =2 or |Hy| = |Hy| = 2.

Proo¥: If P is LERF, then the subgroup Py constructed in the proof of Theorem
3.2is also LERF. 1t follows that |Hy| = [Hs| = 2, or |Hz| = |H4| = 2, as in the proof
of Theorem 3.2. 0

COROLLARY 3.4. Let G be the polygonal product of the f.g. abelian groups A,
B, C, D, amalgamating the subgroups (b), (c), (d), (a), with trivial intersections.
If G is LERF, then |a| = 2 = |c| or |b| = 2 = |d|. In particular, the polygonal
product of the four free abelian groups amalgamating the cyclic subgroups, with trivial
intersections, is not LERF .
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