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Hydrodynamic interactions between swimming or flying organisms can lead to complex
flows on the scale of the group. These emergent fluid dynamics are often more complex
than a linear superposition of individual organism flows, especially at intermediate
Reynolds numbers. This paper presents an approach to estimate the flow induced by
multiple swimmer wakes in proximity using a semianalytical model that conserves mass
and momentum in the aggregation. The key equations are derived analytically, while
the implementation and solution of these equations are carried out numerically. This
model was informed by and compared with empirical measurements of induced vertical
migrations of brine shrimp, Artemia salina. The response of individual swimmers to
ambient background flow and light intensity was evaluated. In addition, the time-resolved
three-dimensional spatial configuration of the swimmers was measured using a recently
developed laser scanning system. Numerical results using the model found that the induced
flow at the front of the aggregation was insensitive to the presence of downstream
swimmers, with the induced flow tending towards asymptotic beyond a threshold
aggregation length. Closer swimmer spacing led to higher induced flow speeds, in some
cases leading to model predictions of induced flow exceeding swimmer speeds required
to maintain a stable spatial configuration. This result was reconciled by comparing
two different models for the near-wake of each swimmer. The results demonstrate
that aggregation-scale flows result from a complex, yet predictable interplay between
individual organism wake structure and aggregation configuration and size.

Key words: collective behaviour, swimming/flying

1. Introduction

Various species of swimming and flying organisms exhibit collective motion,
characterized by coordinated movement within groups of organisms (Vicsek & Zafeiris
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2012). The emergent hydrodynamic properties of collective groups of swimming and
flying organisms are vital to understanding flow-mediated communication (Mathijssen
et al. 2019), fluid transport (Katija 2012) and the hydrodynamic performance of collectives
(Weihs 1973; Zhang & Lauder 2023). Applications of these fluid mechanics include
control mechanisms for robotic swarms (Berlinger, Gauci & Nagpal 2021) and climate
modelling (Stemmann & Boss 2012).

One of the most common manifestations of collective behaviour found in the ocean
is diel vertical migration (DVM). Prevalent among freshwater and marine zooplankton
taxa globally, DVM involves the migration of zooplankton from deep regions in the water
column during the day to shallower depths at night over a vertical distance of the order
of 1 km; it is the largest migration on Earth by mass (Bandara et al. 2021). However,
the scale of flow induced by a DVM event remains unresolved despite numerous field
measurements (Farmer, Crawford & Osborn 1987; Dewar et al. 2006; Gregg & Horne
2009; Fernández Castro et al. 2022), laboratory observations (Houghton et al. 2018) and
theoretical estimates (Huntley & Zhou 2004; Dewar et al. 2006) of biogenic mixing due
to collective swimming.

Studies of flows on the individual organism scale include a comprehensive set of
experimental (Dabiri 2005; Lauder & Madden 2008), theoretical (Wu 2011; Derr et al.
2022) and computational (Pedley & Hill 1999; Eldredge 2007) estimates. Direct numerical
simulation has been used to study the hydrodynamics of collective motion (Ko, Lauder
& Nagpal 2023), including the mixing induced by Stokes squirmers (Lin, Thiffeault
& Childress 2011; Wang & Ardekani 2015; Ouillon et al. 2020). However, due to the
nonlinear coupling between individual and collective flow fields at intermediate and
high Reynolds numbers, connecting these individual flows to the fluid dynamics on the
collective scale remains an open challenge using a modelling approach short of direct
numerical simulation.

At low Reynolds numbers, Stokesian dynamics (Brady & Bossis 1988) can be used to
estimate hydrodynamic interactions through linear superposition (Ishikawa, Simmonds &
Pedley 2006; Lauga & Powers 2009; Pushkin, Shum & Yeomans 2013). For organisms
characterized by high Reynolds number dynamics, the linearity of potential flow theory
allows for approaches based on linear superposition to estimate the combined effect of flow
within a group (Weihs 1973, 2004). However, for swimmers operating in an intermediate
Reynolds regime, such as the majority of vertically migrating swimmers in the ocean
(Katija 2012), neither Stokesian nor potential flow assumptions accurately capture the
dominant hydrodynamic forces, resulting in nonlinear governing dynamical equations that
are not readily suitable for linear superposition.

Although not strictly justified from first principles, superposition has been successfully
applied to estimate wake interactions in wind farms without using potential flow
assumptions. Initial efforts, exemplified by the linear superposition model proposed by
Lissaman (1979), assumed a large wind turbine spacing and weak wake interactions
to linearly sum wake velocity deficits. Subsequent critiques highlighted the potential
overestimates of the wake deficit within densely arranged wind turbine arrays, where
there are significant wake interactions (Crespo, Hernández & Frandsen 1999). In response
to this limitation, several alternative superposition methods have been proposed. Katic,
Højstrup & Jensen (1987) posited that the combined velocity deficit in the wake overlap
regions can be estimated by a sum of the squares of individual velocity deficits. Voutsinas,
Rados & Zervos (1990) proposed a model that assumes that the total energy loss in the
superposed wake is equal to the sum of the energy losses of each turbine upwind. Each
of the aforementioned models demonstrated improved agreement with the measurement
data, especially with stronger wake interactions. However, each model lacks a theoretical
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Induced flow velocity from wake superposition

justification based on the conservation of mass and momentum in the wake. Recently, Zong
& Porté-Agel (2020) introduced a model that explicitly conserves mass and momentum in
regions of wake overlap. This approach demonstrated superior performance over previous
models compared with experimental and large-eddy simulation data.

Here, we adapt the approach of Zong & Porté-Agel (2020) to develop an analytical
model that estimates the three-dimensional (3-D) flow induced by wake interactions of
swimmers using brine shrimp as a model organism. The model was developed to conserve
mass and momentum, drawing empirical parameters from the swimming trajectories of
brine shrimp during induced vertical migration. We introduced an estimated convection
velocity term to calculate mass flux in a linearized momentum equation. This was used to
develop an analytical wake superposition model based on each swimmer’s local flow and
the geometric configuration of the collective group (§ 2). The swimming trajectories of
brine shrimp were measured (§§ 3.1–3.3) to discern the effects of environmental variables
on the behaviour of individual swimmers (§§ 4.1 and 4.2). These empirical findings
informed the parameters used in the computational model (§ 3.4). We found that the
aggregate-scale induced flow was a function of the individual wake shape, length of the
group and animal number density. In addition, we found that the induced flow can be
significantly stronger than the flow associated with individual swimmers (§ 4.3).

2. Analytical model

2.1. Individual swimmer wake model
This section introduces an analytical model to compute the flow field generated by many
individual wakes in close proximity while conserving mass and momentum. This method
is inspired by the approach adopted by Zong & Porté-Agel (2020) to superpose wind
turbine wakes. Unlike previous formulations, which prescribe a drag coefficient and
calculate momentum deficits, the present formulation prescribes the net force generated
by the swimmers and calculates momentum excess. Importantly, this formulation did not
assume a priori that the convective velocity would trend towards a plateau.

We assume that a vertical swimmer generates a downstream wake defined in the
swimmer-fixed frame uw(x, y, z) to generate a net force Fz that counteracts negative
buoyancy and thus maintains a constant swimming speed u0 through a fluid with constant
density ρ. These assumptions allow for the simplification of the integral form of the
momentum equation,

Fz = ρ

∫∫
wake

uw(x, y, z)(uw(x, y, z) − u0) dx dy. (2.1)

By introducing the wake velocity surplus, us = uw − u0, and substituting this definition
into (2.1) we obtain the following:

Fz = ρ

∫∫
wake

uw(x, y, z)us(x, y, z) dx dy. (2.2)

We introduce an effective wake convection velocity, uc(z), which varies with
downstream distance from the swimmer, but is constant in the spanwise directions.
Consequently, the net vertical force can be rewritten as

Fz = ρuc(z)
∫∫

wake
us(x, y, z) dx dy. (2.3)

The wake convection velocity effectively represents the average speed at which the
local velocity surplus is advected in the wake of the swimmer. To derive a mathematical

1001 A50-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1102


N. Mohebbi, J. Hwang, M.K. Fu and J.O. Dabiri

expression for uc, we substitute (2.3) into (2.2) to get

uc(z) =

∫∫
wake

uw(x, y, z)us(x, y, z) dx dy∫∫
wake

us(x, y, z) dx dy
. (2.4)

The numerical evaluation of (2.4) is described in § 3.4.1.

2.2. Wake superposition
To calculate the flow field at the aggregate scale, we define U∞ as the swimming speed
of all organisms in the volume, or the free stream velocity in a swimmer-fixed frame.
Furthermore, we introduce Uw(x, y, z) as the global flow field generated by the swimmers.
Lastly, Us is defined as the velocity surplus generated by the swimmers expressed as
Us(x, y, z) = Uw(x, y, z) − U∞. Following a procedure analogous to that in § 2.1, the
effective convection velocity of the combined wakes is given by the following:

Uc(z) =

∫∫
Uw(x, y, z)Us(x, y, z) dx dy∫∫

Us(x, y, z) dx dy
. (2.5)

The force exerted by the ith swimmer in the streamwise direction is denoted Fi
z. To

conserve momentum in the wake, we require

∑
i

Fi
z = ρUc(z)

∫∫
Us(x, y, z) dx dy. (2.6)

Substituting the left-hand side of (2.6) with (2.3) yields the following:
∑

i

ρui
c(z)

∫∫
ui

s(x, y, z) dx dy = ρUc(z)
∫∫

Us(x, y, z) dx dy. (2.7)

The velocity experienced by the ith organism is denoted ui
0 and defined as Uw(xi, yi, zi)

based on upstream swimmers. The wake velocity induced by the ith organism is ui
w, and the

wake velocity surplus for the ith organism, ui
s, is expressed as ui

w − ui
0. The rearrangement

of these terms and the subsequent application of the analysis across the entire volume lead
to the derivation of an expression for the global wake surplus,

Us(x, y, z) =
∑

i

ui
c(z)

Uc(z)
ui

s(x, y, z). (2.8)

In light of (2.5), which describes Uc as a function of Us and (2.8), which characterizes
Us as a function of Uc, an iterative methodology is used to solve for Us and Uc. The
procedure begins with the assumption Uc = U∞, where U∞ denotes the velocity of the
free stream. This is an underestimate, as Uc will increase from the free stream velocity
with added momentum provided from the swimmers. Thus, in the first iteration, (2.8) is
used to evaluate Us, and will result in an overestimate since its value is inversely related
to that of Uc. As the iterative process continues, this overestimate of Us is used in (2.5)
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to refine the calculation of Uc, increasing the estimate from the initial guess. In this way
Uc will continue increasing from the initial guess and Us will continue decreasing until
the value of Uc converges, satisfying condition |Uc − U∗

c |/U∗
c ≤ ε, where Uc is calculated

from the preceding iteration, U∗
c is calculated from the ongoing iteration and ε = 0.01. The

iterative development of local and global estimated convective velocities captures inherent
nonlinearity and ensures the conservation of momentum in the establishment of the final
3-D flow field.

3. Experimental methods

Experiments with brine shrimp, Artemia salina, which swim at a Reynolds number
around 100, provided a model for planktonic vertical migrations at intermediate Reynolds
numbers. As demonstrated in previous work (Houghton et al. 2018; Fu, Houghton &
Dabiri 2021), brine shrimp exhibit a phototactic response, swimming towards a nearby
light source. This facilitates controllable vertical migrations in a laboratory setting. The
flow and light intensity encountered by an individual swimmer depend on its specific
location within the collective. Therefore, the dynamics of each swimmer in aggregation
were anticipated to depend on the local light stimulus and ambient flow. Consequently,
§ 3.1 describes experiments designed to characterize the response of brine shrimp to
varying light stimuli and background flows. In § 3.3, we detail the techniques developed to
measure 3-D reconstructions of swimming trajectories, aiming to establish the relationship
between the number of swimmers migrating and the average nearest neighbour distance, a
descriptor of the swimmer configuration. Finally, § 3.4 uses the insights gained from these
experiments to set the modelling parameters and formulate numerical simulations of the
flow induced by collective vertical migration.

3.1. Individual swimmer response to light stimulus
The response of brine shrimp to different light intensities was investigated in a controlled
environment. A 1.2 m high tank with a cross-section of 0.3 m × 0.3 m (figure 1) was filled
with 35 parts per thousand of salt water using Instant Ocean Sea Salt (Spectrum Brands).
To reduce the influence of swimmer wakes on one another, the tank was populated with
less than 1500 swimmers, or 0.015 animals per cm3. All experiments were carried out
within 24 h of animal acquisition.

To ensure consistency between trials, the animals were gathered at the bottom of the tank
using a flashlight, and a minimum settling time of 30 min was allowed between each trial.
Initiating a vertical migration involved turning off the flashlight at the tank’s bottom and
activating a target flashlight (PeakPlus LFX1000, 1000 lumens) positioned above the tank.
The light intensity of this upper flashlight was adjusted using three different neutral density
filters: 1/2, 1/4 and 1/8 transmittance (Neewer 52 mm ND Filter Kit). A light intensity
meter (TEKCOPLUS Lux Meter with Data Logging) was used to measure the illumination
at the bottom of the tank for each filter.

A high-speed camera (Edgertronic SC1) was set up with a 20 cm × 25 cm (1024 ×
1280 pixel) field of view, 60 cm above the bottom of the tank. For each test, a recording was
manually triggered once the first swimmer entered the camera field of view and captured
for 30 s at 40 frames per second (f.p.s.). Four trials were carried out with each of the three
filters (800, 1500, 2300 lumens per square metre (lux)), without a filter present (4000 lux)
and without the target light (0 lux). An infrared (850 nm) light was used to illuminate the
tank and collect control data for the case in which no visible illumination was present. For
consistency across all tests, this infrared illumination remained on for all tests.
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Figure 1. Schematic of experimental protocol for characterization of phototactic response of brine shrimp.
(a) Brine shrimp (i) were gathered at the bottom of a 1.2 m tall tank using a flashlight positioned at the base.
(b) To induce vertical migration, the bottom flashlight was turned off, and the top flashlight was turned on. The
light intensity of the top flashlight was varied using neutral density filters. Recording was manually initiated
once the swimmers entered the field of view of the high-speed camera (ii). (c) Example frames from the x–z
plane captured during vertical migrations under different light intensities, adjusted with neutral density filters.
All trials were conducted with an infrared tank illuminator, which was used exclusively in the 0 lux condition.
Three trials were performed for each light intensity: 0, 800, 1500, 2300 and 4000 lux.

3.2. Individual swimmer response to background flow
To simulate the vertical flows induced during collective vertical migration of brine shrimp,
water was drained from a 2.4 m tall tank with a cross-section of 0.5 m × 0.5 m, producing
uniform flows in the range of 0.05–0.5 cm s−1 (figure 2). These flow speeds correspond
to those observed in vertical migrations of brine shrimp, with animal number densities
between 100 000 and 600 000 animals per cubic metre (Houghton & Dabiri 2019). The
uniformity produced by this set-up reflects the uniform jet produced by steadily moving
dilute swarms in discrete swimmer simulations (Ouillon et al. 2020).

Before testing, the tank was filled with 10 μm silver-coated glass spheres
(CONDUCT-O-FIL, Potters Industries, Inc.) to facilitate imaging of the flow field with
a laser sheet. To confirm the quiescence of the tank, particle image velocimetry (PIV)
was employed after introducing the animals with a 15 ml centrifuge tube. The tank was
considered quiescent when the maximum time-averaged streamwise velocity was below
0.02 cm s−1. Flow rate control was achieved using two series connected flow valves (1 in.
NPT PVC Ball Valve), one for flow control and one for shut-off, and an inline flow meter
(FLOMEC Flow meter/Totalizer 5–50 gpm).

Once the tank was confirmed to be quiescent with PIV, a migration was induced with
the same procedure explained in § 3.1. A high-speed camera (Edgertronic SC1) was set up
with a field of view of 21 cm × 26 cm (1024 × 1280 pixel), 90 cm up from the bottom of
the tank. Once the first swimmer entered the camera field of view, the shut-off valve was
manually opened to initiate the flow, and the camera was manually triggered to record for
30 s at 15 f.p.s. Three trials were carried out for each of the five target speeds: 0, 0.07, 0.14,
0.21 and 0.3 cm s−1. The trials were carried out on different days using different animals,
considering the limited number of trials achievable with the volume of the tank.
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2.4 m

0.5 m
0.5 m

0.9 m

z
y
x

(ii)

(i)

Flow

meter

Valve B

Valve A

(a) (b) (c)

Figure 2. Schematic of the experimental protocol for characterizing the flow response of brine shrimp.
(a) Brine shrimp (i) were initially gathered at the bottom of a 1.2 m tall tank using a flashlight positioned
at the base. (b) Brine shrimp (i) were initially gathered at the bottom of a 1.2 m tall tank using a flashlight
positioned at the base. (c) Once the swimmers entered the field of view of the high-speed camera (ii), a flow
valve was opened, introducing bulk flow in the opposite direction of the swimmers’ motion. Recording was
manually initiated at this point. The flow rate was controlled using a system of two flow valves and a flow meter
arranged in series. Three trials were conducted for each target flow speed: 0, 0.07, 0.14, 0.21 and 0.3 cm s−1.

To identify potential sources of measurement uncertainty, two significant factors
were addressed. First, before the onset of the flow, a streamwise velocity variation of
0.02 cm s−1 was allowed. Second, the flow speed was manually set using a ball valve
and changed during each test due to variations in the height of the water column
during draining. To address these uncertainties, an additional camera recorded flow rates
displayed on the inline flow meter during each test. Both of these sources of variability
were accounted for in the error bars of all flow measurements.

The captured videos of the vertical migration of brine shrimp were analysed using
FIJI (Schindelin et al. 2012) and the wrMTrck plugin (Husson et al. 2018). The resulting
swimming trajectories were fitted in MATLAB with a smoothing spline algorithm, which
minimizes a combination of squared residuals and curvature penalties utilizing cubic
smoothing spline interpolation to fit a curve to the provided data points. A smoothing
parameter of 0.95 (figure 3) was selected to prioritize the reduction of oscillations,
effectively smoothing out the fitted curve while preserving the overall trend of the data.

3.3. Characterizing collective swimming
To reconstruct the 3-D swimming trajectories of brine shrimp during induced vertical
migration, a 3-D particle tracking velocimetry (PTV) method was used (figure 4), using
scanning optics and a single high-speed camera (Photron FASTCAM SA-Z). A 671 nm
continuous wave laser (5 W Laserglow LRS0671 DPSS Laser System) was directed
through a condenser lens (370 mm back focal length) and a sheet-forming glass rod by
a mirror to ensure parallel beams. The distance between the laser plane and the high-speed
camera was adjusted with a galvanometer (Thorlabs GVS211/M) controlled by a voltage
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Figure 3. Plot of brine shrimp swimming trajectories generated with ImageJ’s wrMTrck plugin over a 30 s
interval on top of the final frame in the image sequence. Colour transitions from blue to yellow represent
progression in time, illustrating the trajectory of each swimmer within the tank. Brine shrimp present in the
final frame can be identified as the white silhouettes at the end of the trajectories. Gradations in the background
shading are due to the illumination used to induce phototaxis.

Lx = 22 cm

80 cm

Sheet-forming

optic

Condenser lens

(250 mm dia.)

Galvanometer

mirror system

37 cm 40 cm

Laser

t0

t0 + N�t

25
 c
m

High-speed

camera

3000 f.p.s.

Lz = 22 cm

Ly = 6.6 cm Lz

Ly
Lx

Figure 4. Schematic of the scanning system, modified from Fu et al. (2021). The laser beam was directed at a
mirror whose angle was controlled by a galvanometer. Following reflection by the mirror, the beam was passed
through a condenser lens and glass rod in order to generate a laser sheet parallel to the camera field of view.

signal from an arbitrary function generator (Tektronix AFG3011C). This experiment was
validated on a smaller scanning volume in the same facility with the same equipment by
Fu et al. (2021).

Each laser sheet sweep covered 6.6 cm of tank depth and took 0.1 s to complete. The
high-speed camera captured 300 two-dimensional (2-D) 22 cm × 22 cm (1024 x 1024
pixel) slices during this period. The scanned volume was centred on the tank cross-section
and positioned 0.9 m from the tank floor. The swimmers move at approximately 1 cm s−1;
therefore, during the length of a scan (0.1 s), the swimmers will have moved approximately
0.1 cm. Given their body size of 1 cm, we effectively treated each scan as a still frame for
the purposes of the current analysis. In addition, this combination of scanning rate and
camera frames per second results in approximately 48 image sheets per centimetre in the
scanning direction (y) and 46 pixels per centimetre in the camera plane (x and z). This
level of resolution for detecting swimmers 1 cm long results in well-formed and easily
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Figure 5. Volume reconstruction and animal tracking during an induced vertical migration in the positive z
direction. (a) A 3-D scanned reconstruction of 100 animal bodies. A close-up of an individual animal shown
for reference. (b) Six-second 3-D swimming trajectories, with colour transition from blue to yellow represent
progression in time, illustrating the trajectory of each swimmer within the tank.

identifiable swimmers, as shown in figure 5(a). A movie of 3-D reconstructed swimmers
for 6 s is in the supplementary materials available at https://doi.org/10.1017/jfm.2024.1102.

The experiments were carried out in the tank described in § 3.1. The brine shrimp
were added to the tank in densely packed 0.25 teaspoon increments (approximately 125
swimmers) and three vertical migrations were induced as explained in § 3.1 for each
increment of swimmers added. Throughout vertical migration, the centre of the tank was
scanned for 6 s every 50 s, totalling 7.5 min, to assess configuration changes over time.

A 3-D volume was constructed from 295 2-D slices for each laser sweep (figure 5a).
A custom MATLAB script was used to segment the 3-D volume and identify centroids.
The volumetric data was median and Gaussian filtered to reduce noise and enhance object
visibility. The filtered data was then binarized and morphological operations were applied,
including opening with a spherical structuring element and hole filling, to refine the binary
mask. This preprocessing ensured a clean and noise-reduced dataset for object detection.
Through object detection, properties such as centroid, principal axis and volume were
identified for each connected component within the volume. Subsequently, a forward and
backward nearest neighbour search in time was applied to centroid locations to identify
and label swimming trajectories (figure 5b).

3.4. Modelling assimilation

3.4.1. Wake profile models
Two models for the individual wake structure were studied to explore the impact of local
flow geometry on the aggregation-scale flow. The local flow was defined as a function of
the radial distance, r =

√
x2 + y2, and the characteristic width of the wake, σ(z), at each

value of z. First, a Gaussian model was implemented, consistent with the wake models
previously used for wind turbine modelling,

ξgaussian

(
r

σ(z)

)
= e−r2/2σ(z)2

. (3.1)
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Figure 6. Comparative analysis of flow fields generated by different swimmer types and corresponding wake
models. (a) The PIV results showing the flow field generated by a single free-swimming Pacific krill, adapted
from Catton et al. (2011) with the permission of the Journal of Experimental Biology. The colour map
represents the velocity magnitude, with arrows indicating flow direction. (b) The PIV results for a brine shrimp,
highlighting the flow characteristics generated by its swimming motion, adapted from Wilhelmus & Dabiri
(2014), with the permission of AIP Publishing. (c) A schematic representation of how a Gaussian distribution
qualitatively captures the flow behind Pacific krill, which utilizes a single primary propulsor. (d) A schematic
representation of a wavelet model that qualitatively captures the flow behind a brine shrimp, characterized by
two sets of propulsors and a drag region immediately behind the body that induces backflow. The panels
illustrate the differences in flow structures arising from distinct swimming mechanisms and motivate the
comparison between a Gaussian and wavelet wake superposition model.

Second, a Ricker wavelet model was used to represent a local flow both in the direction of
swimming and in the opposite direction of swimming,

ξwavelet

(
r

σ(z)

)
= −

(
1 − r2

2σ(z)2

)
e−r2/3σ(z)2

. (3.2)

These models will be referred to as the Gaussian and wavelet models, respectively. The
Gaussian model, commonly employed in wind turbine modelling (Zong & Porté-Agel
2020), represents the flow behind the swimmer as a single downward jet. As evidenced
by the qualitative match between figure 6(a) and the schematic in figure 6(c), the Gaussian
wake function effectively captures the flow characteristics behind a swimmer utilizing a
single main propulsor, generating a distinct single-lobed jet. The wavelet model, derived
from the modified Ricker wavelet, is based on the second derivative of a Gaussian function,
with an adjusted prefactor in the exponent denominator in order to create a function with a
non-zero integral. As illustrated by the quantitative similarity between figure 6(b) and the
schematic in figure 6(d), the wavelet wake function captures the flow distribution generated
by a swimmer with two sets of propulsive appendages, producing a double-lobed jet and a
region of backflow immediately behind the swimmer due to the drag created by the body.
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Induced flow velocity from wake superposition

We modelled the spatial evolution of the propulsive jet as a self-similar, axisymmetric
jet,

us = u0c(z)ξ
(

r
σ(z)

)
, (3.3)

where c(z) is a scaling factor and the shape of the wake is determined by ξ(r/σ(z)). An
expression for c(z) that conserves momentum by definition was derived by prescribing u0,
ξ(r/σ(z)), and Fz (detailed steps provided in the Appendix (A)),

us,gaussian(x, y, z) = u0

(
1 −

√
1 + Fz

πρσ(z)2u2
0

)
e−r2/2σ(z)2

, (3.4)

us,wavelet(x, y, z) = u0

(
4
5

− 4
5

√
1 + 5Fz

12πρσ(z)2u2
0

)(
−1

(
− r2

2σ(z)2

)
e−r2/3σ(z)2

)
.

(3.5)

Substituting (3.5) and (3.4) into (2.4) and integrating in the streamwise direction over a
circular cross-section with infinite radius, the expressions for uc is obtained

uc,gaussian(z) = u0

2

(
1 +

√
1 + Fz

πρσ(z)2u2
0

)
, (3.6)

uc,wavelet(z) = u0

2

(
1 +

√
1 + 5Fz

12πρσ(z)2u2
0

)
. (3.7)

A swimmer moving vertically at constant velocity must overcome the negative buoyancy
that arises from the swimmer having a greater density (ρs) than sea water. The balance of
force on the swimmer is expressed as follows:

Fthrust = gVs(ρs − ρ). (3.8)

The thrust is introduced over some distance and not at an exact point in the flow.
Therefore, we amended this expression to

Fthrust(z) = gVs(ρs − ρ)

1 + erf
(

z
Ls

)
2

, (3.9)

for a more gradual development of the wake, where Ls is the length of the swimmer’s
body length (BL). Similarly, an empirical model for the effective diameter of the wake
as a function of the streamwise distance from the swimmer was used to capture the wake
expansion,

σ(z) = 0.25 + 0.25 log(1 + e(z−1.5)/Ls). (3.10)

The variables explicitly defined for the numerical implementation of this wake model are
listed in table 1. These values were approximated to be of the order of observations made
during laboratory experiments using brine shrimp. We normalize all length measurements
by the BL of a swimmer, Ls.
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Symbol Variable Value Units

U∞ Swimming velocity 1 cm s−1

g Gravitational acceleration 9.8 m s−2

Vs Swimmer volume 0.2 cm3

ρs Swimmer density 1055 kg m−3

ρ Seawater density 1025 kg m−3

Ls Body length 1 cm

Table 1. Variables used in the wake superposition model for induced flow in vertical migration.

Number of Number density
Test swimmers Length (BL) Width (BL) (BL−3)

(a) Length tests
1 40 4 5 0.4
2 100 10 5 0.4
3 200 20 5 0.4
4 400 40 5 0.4
5 520 52 5 0.4

(b) Animal number density tests
1 100 20 2.2 1
2 100 20 3 0.6
3 100 20 4 0.3
4 100 20 7 0.1
5 100 20 10 0.05
6 100 20 19 0.01

Table 2. Parameters to be examined are the number of swimmers in the group, N, the length of the group, L,
and the width of the group, W. Together, these three parameters result in a group metric that we refer to as the
animal number density, measured in animals per BL3 and calculated as N/(W2L). These parameters are used
to examine the impact of changes in (a) group length, and (b) animal number density.

3.4.2. Collective flow field calculations
Model flow fields for various swimmer configurations were calculated to identify the
impact of aggregate characteristics on induced flow. First, changes due to group length
were examined. The length of the group was increased in each test, while animal number
density and width remained constant (table 2a). To maintain constant animal number
density and width of the group, the number of swimmers increased linearly with increasing
length of the group. Second, to test the impact of animal number density on the resulting
flow, the number of swimmers and the length of the group were kept constant while
increasing the cross-sectional area in the spanwise dimensions (table 2b). This resulted
in an animal number density that decreased with increasing width as 1/W2, where W
is the width of the group. For each calculation with a selected set of parameters, three
iterations of swimmers were placed randomly with these specifications while maintaining
a minimum nearest neighbour distance of one BL.

4. Results

4.1. Swimmer response to light and background flow
Swimmers involved in vertical migration patterns are subject to varying degrees of light
exposure and background flow, influenced by the presence of upstream swimmers that
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Figure 7. Brine shrimp maintain a constant vertical velocity under varying environmental conditions.
(a) Distribution, mean and standard deviation of vertical swimming speed as a function of light intensity,
measured in lux. The control condition, with only an infrared lamp (0 lux), is also shown for comparison.
(b) Distribution, mean and standard deviation of vertical swimming speed as a function of background flow.
Horizontal error bars represent range of flows experienced.

obstruct the light source and create wakes. However, brine shrimp consistently maintained
swimming speeds irrespective of flow conditions and light intensities tested (figure 7).
Consequently, in subsequent simulations, swimmers were posited to maintain constant
velocity.

4.2. Collective swimming dynamics
As the number of swimmers within the scanned volume increases, the average nearest
neighbour distance decreases but reaches a limit, evidence of exclusion zones (figure 8a).
To determine the asymptotic limit of the data, we employed the MATLAB fit function
to determine the best-fit power law relationship between animal number density, x, and
the average nearest neighbour distance, y. The power law fit was calculated as y = axb +
c. This approach allowed us to investigate how the average nearest neighbour distance
converges as the animal number density increases. The asymptotic value, c, of the fit was
found to be 1.16. Consequently, we approximated the minimum space between swimmers
for modelling purposes to be 1 cm.

The components of the swimming velocity were computed by first calculating each
swimmer’s instantaneous velocity based on trajectory data. The velocity was then averaged
per individual swimmer over a maximum of 6.5 s of data recorded. Next, each swimmer’s
velocity was averaged across the trials at each time step, which were spaced 45 s apart. The
average velocity vector for each time step was then normalized by the magnitude of the
average velocity to arrive at the velocity cosines (figure 8b). Each time step is composed of
14 trials. The dominance of the positive z component indicates a strong, consistent upward
motion among the swimmers towards the target flashlight (located at positive z). Thus, we
may treat momentum addition as entirely in the z-axis for modelling.
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Figure 8. Data extracted from 3-D brine shrimp trajectories. (a) Changes in average nearest neighbour distance
during an induced vertical migration with increasing number of brine shrimp within the scanned volume.
Power law best fit plotted in red, y = 0.031x0.74 + 1.16, with R2 value of 0.85. (b) Average swimming
velocity components from brine shrimp trajectories over the course of an induced migration, with shaded areas
representing the standard error. The target flashlight is located at positive z, above the tank.

4.3. Modelled collective hydrodynamics
The parameters derived experimentally above were used to inform the wake models for
the individual swimmers. These modelled wakes were then applied to various swimmer
configurations using the wake superposition framework from § 2.2 to characterize the
collectively induced flow. All calculations were done in the swimmer-fixed reference
frame. However, for the sake of clarity, the results presented here are depicted and
discussed in the laboratory-fixed frame.

4.3.1. Dependence on aggregation size
In the first set of calculations, we examine the flow induced by groups with the same
animal number density, 0.4 animals per BL3, but different lengths (figure 9). Three
configurations of each group length were generated with randomly placed swimmers.
The average convection velocity and standard deviation of each group length was plotted
(figure 10). The convection velocity generated within the groups were found to overlap
each other. This indicated that the upstream portion of the flow generated within a group
was not affected by the downstream flow. Furthermore, the induced flow ceased to exhibit
a discernible dependence on the group length beyond a certain threshold, estimated at
around 20–30 BL in this case. Consequently, we found that the dynamics of both longer
and shorter groups can be approximated by studying the flow generated by any group
longer than this threshold length.

4.3.2. Dependence on swimmer spacing
In the second set of simulations, we investigate the influence of swimmer spacing on the
flow generated by the collective. We randomly placed 100 swimmers within a volume
of constant length but varying widths, resulting in changes in animal number densities
(figure 11). Three simulations were initiated for each case. Although the truncated swarm
length results in less distinct asymptote values, a positive correlation between induced
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Figure 9. The 2-D projection of group geometry and induced flow contour map for groups with an animal
number density of 0.2 animals per BL3, shown for increasing group lengths. Black spheres represent positions
of swimmers. Five isosurfaces of the 3-D flow field output generated from the semianalytical model are
superimposed, with the colour indicating the flow magnitude. Results are shown side by side from (a) the
Gaussian model and (b) the wavelet model.
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Figure 10. Laboratory frame convection velocity, Uc(z) − U∞ measured in BL s−1, plotted against streamwise
distance from start of group, z. Each plot represents three randomized iterations, with the line indicating the
average value and the shaded areas indicating the standard deviation. Results for five group lengths (4, 10, 20,
40 and 52 BL) are superimposed for comparison using (a) the Gaussian model and (b) the wavelet model.

convective flow and animal number density was observed (figure 12). Specifically, for
groups with animal number densities exceeding 0.05 animals per BL3 using the Gaussian
model, a consistent trend emerged: the flow increased steadily with length until reaching
a threshold length, beyond which the dependence on length decreased to a near-stable
state. Groups with animal number densities below 0.05 animals per BL3 with the Gaussian
model and all number densities for the wavelet model exhibited peak flow early in the
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Figure 11. The 2-D projection of group geometry and induced flow contour map for 100 swimmers with
increasing group width, resulting in decreasing animal number density. Black spheres represent positions
of swimmers. Five isosurfaces of the 3-D flow field output generated from the semianalytical model are
superimposed, with the colour indicating the flow magnitude. Results are shown side by side from (a) the
Gaussian model and (b) the wavelet model.
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Figure 12. Laboratory frame convection velocity, Uc(z) − U∞ measured in BL s−1, plotted against streamwise
distance from start of group, z. Each plot represents three randomized iterations, with the line indicating the
average value and the shaded areas indicating the standard deviation. Six animal number densities (0.01, 0.05,
0.1, 0.3, 0.6 and 1 animal per BL3) are plotted with (a) the Gaussian model and (b) the wavelet model. The
dashed line indicates the swimming speed prescribed in the model, set at 1 BL s−1.

aggregation process, followed by substantial decreases in flow. For the sparsest cases, 0.01
animals per BL3, the flow at 25 BL downstream was lower than that generated at the
beginning of the aggregation. In all cases, at some threshold length, the dependence of
flow on length is greatly reduced.
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Figure 13. Distribution of flow experienced by swimmers, ui
0 − U∞, at different animal number densities.

The distributions are shown using (a) the Gaussian model and (b) the wavelet model.

We also observe that in many cases the estimated convection velocity exceeds the
velocity prescribed to swimmers in this model, which was set at 1 BL s−1. Although this
model captures an instantaneous snapshot in time for a specific configuration of swimmers,
in reality, swimmers facing a flow exceeding 1 BL s−1 would be pushed in the opposite
direction to their swimming motion. Thus, these configurations are paradoxical since we
have initialized a configuration of swimmers that creates a flow that would make this
animal number density impossible to maintain.

To further investigate the stability of the aggregation, we analysed the flow experienced
by individual swimmers within the collective. The distribution of flow velocities for
varying animal number densities (figure 13) revealed that a significant proportion of
swimmers in groups denser than 0.1 animals per BL3 experience a flow exceeding
1 BL s−1. The magnitude and range of these flows experienced, especially in denser
groups, indicate an unsustainable configuration. In this type of individual scale analysis,
we observe that in flows generated with the wavelet wake model, some swimmers
experience a negative flow, getting a boost by being in the drag-dominated region of an
upstream swimmer.

4.3.3. Comparison with experimental data
In all previous simulations, the swimmers were randomly placed within specified
parameters. To provide context to these findings, we conducted a test by initializing
the computational model with three swimmer configurations obtained by 3-D PTV of
induced brine shrimp migrations from § 3.3. We used three cases in which 100 brine
shrimp were scanned and reconstructed within the volume (L = 22 cm, W1 = 6.6 cm,
W2 = 22 cm), resulting in an animal number density of 0.03 animals per cm3 (figure 14).
This was compared with three simulations initialized with the same volume and number
of swimmers, placed randomly. Figure 15 shows that the flow derived from the simulation
with experimentally obtained swimmer configuration resulted in a higher convection
magnitude than the randomly initialized simulations.
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Figure 14. Scanned and reconstructed brine shrimp from 3-D PTV overlaid with flow field, Us(x, y, z)
generated by (a) the Gaussian wake model and (b) the wavelet wake model.
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Figure 15. Comparing convective velocity generated by randomly distributed swimmer locations and
experimentally initialized swimmer locations using (a) the Gaussian model and (b) the wavelet model.
Estimated convection velocity plotted against streamwise distance from start of group, z for randomized
simulations and for a simulation initialized with locations of brine shrimp during induced vertical migration.

A portion of this difference can be attributed to the fact that the animal number density is
overly generalized, failing to capture the spatial variations in the swimmers’ configuration.
As shown in figure 16, the concentration of swimmers is significantly higher towards the
centre of the tank when experimentally initialized. The increased concentration in the
centre of the volume likely results in more frequent swimmer wake interactions, leading to
larger induced flow. While it may not be surprising, given that the flashlight was centrally
positioned in the tank, attracting the brine shrimp towards the light, it is noteworthy that the
swimmers do not avoid or alter their swimming paths to mitigate the higher flow regions
created by these interactions.

To further explore the relationship between animal number density and the induced
flow velocity, we plotted induced flow from experimental data in Houghton & Dabiri
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Figure 16. Comparison of the distribution of swimmer positions between experimentally initialized (pink bars)
and randomly initialized groups (blue bars). Swimmers in the experimental set-up are concentrated in the
centre, while those initialized randomly are distributed more evenly throughout the volume. The illuminated
positions in the tank correspond roughly to the region between X = [7, 13].

(2019) against the computational simulations on a normalized scale (figure 17). This
comparison highlights the scaling behaviour of the induced flow as a function of animal
number density. While the magnitudes differ, the general trend is consistent across the
experimental and simulated data. The power law fit was calculated as y = axb + c, where
b controls the rate at which induced flow velocity changes as a function of animal number
density. By comparing the values of b between the experimental (b = 0.61) and simulated
datasets (Gaussian, b = 0.5; wavelet, b = 0.3), we see that the Gaussian wake model
produces flow magnitude growth rates with animal number density.

5. Discussion

We have developed an analytical wake superposition model for groups of hydrodynamically
interacting organisms. This model was implemented numerically with parameters derived
from empirical observations of brine shrimp, incorporating observed responses to light
and flow as well as 3-D swimming trajectories. Numerical simulations with this model
produce a 3-D flow field and an estimated convection velocity. This semianalytical model
provides a quantitative framework for understanding hydrodynamic interactions within
swimming aggregations at intermediate Reynolds numbers.

Our findings highlight the intricate interplay between wake kinematics, swimmer
spacing and overall group size and arrangement in inducing flows within swimming
collectives. Notably, the wavelet wake model, when compared with the Gaussian wake
model, generates lower-magnitude convective velocities, resulting in swimmers within
the group experiencing slower flows. The positive flow regions in the wavelet have an
annular shape with the maximum flow value reached over a circle in space. In contrast, the
Gaussian wake reaches a maximum value at a single point. Thus, the wavelet model has a
more spread-out region of positive flow. In addition, the negative flow region was averaged

1001 A50-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1102


N. Mohebbi, J. Hwang, M.K. Fu and J.O. Dabiri

0

0.2

0.4

0.6

0.8

1.0

2 4

Gaussian
Wavelet
Empirical measurements

6

Animal number density (animals m–3)

N
o
rm

al
iz

ed
 v

el
o
ci

ty
 (

–
)

8 10 (×105)

Figure 17. Comparison of normalized velocity induced by varying densities of swimmers between
experimental data and model predictions. Normalized flow velocity as a function of animal number density,
comparing experimental data from Houghton & Dabiri (2019) (black circles with standard deviation bars) with
the average and standard deviation (shaded area) from triplicate simulations at corresponding densities using
the Gaussian and wavelet models.

when looking at the convective velocity. The differences between the flow induced by
Gaussian and wavelet wake models exemplify the importance of local flow kinematics
and thus motivate continuing work to measure and model individual organism-level flows.
Compared to experimental data, the wavelet model predicts flow magnitudes in closer
quantitative agreement; however, when normalized by the maximum flow, the Gaussian
model more effectively captures the dependence on animal number density.

By comparing groups of different lengths, we found that the flow within the group
exhibits decreased sensitivity to the length of the group beyond a threshold. With a uniform
distribution of swimmers, there was a constant infusion of momentum to the flow with
streamwise distance from the start of the group. However, the velocity of the induced flow
increases within the group length only until the mass flux term of the momentum balance
dominates, and each individual adds less velocity to the flow than those upstream. The
impact of this added velocity decreases further with diffusion before reaching downstream
swimmers. In addition, we found that the upstream portion of the flow within the group
was not affected by the group downstream. Thus, the dynamics of shorter groups can be
extracted from the dynamics of groups longer than a certain threshold.

Simulating different group densities, we found that the collective convective velocity
increased with the animal number density. Dense configurations resulted in flows that
exceeded the swimming speed of the organism, resulting in unstable structures. This
observation raises questions about the apparent stability of swimmer aggregations in field
observations, where these high-density configurations are known to persist. The contrast
between simulated results and observed natural behaviour prompts inspiration for future
model improvements to explore mechanisms used by organisms to navigate and thrive
in environments characterized by dynamic collective swimming. For example, there is
evidence that animals exploit fluid structures to improve locomotion (Oteiza et al. 2017;
Weber et al. 2020). In randomized simulations, positions were initialized by placing
swimmers in a prescribed volume swimming directly upward. For vertically swimming
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negatively buoyant swimmers, momentum excess in the vertical direction is a reasonable
generalization. To extend this model beyond constant-speed, unidirectional swimming, the
impact of non-aligned trajectories and flow-response behaviours is needed. Similar models
for wind turbines have found that wake deflection impacts wake spreading and thus
affects aggregate flow characteristics (Shapiro, Gayme & Meneveau 2018). However,
applying these methods to animal behaviour and modelling requires further investigation
to determine the suitability. The only constraint in swimming placement was the exclusion
zones that maintain a minimum nearest neighbour distance. If the model included some
parameters to actively optimize swimmer placement, downstream swimmers might seek
the drag region of a wavelet wake or avoid peak flows of a Gaussian wake. Continued
work to study the stability of these systems could incorporate discrete time step dynamics
to investigate how collective flow-inducing systems evolve.

This model is adaptable to different wake profiles and aggregation configurations,
allowing future exploration of flows generated by other organisms with different wake
profiles and collective behaviours. Furthermore, this model is applicable across a spectrum
of ecological and engineering contexts, including active and passive particle systems such
as marine snow and multiphase flows.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.1102.
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Appendix A

We model the spatial evolution of the propulsive jet as a self-similar, axisymmetric jet,

us = u0c(z)ξ
(

r
δ(z)

)
. (A1)

In the following derivation u0, ξ(r/δ(z)) and Fz are prescribed, and (A1) is plugged into
simplified momentum,

Fz = ρ

∫∫
wake

uw(x, y, z)us(x, y, z) dx dy, (A2)

to arrive at

Fz = ρ

∫∫
u2

0(c(z)ξ(r, z) − [c(z)ξ(r, z)]2) dr dθ, (A3)
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to derive an expression for c(z) that conserves momentum by definition. Next, ξ(r/δ(z))
is defined as follows for each of the two wake models, and δ(z) is defined to be the
standard deviation at each value of z, σ(z). Note that when these functions are used
in signal processing and analysis, a normalized version is used, ensuring that the total
energy or power is conserved across different scales, which is important for accurate
signal analysis. In this derivation, the prefactor c(z) is constructed to conserve momentum
directly, negating the need for commonly used normalization prefactors. To solve for cg(z)
and cw(z), the prefactors for the Gaussian and wavelet wake models, respectively, the two
wake shapes,

ξgaussian

(
r

σ(z)

)
= e−r2/2σ(z)2

, (A4)

ξwavelet

(
r

σ(z)

)
= −

(
1 − r2

2σ(z)2

)
e−r2/3σ(z)2

, (A5)

are substituted into (A3),

Fz = ρ

∫∫
u2

0(cg(z) e−r2/2σ(z)2 − (cg(z) e−r2/2σ(z)2
)2) dr dθ, (A6)

Fz = ρ

∫∫
u2

0

(
cw −

(
1 − r2

2σ(z)2

)
e−r2/3σ(z)2

−
(

cw(z) −
(

1 − r2

2σ(z)2

)
e−r2/3σ(z)2

)2 )
dr dθ, (A7)

and then integrated in the streamwise direction over a circular cross-section with infinite
radius. For each shape, there are two solutions for c(z). We select the solution that is
negative and tends to 0 with increasing positive z values,

cg(z) = 1 −
√

1 + Fz

πρσ(z)2u2
0
, (A8)

cw(z) = 4
5

− 4
5

√
1 + 5Fz

12πρσ(z)2u2
0
. (A9)

Combining (A4) with (A8) and (A5) with (A9) and plugging into (A1) to derive the
final expressions for us, as follows:

us,wavelet(x, y, z) = u0

(
4
5

− 4
5

√
1 + 5Fz

12πρσ(z)2u2
0

)(
−1

(
− r2

2σ(z)2

)
e−r2/3σ(z)2

)
,

(A10)

us,gaussian(x, y, z) = u0

(
1 −

√
1 + Fz

πρσ(z)2u2
0

)
e−r2/2σ(z)2

. (A11)
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Finally, substituting the above (A10) and (A11) into the wake convection velocity, uc, as
follows:

uc(z) =

∫∫
wake

uw(x, y, z)us(x, y, z) dx dy∫∫
wake

us(x, y, z) dx dy
, (A12)

we arrive at

uc,wavelet(z) = u0

2

(
1 +

√
1 + 5Fz

12πρσ(z)2u2
0

)
, (A13)

uc,gaussian(z) = u0

2

(
1 +

√
1 + Fz

πρσ(z)2u2
0

)
. (A14)

REFERENCES

BANDARA, K., VARPE, Ø., WIJEWARDENE, L., TVERBERG, V. & EIANE, K. 2021 Two hundred years of
zooplankton vertical migration research. Biol. Rev. 96 (4), 1547–1589.

BERLINGER, F., GAUCI, M. & NAGPAL, R. 2021 Implicit coordination for 3d underwater collective behaviors
in a fish-inspired robot swarm. Sci. Robot. 6 (50), eabd8668.

BRADY, J.F. & BOSSIS, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 111–157.
CATTON, K.B., WEBSTER, D.R., KAWAGUCHI, S. & YEN, J. 2011 The hydrodynamic disturbances of two

species of krill: implications for aggregation structure. J. Exp. Biol. 214 (11), 1845–1856.
CRESPO, A., HERNÁNDEZ, J. & FRANDSEN, S. 1999 Survey of modelling methods for wind turbine wakes

and wind farms. Wind Energy 2 (1), 1–24.
DABIRI, J.O. 2005 On the estimation of swimming and flying forces from wake measurements. J. Exp. Biol.

208 (18), 3519–3532.
DERR, N.J., DOMBROWSKI, T., RYCROFT, C.H. & KLOTSA, D. 2022 Reciprocal swimming at intermediate

Reynolds number. J. Fluid Mech. 952, A8.
DEWAR, W., BINGHAM, R., IVERSON, R., NOWACEK, D., LAURENT, L. & WIEBE, P. 2006 Does the marine

biosphere mix the ocean? J. Mar. Res. 64, 541–561.
ELDREDGE, J.D. 2007 Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex

particle method. J. Comput. Phys. 221 (2), 626–648.
FARMER, D.D., CRAWFORD, G.B. & OSBORN, T.R. 1987 Temperature and velocity microstructure caused

by swimming fish1. Limnol. Oceanogr. 32 (4), 978–983.
FERNÁNDEZ CASTRO, B., PEÑA, M., NOGUEIRA, E., GILCOTO, M., BROULLÓN, E., COMESAÑA, A.,

BOUFFARD, D., NAVEIRA, G., ALBERTO, C. & MOURIÑO-CARBALLIDO, B. 2022 Intense upper ocean
mixing due to large aggregations of spawning fish. Nat. Geosci. 15 (44), 287–292.

FU, M.K., HOUGHTON, I.A. & DABIRI, J.O. 2021 A single-camera, 3D scanning velocimetry system for
quantifying active particle aggregations. Exp. Fluids 62 (8), 168.

GREGG, M.C. & HORNE, J.K. 2009 Turbulence, acoustic backscatter, and pelagic nekton in monterey bay.
J. Phys. Oceanogr. 39 (5), 1097–1114.

HOUGHTON, I.A. & DABIRI, J.O. 2019 Alleviation of hypoxia by biologically generated mixing in a stratified
water column. Limnol. Oceanogr. 64 (5), 2161–2171.

HOUGHTON, I.A., KOSEFF, J.R., MONISMITH, S.G. & DABIRI, J.O. 2018 Vertically migrating swimmers
generate aggregation-scale eddies in a stratified column. Nature 556, 497–500.

HUNTLEY, M.E. & ZHOU, M. 2004 Influence of animals on turbulence in the sea. Mar. Ecol. Prog. Ser. 273,
65–79.

HUSSON, S.J., COSTA, W.S., SCHMITT, C. & GOTTSCHALK, A. 2018 Keeping track of worm trackers.
In (ed. O. Hobert) WormBook, pp. 1–17. The C. elegans Research Community, WormBook. Available at:
Available from: https://www.ncbi.nlm.nih.gov/books/NBK116078/.

ISHIKAWA, T., SIMMONDS, M.P. & PEDLEY, T.J. 2006 Hydrodynamic interaction of two swimming model
micro-organisms. J. Fluid Mech. 568, 119–160.

KATIC, I., HØJSTRUP, J. & JENSEN, N.O. 1987 A simple model for cluster efficiency. In EWEC’86.
Proceedings (ed. W. Palz & E. Sesto), vol. 1, pp. 407–410.

1001 A50-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.ncbi.nlm.nih.gov/books/NBK116078/
https://doi.org/10.1017/jfm.2024.1102


N. Mohebbi, J. Hwang, M.K. Fu and J.O. Dabiri

KATIJA, K. 2012 Biogenic inputs to ocean mixing. J. Exp. Biol. 215 (6), 1040–1049.
KO, H., LAUDER, G. & NAGPAL, R. 2023 The role of hydrodynamics in collective motions of fish schools

and bioinspired underwater robots. J. R. Soc. Interface 20 (207), 20230357.
LAUDER, G.V. & MADDEN, P.G.A. 2008 Advances in comparative physiology from high-speed imaging of

animal and fluid motion. Annu. Rev. Physiol. 70 (1), 143–163.
LAUGA, E. & POWERS, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72

(9), 096601.
LIN, Z., THIFFEAULT, J. & CHILDRESS, S. 2011 Stirring by squirmers. J. Fluid Mech. 669, 167–177.
LISSAMAN, P.B.S. 1979 Energy effectiveness of arbitrary arrays of wind turbines. J. Energy 3 (6), 323–328.
MATHIJSSEN, A.J.T.M., CULVER, J., BHAMLA, M.S. & PRAKASH, M. 2019 Collective intercellular

communication through ultra-fast hydrodynamic trigger waves. Nature 571, 560–564.
OTEIZA, P., ODSTRCIL, I., LAUDER, G., PORTUGUES, R. & ENGERT, F. 2017 A novel mechanism for

mechanosensory-based rheotaxis in larval zebrafish. Nature 547, 445–448.
OUILLON, R., HOUGHTON, I.A., DABIRI, J.O. & MEIBURG, E. 2020 Active swimmers interacting with

stratified fluids during collective vertical migration. J. Fluid Mech. 902, A23.
PEDLEY, T.J. & HILL, S.J. 1999 Large-amplitude undulatory fish swimming: fluid mechanics coupled to

internal mechanics. J. Exp. Biol. 202 (23), 3431–3438.
PUSHKIN, D.O., SHUM, H. & YEOMANS, J.M. 2013 Fluid transport by individual microswimmers. J. Fluid

Mech. 726, 5–25.
SCHINDELIN, J., et al.2012 Fiji: an open-source platform for biological-image analysis. Nat. Meth. 9 (77),

676–682.
SHAPIRO, C.R., GAYME, D.F. & MENEVEAU, C. 2018 Modelling yawed wind turbine wakes: a lifting line

approach. J. Fluid Mech. 841, R1.
STEMMANN, L. & BOSS, E. 2012 Plankton and particle size and packaging: from determining optical

properties to driving the biological pump. Annu. Rev. Mar. Sci. 4 (1), 263–290.
VICSEK, T. & ZAFEIRIS, A. 2012 Collective motion. Phys. Rep. 517 (3), 71–140.
VOUTSINAS, S., RADOS, K. & ZERVOS, A. 1990 On the analysis of wake effects in wind parks. Wind Engng

14 (4), 204–219.
WANG, S. & ARDEKANI, A.M. 2015 Biogenic mixing induced by intermediate Reynolds number swimming

in stratified fluids. Sci. Rep. 5 (11), 17448.
WEBER, P., ARAMPATZIS, G., NOVATI, G., VERMA, S., PAPADIMITRIOU, C. & KOUMOUTSAKOS, P. 2020

Optimal flow sensing for schooling swimmers. Biomimetics 5 (1), 10.
WEIHS, D. 1973 Hydromechanics of fish schooling. Nature 241 (53875387), 290–291.
WEIHS, D. 2004 The hydrodynamics of dolphin drafting. J. Biol. 3, 8.
WILHELMUS, M.M. & DABIRI, J.O. 2014 Observations of large-scale fluid transport by laser-guided plankton

aggregationsa). Phys. Fluids 26 (10), 101302.
WU, T.Y. 2011 Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43 (1), 25–58.
ZHANG, Y. & LAUDER, G.V. 2023 Energetics of collective movement in vertebrates. J. Exp. Biol. 226 (20),

jeb245617.
ZONG, H. & PORTÉ-AGEL, F. 2020 A momentum-conserving wake superposition method for wind farm

power prediction. J. Fluid Mech. 889, A8.

1001 A50-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1102

	1 Introduction
	2 Analytical model
	2.1 Individual swimmer wake model
	2.2 Wake superposition

	3 Experimental methods
	3.1 Individual swimmer response to light stimulus
	3.2 Individual swimmer response to background flow
	3.3 Characterizing collective swimming
	3.4 Modelling assimilation
	3.4.1 Wake profile models
	3.4.2 Collective flow field calculations


	4 Results
	4.1 Swimmer response to light and background flow
	4.2 Collective swimming dynamics
	4.3 Modelled collective hydrodynamics
	4.3.1 Dependence on aggregation size
	4.3.2 Dependence on swimmer spacing
	4.3.3 Comparison with experimental data


	5 Discussion
	Appendix A
	References

