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Computing harmonic maps between
Riemannian manifolds
Jonah Gaster, Brice Loustau, and Léonard Monsaingeon
Abstract. In our previous paper (Gaster et al., 2018, arXiv:1810.11932), we showed that the theory of
harmonic maps between Riemannian manifolds, especially hyperbolic surfaces, may be discretized
by introducing a triangulation of the domain manifold with independent vertex and edge weights.
In the present paper, we study convergence of the discrete theory back to the smooth theory
when taking finer and finer triangulations, in the general Riemannian setting. We present suitable
conditions on the weighted triangulations that ensure convergence of discrete harmonic maps to
smooth harmonic maps, introducing the notion of (almost) asymptotically Laplacian weights, and
we offer a systematic method to construct such weighted triangulations in the two-dimensional case.
Our computer software Harmony successfully implements these methods to compute equivariant
harmonic maps in the hyperbolic plane.

1 Introduction

Let M and N be Riemannian manifolds, let us assume M compact and N complete. A
harmonic map f ∶ M → N is a critical point of the energy functional

E( f ) = 1
2 ∫

M
∥d f ∥2 dv .

Equivalently, f has vanishing tension field τ( f ) = 0, a nonlinear generalization of
the Laplace operator that can be defined as the trace of the Riemannian Hessian:
τ( f ) = ∇(d f ). When N is compact and has negative sectional curvature, there exists
a harmonic map M → N in any homotopy class of smooth maps, and it is unique
unless it is constant or maps to a geodesic. This foundational result due to Eells–
Sampson [7] and Hartman [9] can be understood in terms of the convexity properties
of the energy. Essentially, the curvature assumption on N implies that the energy
functional is convex on any component of the space of smooth maps C∞(M , N),
which guarantees convergence of the gradient flow—also called heat flow in this
setting—from any initial smooth map to the energy minimizer.

In our previous work [8], which mostly specialized to surfaces, we showed that
the theory can be appropriately discretized by meshing the domain manifold with a
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triangulation and assigning two independent systems of weights, on the set of vertices
and edges, respectively. One of the main results is the strong convexity of the discrete
energy functional, from which we derive convergence of the discrete heat flow to the
unique discrete harmonic map. (The second focus of [8] is on center of mass methods,
which we do not discuss in the present paper.) While that paper was concerned with
a fixed discretization, the purpose of the present paper is to study the convergence
of the discrete theory back to the smooth theory when one takes finer and finer
meshes.

After introducing the discretization setup in Section 2, in Section 3 we discuss
special conditions on weighted triangulations in order to adequately capture the local
geometry of the domain manifold. We define Laplacian systems of weights, which aim
to produce a good approximation of the Laplacian (i.e., tension field) by the discrete
Laplacian. As a fundamental example, we introduce our favorite volume vertex weights
and cotangent edge weights.

In Section 4, we study fine sequences of meshes (with maximum edge length
converging to zero), and the approximation of the relevant smooth objects by their
discrete counterparts. A key requirement for the sequence is to be crystalline, meaning
that all angles of the triangulation stay bounded away from zero. We also strategically
weaken the notion of Laplacian weights to (almost) asymptotically Laplacian weights.
We show that for such sequences of weighted meshes, there is convergence of the
discrete volume form, tension field, energy density, and energy to their smooth
counterparts.

In Section 5, we study the convergence of discrete maps to smooth harmonic maps.
If the discrete energy is sufficiently convex, and the sequence of meshes is almost
asymptotically Laplacian, we prove that (the center of mass interpolations of) the
discrete harmonic maps converge to the unique smooth harmonic map in L2. We
expect the strong convexity assumption to hold in a very broad setting, and have
proved it in the two-dimensional case in [8]. Pending stronger assumptions, we also
show convergence in L∞, and in energy. Furthermore, we show that the discrete heat
flow starting from any discretized map converges to the smooth harmonic map when
both the time index and the space index run to +∞, provided a CFL-type condition is
satisfied. This theorem may be seen as a constructive implementation of the theorem
of Eells–Sampson and Hartman.

Section 6 describes how to systematically construct almost asymptotically Lapla-
cian sequences of meshes, so that our previous theorems can apply, at least in the two-
dimensional case. These are quite simply constructed by iterated midpoint geodesic
subdivision from an initial triangulation of the domain manifold, and taking the
volume weights on vertices and cotangent weights on edges. Proving the required
Laplacian qualities requires some delicate Riemannian geometry estimates, naturally
building on the Euclidean case; we largely relegate these to Appendix A to avoid bur-
dening our exposition. It is quite remarkable how the conditions for our constructed
sequences to be almost asymptotically Laplacian are barely met, and in turn how these
conditions are barely sufficient for our main convergence theorem (Theorem 5.1) to
hold.

Putting together the main theorems in Sections 5 and 6 (Theorems 5.1, 5.23,
and 6.7), we obtain explicit constructions of sequences of discretizations that ensure
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convergence to the desired harmonic map. Here is a sample theorem summarizing our
main results for surfaces:

Theorem Let M and N be compact Riemannian 2-manifolds of negative Euler charac-
teristics, and assume N has negative sectional curvature. Consider a sequence of meshes
on M obtained by iterated midpoint subdivision with all angles bounded away from 0
and from π/2, and equip it with the area vertex weights and cotangent edge weights. Let
C be a component of C∞(M , N) of nonzero degree, and let vn be the unique discrete
harmonic map in the corresponding discrete homotopy class. Then vn converges to the
unique harmonic map w ∈ C in the L2 topology. ∎

This construction and the discrete heat flow is implemented in our freely avail-
able computer software Harmony, which is presented in our previous paper [8].
Harmony computes the unique harmonic map from the hyperbolic plane to itself
that is equivariant with respect to the actions of two Fuchsian groups, which can be
selected by the user via Fenchel–Nielsen coordinates.

Much of the theory and techniques that we develop are well-known in the
Euclidean setting, such as the discrete heat flow method or the cotangent weights
popularized by Pinkall–Polthier [13]. This paper builds upon the Euclidean theory
using fine meshes on Riemannian manifolds. However, there are notable differences
from the Euclidean setting: First, the Laplace equation is linear in the Euclidean
setting, allowing finite element methods. Second, we restrict to compact manifolds
without boundary, in contrast to Euclidean domains where boundary conditions are
prescribed. Finally, there are important consequences of negative curvature, including
the strong convexity of the energy functional and the uniqueness of harmonic maps,
that we exploit in the present project.

The program to discretize the theory of harmonic maps between Riemannian
manifolds, and to obtain convergence back to the smooth theory, remains unfinished.
Celebrated work on the discretized theory includes [2, 6, 11], while convergence to the
smooth harmonic map has been analyzed for submanifolds of Rn notably by Bartels
[1]. The present paper seems to have some overlap with Bartels’ work, though our
setting is more intrinsic and geometric in nature. A perhaps more powerful approach
than ours to prove convergence of discrete harmonic maps to smooth harmonic maps
would consist in finding a discrete version of Bochner’s formula and possibly Moser’s
Harnack inequality: see Remark 5.13.

A note to the reader: Although this paper is the sequel of [8], the two papers can be
read independently. We also point out that Sections 5 and 6 in this paper can be read
independently.

2 Setup

Throughout the paper, let (M , g) and (N , h) be smooth connected complete Rieman-
nian manifolds. These will be our domain and target respectively. We will typically
assume that M is compact and oriented, and that N is Hadamard (complete, simply
connected, with nonpositive sectional curvature). Although most of the paper holds
in this generality, we are especially interested in the case where S = M is two-
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dimensional. For background on the smooth theory of harmonic maps M → N ,
please refer to [8, Section 1].

2.1 Discretization setup

Our discretization setup is the following. (We also refer to [8, Section 2] for more
details, although it focuses on the equivariant setting and H

2.) A mesh on M is any
topological triangulation; we denote by G the embedded graph that is the 1-skeleton.
A mesh (or its underlying graph) is called geodesic if all edges are embedded geodesic
segments.

Denote V = G(0) and E = G(1) the set of vertices and (unoriented) edges of G. We
shall equip G with vertex weights (μx)x∈V and edge weights (ωx y){x , y}∈E . For now,
these weights are two arbitrary and independent collections of positive numbers. Such
a biweighted graph allows one to develop a discrete theory of harmonic maps M → N
as follows:
• The system of vertex weights defines a measure μG = (μx)x∈V on V. Since G is

embedded in M, μG can also be seen as a discrete measure on M supported by the
set of vertices.

• A discrete map from M to N along G is a map V → N . The space MapG(M , N) of
such maps is a smooth finite-dimensional manifold with tangent space

T f MapG(M , N) = Γ( f ∗ T N) ∶= ⊕
x∈V

T f (x) N .

It carries a smooth L2-Riemannian metric given by

⟨V , W⟩ ∶= ∫
M
⟨Vx , Wx⟩ dμG(x) = ∑

x∈V
μx⟨Vx , Wx⟩,

and an associated L2 distance given by

d( f , g)2 ∶= ∫
M

d( f (x), g(x))2 dμG(x) = ∑
x∈V

μx d( f (x), g(x))2 ,

where d( f (x), g(x)) denotes the Riemannian distance in N.
• The discrete energy density of a discrete map f ∈ MapG(M , N) is the discrete

nonnegative function eG( f ) ∈ MapG(M ,R) defined by

eG( f )x = 1
4μx

∑
y∼x

ωx y d( f (x), f (y))2 .

• The discrete energy functional on MapG(M , N) is the map EG ∶MapG(M , N) → R

given by

EG( f ) = ∫
M

eG( f )dμG

= 1
2 ∑

x∼y
ωx y d( f (x), f (y))2 .

(2.1)

A discrete harmonic map is a critical point of EG .
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Remark 2.1 The discrete energy functional does not depend on the choice of
vertex weights, and neither does the harmonicity of a discrete map. When M is two-
dimensional, this reflects the fact that the energy functional E∶C∞(M , N) → R

only depends on the conformal structure on S.

• The discrete tension field of f ∈ MapG(M , N) is τG( f ) ∈ Γ( f ∗ T N) defined by

τG( f )x = 1
μ(x) ∑

y∼x
ωx y

�����→
f (x) f (y).

Notation 2.2 Throughout the paper, we abusively denote �→x y ∶= exp−1
x (y) (whenever

well-defined), where expx is the Riemannian exponential map.

In [8, Proposition 2.21], we show the discrete first variational formula:

τG( f ) = − grad EG( f ).

In particular, f is harmonic if and only if τG( f ) = 0. This is equivalent to the
property that for all x ∈ V, f (x) is the center of mass of its neighbors’ values (more
precisely of the system { f (y), ωx y} for y adjacent to x [8, Proposition 2.22]).

• Given u0 ∈ MapG(M , N) and t > 0, the discrete heat flow with fixed stepsize t is the
sequence (uk)k⩾0 defined by

uk+1 = exp(t τG(uk)).

The discrete heat flow is precisely the fixed stepsize gradient descent method for the
discrete energy functional EG .

One of the main theorems of [8] is that if S = M and N are closed oriented surfaces
of negative Euler characteristics and u0 has nonzero degree, then the discrete heat flow
converges as k → +∞ to the unique minimizer of EG in the same homotopy class with
exponential convergence rate. See [8, Theorem 4.5] for more details.

2.2 Midpoint subdivision of a mesh

Assume (M , g) is equipped with a geodesic mesh and denote by G the associated
graph. One can define a new mesh called the midpoint subdivision (or refinement)
as follows. For comfort, let us assume M = S is two-dimensional; the definition is
easily generalized. Define a new geodesic graph G′ by adding to the vertex set of G
all the midpoints of edges of G, and adding new edges so that every triangle in G is
subdivided as four triangles in G′ (see [8, Definition 2.2]). This clearly defines a new
geodesic triangulation of S whose 1-skeleton is G′. See Figure 1 for an illustration of
an invariant mesh in H

2 and its refinement generated by the software Harmony.
Evidently, this subdivision process may be iterated, thus one can define the

refinement of order n of a geodesic mesh. Meshes obtained by successive midpoint
refinements will be our standard support for approximating a smooth manifold by
discrete data. Properties of such meshes will be further discussed in Section 6.
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Figure 1: A mesh of the Poincaré disk model of H2 on the left and its midpoint refinement on
the right. Both are invariant under the action of a Fuchsian group Γ, yielding meshes on a closed
hyperbolic surface S of genus 2. The highlighted central region is a fundamental domain. The
blue circle arcs are the axes of generators of Γ ≈ π1S.

2.3 Interpolation

2.3.1 Generalities

Assume (M , g) is equipped with a geodesic mesh and denote by G the associated
graph. A continuous map f ∶ M → N is piecewise smooth along G if f is smooth in
restriction to any simplex of the mesh.

Note that there is a forgetful (restriction) map

πG ∶C(M , N) → MapG(M , N),

which assigns to any continuous map f ∶ M → N its restriction to the vertex set of
G. A first definition of an interpolation scheme would be a right inverse ιG of the
map πG .

Of course, a natural requirement to add is that ιG is a continuous map whose image
is contained in the subspace of piecewise smooth maps along G. In the Euclidean
setting, there is one canonical choice for interpolation, namely linear interpolation.
In the general Riemannian setting, there is no such obvious choice. For our purposes,
we will view center of mass interpolation as the preferred interpolation, although
there are other natural options (e.g., harmonic interpolation), which we will not
discuss.

There is a subtle deficiency in the above definition of interpolation scheme
when N is not simply connected: one would like to require that ιG ○ πG preserves
homotopy classes of maps, but that is not possible. This problem can be solved
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by defining an interpolation scheme as attached to the choice of a homotopy
class:
Definition 2.1 Let C ⊂ C(M , N) be a connected component. An interpolation
scheme ιG is a continuous right inverse of πG ∣C , whose image consists of piecewise
smooth maps along G.

Note that this definition still does not allow one to define the homotopy class of a
discrete map. A more elegant way to deal with deficiency, which we favored in [8], is
to work equivariantly in the universal covers.

2.3.2 Working equivariantly

Fix a homotopy class C of a continuous map M → N , which induces a group homo-
morphism ρ∶ π1M → π1N . Recall that any f ∈ C admits a ρ-equivariant lift between
universal covers f̃ ∶ M̃ → Ñ . The mesh M on M also lifts to a π1M-invariant geodesic
mesh M̃ of M̃. As usual, one has to take more care with basepoints on M and N—and
use more notation—to make this story complete.
Definition 2.2 The discrete homotopy class CG ∶= MapG̃ ,ρ(M̃ , Ñ) is defined as the
space of ρ-equivariant discrete maps M̃ → Ñ along G̃.

One can then define an interpolation scheme as a continuous right inverse of πG

on CG . For the purposes of this paper, however, all of the convergence analysis can be
performed on the quotient manifolds. The presentation is chosen with ease in mind,
and so we overlook the subtlety above. Nevertheless, we point out that there are other
benefits to the equivariant setting:
• It allows one to consider equivariance with respect to group homomorphisms

ρ∶ π1M → Isom(Ñ) that are not necessarily induced by continuous maps from M
to a quotient of Ñ , e.g., nondiscrete representations ρ.

• Computationally, it is easier to work in the universal covers. This is the point of view
that we chose when coding the software Harmony.

This explains our present change in perspective from the equivariance throughout [8].

2.3.3 Center of mass interpolation

We refer to [8, Section 5.1] for generalities on centers of mass, also called barycenters,
in metric spaces and Riemannian manifolds.

For comfort, let us assume that S = M is two-dimensional; it is quite straightfor-
ward to generalize what follows to higher dimensions. First, we describe interpolation
between triples of points. Let A, B, and C be three points on the surface (S , g).
We assume that these three points are sufficiently close, more precisely that they
lie in a strongly convex geodesic ball B, i.e., any two points of B are joined by
a unique minimal geodesic segment in S and this segment is contained in B. In
particular, there is a uniquely defined triangle T ⊆ S with vertices A, B, and C, and
with geodesic boundary. Any point P ∈ T can uniquely be written as the center of
mass of {(A, α), (B, β), (C , γ)}, where α, β, γ ∈ [0, 1] and α + β + γ = 1. Let similarly
A′, B′, and C′ be three sufficiently close points in the Riemannian manifold (N , h).
Then there is a unique center of mass interpolation map f ∶ ABC → N such that for any
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point P ∈ T as above, f (P) is the center of mass of {(A′ , α), (B′ , β), (C′ , γ)}. In other
words, f is the identity map in barycentric coordinates.

Clearly, given a discrete map f ∈ MapG(S , N), one can define its center of mass
interpolation triangle by triangle following the procedure above. Although there
seems to be a restriction on the size of the triangles in S and their images by f in N for
the interpolation to be well-defined, one can work equivariantly in the universal covers
as explained in Section 2.3.2 and the restriction disappears as long as S has nonpositive
sectional curvature, or G is sufficiently fine, i.e., has small maximum edge length, and
N has nonpositive sectional curvature.
Definition 2.3 Assume (M , g) has nonpositive sectional curvature, or G is suffi-
ciently fine, and N has nonpositive sectional curvature. The discussion above yields
a center of mass interpolation scheme

ιG ∶MapG(M , N) → C(M , N).
We denote f̂ ∶= ιG( f ) the center of mass interpolation of a discrete map f ∈
MapG(M , N).
Theorem 2.3 Assume M has nonpositive sectional curvature, or G is sufficiently fine,
and N has nonpositive sectional curvature. Then

(i) For any f ∈ MapG(M , N), the interpolation f̂ maps each edge of G to a geodesic
segment in N (and does so with constant speed).

(ii) For any f ∈ MapG(M , N), the interpolation f̂ is piecewise smooth along G.
(iii) The map ιG ∶MapG(M , N) → C(M , N) is 1-Lipschitz for the L∞ distance on both

spaces.

Proof For comfort, let us write the proof when M = S is two-dimensional. The proof
of (i) is immediate. For (ii), recall that the center of mass P as above is characterized
by

α�→PA + β�→PB + γ�→PC = 0⃗

(see [8, Equation (37)]), where we denote
�→PA ∶= exp−1

P (A) etc. It follows from the
implicit function theorem that (α, β, γ) provide smooth barycentric coordinates on T
(resp. T ′). Conclude by observing that f̂ is the identity map in barycentric coordinates.

The proof of (iii) is a little more delicate, and crucially relies on N having nonpos-
itive sectional curvature. Let f1 , f2 ∈ MapG(S , N), we want to show that d∞( f̂1 , f̂2) ⩽
d∞( f1 , f2). Consider any triangle in G with vertices A, B, C ∈ S. Let p ∈ S be any
point inside or on the boundary of the triangle ABC ⊆ S. We denote A i = f i(A),
B i = f i(B), C i = f i(C), Pi = f̂ i(P) for i ∈ {1, 2}. Since p is an arbitrary point on S,
we win if we show that d(P1 , P2) ⩽ d∞( f1 , f2). By definition of the center of mass
interpolation, Pi is the center of mass of {(A i , α), (B i , β), (C i , γ)}, where α, β, γ ∈
[0, 1] is some triple with α + β + γ = 1 (namely, the unique triple such that M is the
center of mass of {(A, α), (B, β), (C , γ)}). Let V⃗i = α��→Pi A i + β��→Pi B i + γ��→Pi C i and let
W⃗ = α��→P1A2 + β��→P1B2 + γ��→P1C2, where we denote

��→Pi A i = exp−1
Pi
(A i), etc. By definition

of the center of mass V⃗i = 0⃗, so we can write W⃗ = W⃗ − V⃗1:

W⃗ = α (��→P1A2 −��→P1A1) + β (��→P1B2 −�→P1B1) + γ (��→P1C2 −��→P1C1) .(2.2)
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Since N has nonpositive sectional curvature, the exponential map expP1
∶TP1 N → N

is distance nondecreasing (for this argument to be completely rigorous, we may need
to pass to universal covers), so that ∥��→P1A2 −��→P1A1∥ ⩽ d(A1 , A2), etc. Using the triangle
inequality in (2.2), we find ∥W⃗∥ ⩽ d∞( f1 , f2). This shows that d(P1 , P2) ⩽ d∞( f1 , f2)
by [8, Lemma 5.3]. ∎

3 Systems of weights

We follow the discretization setup of Section 2 and seek systems of vertex and edge
weights on G that adequately capture the local geometry of M, in the sense that they
ensure a good approximation of the theory of smooth harmonic maps from M to any
other Riemannian manifold.

Throughout this section, (M , g) is any Riemannian manifold equipped with a
geodesic mesh M. We denote as usual G the associated graph.

3.1 Laplacian weights

Definition 3.1 A system of vertex weights (μx)x∈V and edge weights (ωx y){x , y}∈E
on the graph G is called Laplacian (to third order) at a vertex x ∈ V if, for any linear
form L ∈ T∗x M:
(1) (First-order condition)

1
μx

∑
y∼x

ωx y
�→x y = 0.

(2) (Second-order condition)
1

μx
∑
y∼x

ωx y L(�→x y)2 = 2∥L∥2 .

(3) (Third-order condition)
1

μx
∑
y∼x

ωx y L(�→x y)3 = 0.

The biweighted graph (G, (μx), (ωx y)) is called Laplacian if it is Laplacian at any
vertex.

Recall that we denote �→x y ∶= exp−1
x y ∈ Tx M.

Remark 3.1 As we shall see, the defining properties of Laplacian weights (or their
characterization Proposition 3.4) are remarkably versatile. Perhaps the most obvious
motivation for their definition is Theorem 4.14, but we will also use it in different ways,
e.g., for Lemma 4.10 or Theorem 4.17.

Remark 3.2 A biweighted graph being Laplacian to first order, i.e., satisfying condi-
tion (1), is equivalent to the the fact that each vertex of G is the weighted barycenter of
its neighbors. Theorem 3.3 provides many examples of Laplacian graphs to first order.

Theorem 3.3 Assume M = S is two-dimensional and has nonpositive curvature. Any
biweighted graph G underlying a topological triangulation of S admits a unique map to
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S that is Laplacian to first order, i.e., whose image graph equipped with the same weights
is Laplacian to first order.

Proof Note that a map f ∶G → S being Laplacian to first order is equivalent to f
having zero discrete tension field, i.e., f being discrete harmonic. By [8, Theorem 3.20],
the discrete energy functional in this setting is strongly convex, in particular it has a
unique critical point. ∎

The following seemingly stronger characterization of Laplacian weights is imme-
diate:

Proposition 3.4 A system of weights on G is Laplacian at x ∈ V if and only if for any
finite-dimensional vector space W.
(1) For any linear map L∶Tx M → W:

∑
y∼x

ωx y L(�→x y) = 0.

(2) For any quadratic form q on Tx M with values in W:
1

μx
∑
y∼x

ωx y q(�→x y) = 2 tr q.

(3) For any cubic form σ on Tx M with values in W:

∑
y∼x

ωx y σ(�→x y) = 0.

Note that we use the metric (inner product) in Tx M to define tr q. By definition,
tr q is the trace of the self-adjoint endomorphism associated to q.

3.2 Preferred vertex weights: the volume weights

In this paper, we favor one system of vertex weights associated to any mesh of any
Riemannian manifold, the so-called volume weights.

For comfort assume (M , g) = S is two-dimensional, although what follows is
evidently generalized to higher dimensions. Let x be a vertex of the triangulation and
consider the polygon Px ⊆ S equal to the union of the triangles adjacent to x. We define
the weight of the vertex x by

μx ∶= 1
3

Area(Px),

where Area(Px) denotes the Riemannian volume (area) of Px . This clearly defines a
system of positive vertex weights μG ∶= (μx)x∈V . We alternatively see μG as a discrete
measure on S supported by the set of vertices, which is meant to approximate the
volume density vg of the Riemannian metric: see Section 4.2. Note that the choice
of the constant 1

1+dim M = 1
3 in the definition of μx is motivated by the fact that each

triangle is counted three times when integrating over S. The next proposition is almost
trivial:

Proposition 3.5 Let (M , g) be a closed manifold with an embedded graph G associated
to a geodesic mesh. Let μG be the discrete measure on S defined by the volume weights.
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Then

∑
x∈V

μx = ∫
M

dμG = ∫
M

dvg = Vol(M , g).

Recall that any system of vertex weights endows the space of discrete maps
MapG(M , N) with an L2 distance (see Section 2.1).

Theorem 3.6 Let N be any Riemannian manifold of nonpositive sectional curvature.
Equip the space of discrete maps MapG(M , N) with the L2 distance associated to the vol-
ume weights. Then the center of mass interpolation map ιG ∶MapG(M , N) → C(M , N)
is L-Lipschitz with respect to the L2 distance on both spaces, with L =

√
1 + dim M. When

M is Euclidean (flat), the Lipschitz constant can be upgraded to L = 1.

Proof Let us assume M = S is two-dimensional for comfort. Let f , g ∈
MapG(M , N), denote by f̂ ∶= ιG( f ) and ĝ ∶= ιG(g) their center of mass
interpolations. By definition of the L2 distance on C(M , N),

d( f̂ , ĝ)2 = ∫
M

d( f̂ (x), ĝ(x))2 dvg(x) .

Denote by T the set of triangles in the mesh. The integral is rewritten

d( f̂ , ĝ)2 = ∑
T∈T

∫
T

d( f̂ (x), ĝ(x))2 dvg(x) .(3.1)

Let T = ABC be any triangle in T . Following the proof of Theorem 2.3(iii), for all x ∈ T
there exists α, β, γ ∈ [0, 1] such that α + β + γ = 1 and

d( f̂ (x), ĝ(x)) ⩽ αd( f (A), g(A)) + βd( f (B), g(B)) + γd( f (C), g(C)).

By convexity of the square function, it follows

d( f̂ (x), ĝ(x))2 ⩽ αd( f (A), g(A))2 + βd( f (B), g(B))2 + γd( f (C), g(C))2(3.2)

hence

d( f̂ (x), ĝ(x))2 ⩽ d( f (A), g(A))2 + d( f (B), g(B))2 + d( f (C), g(C))2 .(3.3)

Therefore, we may derive from (3.1)

d( f̂ , ĝ)2 ⩽ ∑
T∈T

[d( f (A), g(A))2 + d( f (B), g(B))2 + d( f (C), g(C))2]Area(T)

⩽ ∑
x∈V

∑
T∈Tx

d( f (x), g(x))2 Area(Tx),

where Tx denotes the set of triangles adjacent to x. Finally, this is rewritten

d( f̂ , ĝ)2 ⩽ ∑
x∈V

3μx d( f (x), g(x))2 ,

where μx is the volume weight at x, i.e., d( f̂ , ĝ)2 ⩽ 3d( f , g)2.
If M is Euclidean (flat), the proof can be upgraded to obtain a Lipschitz constant

L = 1 by keeping the finer estimate (3.2) instead of (3.3), and computing the triangle
integral. ∎
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Figure 2: A triangle map in R
2 .

3.3 Preferred edge weights: the cotangent weights

We also have a favorite system of edge weights, the so-called cotangent weights,
although they have the following restrictions:
(1) We only define them for two-dimensional Riemannian manifolds, although they

have natural higher-dimensional analogs.
(2) They are only positive for triangulations having the “Delaunay angle property.”

(This includes any acute triangulation.)
These weights have a simple definition in terms of the cotangents of the (Rieman-

nian) angles between edges in the triangulation, and coincide with the weights of
Pinkall–Polthier [13] in the Euclidean case. For more background on the cotangent
weights in the Euclidean setting and a formula for their higher-dimensional analogs,
please see [4].

The following result noticed by Pinkall–Polthier [13] is an elementary exercise of
plane Euclidean geometry:

Lemma 3.7 Let T = ABC and T ′ = A′B′C′ be triangles in the Euclidean plane. Denote
by f ∶ T → T ′ the unique affine map such that f (A) = A′, etc. Then the energy of f is given
by

E( f ) ∶= 1
2 ∫

T
∥d f ∥2 dv

= 1
4
(a′2 cot α + b′2 cot β + c′2 cot γ) ,

where α, β, and γ denote the unoriented angles of the triangle ABC and a′, b′, and c′
denote the side lengths of the triangle A′B′C′ as in Figure 2.

In view of Lemma 3.7, given a surface (S , g) equipped with a geodesic mesh, we
define the weight of an edge e by considering the two angles α and β opposite to e in
the two triangles adjacent to e (see Figure 3), and we put

ωe ∶= 1
2
(cot α + cot β).(3.4)
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Figure 3: The weight ωe of the edge e is defined in terms of the opposite angles α and β.

Note that we use the Riemannian metric g to define the geodesic edges of the graph
and the angles between edges.

Definition 3.2 Let (S , g) be a Riemannian surface equipped with a geodesic mesh
with underlying graph G. The edge weights on G defined as in (3.4) are the system of
cotangent weights.

As a direct application of Lemma 3.7, we obtain:

Proposition 3.8 Let (S , g) be a flat surface with a geodesic mesh. Let G be the
underlying graph equipped with the cotangent edge weights. For any piecewise affine
map f ∶ S → R

n , the smooth energy E( f ) ∶= 1
2 ∫S ∥d f ∥2 dv coincides with the discrete

energy EG( f ) defined in (2.1).

Note that a priori, the cotangent weights are not necessarily positive. Clearly, they
are positive for acute triangulations (all of whose triangles are acute). More generally,
the cotangent weights are positive if and only if the triangulation has the property that,
for any edge e, the two opposite angles add to less than π. This is simply because

ωe = 1
2
(cot α + cot β) = sin(α + β)

2 sin α sin β
.

We call this the Delaunay angle property. In the Euclidean setting (for a flat surface),
this property is equivalent to the triangulation being Delaunay, i.e., the circum-
circle of any triangle does not contain any vertex in its interior [2, Lemma 9 and
Proposition 10].

3.4 Laplacian qualities of cotangent weights

In the two-dimensional Euclidean setting, in addition to Proposition 3.8, the cotan-
gent weights enjoy some good—and other not so good—Laplacian properties,
although this is much less obvious.

Proposition 3.9 Suppose that (S , g) is a flat surface. Then the cotangent weights
associated to any triangulation of S are Laplacian to first order.

Proof Let x be a vertex and consider the polygon P = Px equal to the union of
the triangles adjacent to x. Since in the flat case the exponential map expx is a local
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Figure 4: The triangles of P at O.

isometry, without loss of generality we can assume that P is contained in the Euclidean
plane Tx S ≈ R

2 and x = O.
Suppose that the vertices of P are given in cyclic order by (A i), and that we have

angles α i , β i , and γ i as in Figure 4. By definition, the weight of the edge OA i is given
by ω i ∶= 1

2 (cot β i−1 + cot γ i).
Now consider the identity map f ∶ P → R

2. It has constant energy density e( f ) = 2,
therefore, the total energy of f is E = 2 Area(P). On the other hand, E is the sum of
the energies of f in restriction to the triangles forming P. By Lemma 3.7 this is

E = 1
4 ∑

i
[cot α i∥

���→A i A i+1∥2 + cot β i∥
���→OA i+1∥2 + cot γ i∥

��→OA i∥2] .(3.5)

So far, we assumed that O is the origin in R
2, but of course the argument is valid if O

is any point. In fact, let us see the energy E above as a function of O ∈ R2 when all the
other points A i ∈ R2 are fixed. We compute the infinitesimal variation of E under a
variation O. On the one hand, Ė(O) = 0 since E(O) = 2 Area(P) is constant. On the
other hand, (3.5) yields

Ė(O) = − 1
4 ∑

i
[ α̇ i

sin2 α i
∥���→A i A i+1∥2 + β̇ i

sin2 β i
∥���→OA i+1∥2 + γ̇ i

sin2 γ i
∥��→OA i∥2]

− 1
2 ∑

i
⟨Ȯ , cot β i

���→OA i+1 + cot γ i
��→OA i⟩ .

(3.6)

We claim that the first sum in (3.6) vanishes. Indeed, first observe that the law of sines
yields

∥���→A i A i+1∥2

sin2 α i
= ∥���→OA i+1∥2

sin2 β i
= ∥��→OA i∥2

sin2 γ i
= D2 ,

https://doi.org/10.4153/S0008414X22000074 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000074


Computing harmonic maps between Riemannian manifolds 545

Figure 5: Hexaparallel and semi-hexaparallel symmetry.

where D is the diameter of the triangle OA i A i+1’s circumcircle, so the first sum is
rewritten

∑
i
[D2 (α̇ i + β̇ i + γ̇ i)] ,

and α̇ i + β̇ i + γ̇ i = 0, since α i + β i + γ i = π is constant. Thus (3.6) is rewritten

Ė(O) = − 1
2 ∑

i
⟨Ȯ , cot β i

���→OA i+1 + cot γ i
��→OA i⟩

= −⟨Ȯ , ∑
i

ω i
��→OA i⟩ .

In other words: grad E(O) = −∑i ω i
��→OA i . Since this must be zero (recall that E(O) is

constant), O is indeed the barycenter of its weighted neighbors {A i , ω i}. ∎

It is not true in general that cotangent weights are Laplacian to second order.
However, for triangulations obtained by midpoint refinement, it is true for almost all
vertices:

Proposition 3.10 Let (S , g) be a flat surface. Let (Gn)n∈N be a sequence of graphs
obtained by iterated midpoint subdivision from a given initial triangulation. Equip Gn
with the area vertex weights and cotangent edge weights. Then Gn satisfies the second-
order Laplacian condition at any vertex except maybe at the vertices of G0.

The proof is based on the observation that any vertex of Gn is either an initial vertex
(vertices of G0), a boundary vertex (vertices that are located on edges of the initial
triangulation) or an interior vertex (all other vertices), and that the latter two satisfy a
strong symmetry condition, which we call (semi-)hexaparallel symmetry:

Definition 3.3 Consider a vertex x with valence six in a Euclidean graph.
• We say that x has hexaparallel symmetry if the set of vectors {x⃗ y ∶ y ∼ x} is in the

GL(2,R)-orbit of {±(1, 0), ±(1, 1), ±(0, 1)}. Equivalently, the neighbors of x are the
vertices of a hexagon whose opposite sides are pairwise parallel and of the same
length. See Figure 5a.
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• We say that x has semi-hexaparallel symmetry if the neighbors of x may be cycli-
cally labeled {y1 , . . . , y6} and divided into two overlapping sets {y1 , y2 , y3 , y4}
and {y4 , y5 , y6 , y1}, each being part of a potential hexaparallel configuration. See
Figure 5b.

It is straightforward to check by induction that a plane Euclidean graph obtained
by iterated midpoint subdivision is hexaparallel at any interior vertex and semi-
hexaparallel at any boundary vertex. Thus Proposition 3.10 reduces to:

Lemma 3.11 Any geodesic graph G in R
2 equipped with the area vertex weights

and cotangent edge weights satisfies the second-order Laplacian condition at any
(semi-)hexaparallel vertex x.

Proof We need to show the second-order condition: for any quadratic form q
on R

2,
1

μx
∑
y∼x

ωx y q(y − x) = 2 tr q.(3.7)

First, we argue that the semi-hexaparallel case derives from the hexaparallel case.
Note that the left-hand side of (3.7) is invariant by the central symmetry at x, since
a quadratic function is even. If x has semi-hexaparallel symmetry, we can create two
hexaparallel configurations as in Figure 5b, both satisfying (3.7). Taking the half-sum
of the two equations then yields the desired result.

Assume from now on that x has hexaparallel symmetry. Denote y1 , . . . , y6 the
neighbors in cyclic order. We may choose a complex coordinate on R

2 ≈ C so that x =
0 and y1 = 1. Denote z = a + bi the coordinate of y2. The hexaparallel condition implies
that y3 = z − 1, y4 = −1, y5 = −z, and y6 = 1 − z. Let the oriented angles ∠(y1 , y2),
∠(y2 , y3), and ∠(y3 , y4) be denoted by α, β, and γ, respectively. For any w ∈ C, we
have cot(arg w) = Re(w)

Im(w) . Therefore we may compute:

cot α = Re
Im

(z) = a
b

,

cot β = Re
Im

( z − 1
z

) = a2 + b2 − a
b

,

cot γ = Re
Im

( 1
1 − z

) = 1 − a
b

.

Since μx = 1
3 (6 ⋅ b/2) = b, we get

1
μx

∑
y∼x

ωx y q(y − x) = 2
b
(cot α ⋅ q(z − 1) + cot β ⋅ q(1) + cot γ ⋅ q(z))

= 2
b
( a

b
⋅ q(z − 1) + a2 + b2 − a

b
⋅ q(1) + 1 − a

b
⋅ q(z)) .

The latter is equal to 2, 0, and 2 when q = dx2, dx dy, or dy2, respectively, as
desired. ∎
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Corollary 3.12 Suppose that (S , g) is a flat surface. Let (Gn)n∈N be a sequence of
graphs obtained by iterated midpoint subdivision of an initial triangulation G0. Equip
Gn with the area vertex weights and the cotangent edge weights. Then Gn is Laplacian
at any interior vertex.

Proof The first- and third-order conditions are trivial due to central symmetry of
the neighbors around the vertex x and the fact that linear and cubic functions are odd.
(Alternatively, the first-order condition holds by Proposition 3.9.) The second-order
condition holds by Lemma 3.11. ∎
Remark 3.13 We shall see in Section 6 that in the general Riemannian setting, the
cotangent weights will satisfy similar Laplacian properties asymptotically for very fine
meshes.

Remark 3.14 While being the best choice of edge weights, the cotangent weights
generally do not satisfy the second-order Laplacian condition at vertices with no
(semi-)hexaparallel symmetry. Taking finer and finer triangulations will not help with
this defect. At such vertices, which generically exist for topological reasons, the dis-
crete Laplacian of a smooth function can not be expected to approximate its Laplacian.
This is somewhat unsettling, but it is an intrinsic difficulty to the discretization of the
Laplacian. Providing suitable assumptions that neverthless guarantee convergence of
discrete harmonic maps to smooth harmonic maps is the central aim of this paper.

4 Sequences of meshes

In this section, we enhance the previous section by considering sequences of meshes
on a Riemannian manifold (M , g). The idea is to capture the local geometry of M
sufficiently well provided the mesh is sufficiently fine. This allows a relaxation of the
Laplacian weights conditions, which are too stringent for a fixed mesh of an arbitrary
Riemannian manifold. We introduce the notions of asymptotically Laplacian and
almost asymptotically Laplacian systems of weights, with the aim that these weakened
conditions can still be used to demonstrate the convergence theorems we are after.

4.1 Fine and crystalline sequences of meshes

Let (Mn)n∈N be a sequence of geodesic meshes of a Riemannian manifold (M , g).
Denote by rn the “mesh size,” i.e., the longest edge length of Mn . Following [5], we
define:

Definition 4.1 The sequence (Mn)n∈N is called fine provided lim
n→+∞

rn = 0.

Notation 4.1 For the remainder of the paper, we drop the subscript r ∶= rn for ease in
notation.

Given a bounded subset D ⊆ M, one calls:
• diameter of D the supremum of the distance between two points of D, denoted

diam(D).
• radius of D the distance from the center of mass of D to its boundary, denoted

radius(D).
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• thickness of D the ratio of its radius and diameter, denoted thick(D):

thick(D) ∶= radius(D)
diam(D) .

Definition 4.2 The sequence (Mn)n∈N is called crystalline if there exists a uniform
lower bound for the thickness of simplices in Mn .

Proposition 4.2 Let (Mn)n∈N be a fine sequence of meshes. The following are equiva-
lent:
(i) The sequence (Mn)n∈N is crystalline.

(ii) There exists a uniform positive lower bound for all angles between adjacent edges in
Mn .

Proof For brevity, we only sketch the proof; the detailed proof would include proper
Riemannian estimates: see Appendix A.

First one checks that (i) ⇔ (ii) in the Euclidean setting. This is an elementary
calculation: for a single triangle (or n-simplex), one can bound its radius in terms
of its smallest angle. One then generalizes to an arbitrary Riemannian manifold M by
arguing that a very small triangle (or n-simplex) in M has almost the same radius and
angles as its Euclidean counterpart in a normal chart. The fact that we only consider
fine sequences of meshes means that we can assume that all simplices are arbitrarily
small, making the previous argument conclusive. ∎
Remark 4.3 In [3, Theorem A], it is shown that the sequence of meshes obtained
by midpoint subdivision of a triangle of constant sectional curvature is fine and
crystalline, and one concludes immediately the same conclusion for any initial trian-
gulation of a compact hyperbolic surface. An initial preprint of this paper contained
a faulty proof of the same conclusion for a triangulation of an arbitrary compact
Riemannian surface. While we still expect this conclusion to hold, this subtle question
is beyond the scope of this paper. See Section 6.2 for further discussion.

Theorem 4.4 Assume that M is compact and the sequence of meshes (Mn)n∈N on M
is fine and crystalline. Denote by Gn the graph underlying Mn and r = rn its maximum
edge length.
(i) The volume vertex weights μx ,n of Gn are Θ (rdim M) (uniformly in x).

(ii) The number of vertices of Gn is ∣Vn ∣ = Θ (r− dim M). More generally, the number of
k-simplices of Gn is Θ(r− dim M).

(iii) The combinatorial diameter diamGn of the graph Gn is Θ (r−1).
(iv) The combinatorial surjectivity radius surj radGn (see below) of the graph Gn is

Θ (r−1).
The surjectivity radius at a vertex x of a graph G is the smallest integer k ∈ N such

that there exists a vertex at combinatorial distance k from x all of whose neighbors are
at combinatorial distance ⩽ k from x. The surjectivity radius of the graph G, denoted
surj radG, is the minimum of its surjectivity radii over all vertices.

Notation 4.5 In this paper, we use the notation f = O(g) and f = o(g) in the usual
sense, we use the notation f = Ω(g) for g = O( f ), and f = Θ(g) for [ f = O(g) and
f = Ω(g)].
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Proof For (i), recall that the volume vertex weight at x is the sum of the volumes of
the simplices adjacent to x (divided by dim M). Since the sequence is fine, the diameter
of all simplices is going to 0 uniformly in x. On first approximation, the volume of
any such vertex is approximately equal to its Euclidean counterpart (say, in a normal
chart). Since the lengths of all edges are within [αr, r] for some constant α > 0 and all
angles are bounded below by Proposition 4.2, this volume is Θ(rdim M).

For (ii), simply notice that ∑x∈Vn
μx ,n = Vol(M) by Proposition 3.5 and use (i).

The generalization to k-simplices is immediate since the total number of k-simplices
is clearly Θ (∣Vn ∣).

For (iii), let us first show that diamGn = Ω (r−1). Let x and y be two fixed points
in M and denote L the distance between them. For all n ∈ N, there exists vertices xn
and yn in Vn that are within distance r of x and y, respectively, so their distance in
M is d(xn , yn) ⩾ L − 2r. Denoting kn the combinatorial distance between xn and yn ,
one has d(xn , yn) ⩽ knr by the triangle inequality. We thus find that knr ⩾ L − 2r,
hence diamGn ⩾ kn ⩾ Lr−1 − 2 so that diamGn = Ω (r−1). Finally, let us show that
diamGn = O (r−1). Let xn and yn be two vertices that achieve diamGn . Let γn be
a length-minimizing geodesic from xn to yn . Of course, the length of γn is bounded
above by the diameter of M. There is a sequence of simplices Δ1 , . . . , Δkn such that
x ∈ Δ1, y ∈ Δkn , and any two consecutive simplices are adjacent. Since the valence of
any vertex is uniformly bounded (because of a lower bound on all angles), the number
of simplices within a distance ⩽ rmin of any point of M is bounded above by a constant
C. This implies kn ⩽ CL(γ)/rmin, so that kn ⩽ C(diam M)α r−1. Following edges along
the simplices Δ i , one finds a path of length (dim M − 2)kn from x to y, therefore,
diamGn ⩽ (dim M − 2)C(diam M)α r−1.

For the proof of (iv), the injectivity radius of M provides a lower bound for
surj radGn of the form Ω(r−1), and diamGn provides an upper bound. The details
are left to the reader. ∎

For a continuous map f ∶ M → R, denote fn ∶= πn( f ) ∈ MapGn
(M , N) the dis-

cretization of f : this is just the restriction of f to the vertex set of Gn . As in [5] we
have:

Lemma 4.6 If (Mn)n∈N is a sequence of meshes that is fine and crystalline, then for
any piecewise smooth function f ∶ M → R, the center of mass interpolation f̂n converges
to f for the piecewise C1 topology.

Proof As for Proposition 4.2, the proof can be conducted in two steps: First in the
Euclidean setting, where the center of mass interpolation f̂n is just the piecewise
linear approximation of fn . This proof is done in, e.g., [5]. One then generalizes to
an arbitrary Riemannian manifold M by arguing that for very fine triangulations, the
center of mass interpolation f̂n is very close to the piecewise linear approximation of
fn in a normal chart. ∎

Remark 4.7 Any interpolation scheme satisfying the conclusion of Lemma 4.6,
as well as Theorems 2.3 and 3.6 (or asymptotic versions thereof), would make the
machinery work to prove our upcoming main theorems. One could therefore enforce
these properties as the definition of a good sequence of interpolation schemes.
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Corollary 4.8 Let f ∶ M → N be a C1 map between Riemannian manifolds. Assume
that M is compact and equipped with a fine and crystalline sequence of meshes
(Mn)n∈N. The center of mass interpolation f̂n converges to f in L∞(M , N) and E( f ) =
limn→+∞ E( f̂n).

Remark 4.9 One would like to say that f̂n converges to f in the Sobolev space
H1(M , N), but this space is not well-defined. Actually, H1(M , N) may be defined as
the subspace of L2(M , N) consisting of L2 maps with finite energy, but it is unclear
how to define the H1 topology. Nevertheless we can say something in that direction:
f̂n → f in L2(M , N) and E( f̂n) → E( f ). One should think of the energy as the L2

norm of the derivative, but this “norm” does not induce a distance.

The following lemma will be useful in Section 4.3 and again in Section 4.4.

Lemma 4.10 Assume that the sequence of meshes (Mn)n∈N on M is fine and crys-
talline. Let Gn be the graph underlying Mn and r = rn its maximum edge length. If Gn
is equipped with a system of vertex and edge weights that is Laplacian at some vertex x,
then

1
μx

∑
y∼x

ωx y = O (r−2) .

Remark 4.11 For ease of notation, we drop the dependence in n when writing μx and
ωx y above.

Remark 4.12 Before writing the proof, let us clarify the quantifiers in Lemma 4.10
(as well as in Theorems 4.14 and 4.17): The statement is that there exists a constant
M > 0 independent of n such that at any vertex x of Gn where the system of weights is
Laplacian, 1

μx
∑y∼x ωx y ⩽ Mr−2.

Proof Apply condition (2) of Proposition 3.4 to the quadratic form q = ∥ ⋅ ∥2:
1

μx
∑
y∼x

ωx y d(x , y)2 = 2m,(4.1)

where m = dim M. The fact that the sequence of meshes is fine and crystalline implies
that there exists a uniform lower bound for the ratio of lengths in the triangulation.
Thus there exists a constant α > 0 such that for any neighbor vertices x and y in Gn :

α r ⩽ d(x , y) ⩽ r.(4.2)

It follows from (4.1) and (4.2) that
1

μx
∑
y∼x

ωx y ⩽ 2m
α2r2 . ∎

4.2 Convergence of the volume form

Let (M , g) be a Riemannian manifold, let (Mn)n∈N be a sequence of meshes with the
underlying graphs (Gn)n∈N. We equip Gn with the volume vertex weights defined in
Section 3.2. These define a discrete measure μn on M supported by the set of vertices
Vn = G

(0)
n .
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Theorem 4.13 If M is any Riemannian manifold and (Mn)n∈N is any fine sequence of
meshes, then the measures (μn)n∈N on M defined by the volume vertex weights converge
weakly-* to the volume density on M:

∫
M

f dμn
n→+∞�→ ∫

M
f dμ

for any f ∈ C0
c (M ,R) (continuous function with compact support), where μ denotes the

measure on M induced by the volume form vg .

Proof Recall that a continuity set A ⊆ M is a Borel set such that μ(∂A) = 0. Since any
compact set has finite μ-measure, it is well-known that the weakly-* convergence of
μn to μ is equivalent to

μn(A) n→+∞�→ μ(A)

for any bounded continuity set A. Let thus A be any bounded continuity set. Denote
by Bn the union of all simplices that are entirely contained in A, and by Cn the union
of all simplices that have at least one vertex in A. We obviously have Bn ⊆ A ⊆ Cn , and
by definition of μn we have:

μ(Bn) ⩽ μn(A) ⩽ μ(Cn).(4.3)

On the other hand, clearly we have Cn − Bn ⊆ Nεn(∂A), where we have denoted
Nεn(∂A) the εn-neighborhood of ∂A, with εn = 2r here. (As usual we denote r = rn
the maximal edge length in Mn .) By continuity of the measure μ, we know that
limn→+∞ μ(Nεn(∂A)) = μ(∂A) = 0. Note that we used the boundedness of A, which
guarantees that μ(Nεn(∂A)) < +∞. It follows:

lim
n→+∞

μ(Cn − Bn) = 0 .(4.4)

Since Bn ⊆ A ⊆ Cn , (4.4) implies that limn→+∞ μ(Bn) = limn→+∞ μ(Cn) = μ(A), and
we conclude with (4.3) that limn→+∞ μn(A) = μ(A). ∎

4.3 Convergence of the tension field

Now we consider another Riemannian manifold N and a smooth function f ∶ M → N .
Consider a fine and crystalline sequence of meshes (Mn)n∈N on M, with mesh size

(i.e., maximum edge length) r = rn , and underlying graph Gn .

Theorem 4.14 Assume that the sequence of meshes (Mn)n∈N on M is fine and
crystalline. If Gn is equipped with a system of vertex and edge weights that is Laplacian
at some vertex x, then

τGn( fn)x − τ( f )x = O (r2) .(4.5)

Notation 4.15 We denote fn ∶= πGn( f ), the discretization of f along Gn (i.e., restriction
to G

(0)
n ).

Remark 4.16 The proof below shows that in (4.5), the O(r2) function depends on f,
but may be chosen independent of x if M is compact.
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Proof Consider F ∶= exp−1
f (x) ○ f ○ expx ∶ Tx M → T f (x) N . For y ∼ x, denote v =

vy ∶= exp−1
x y. By Taylor’s theorem, we have

exp−1
f (x) f (y) = F(v) = (dF)∣0(v) + 1

2
(d2F)∣0(v , v) + 1

6
(d3F)∣0(v , v , v) + O (r4) .

(4.6)

This implies

τG( f )(x) = 1
μx

∑
y∼x

ωx y exp−1
f (x) f (y)

= 1
μx

∑
y∼x

ωx y (dF)∣0(v) + 1
2μx

∑
y∼x

ωx y (d2F)∣0(v , v)

+ 1
6μx

∑
y∼x

ωx y (d3F)∣0(v , v , v) + 1
μx

∑
y∼x

ωx y O (r4) .

By conditions (1) and (3) of Proposition 3.4, the first and third sums above vanish,
while the second sum is rewritten with condition (2):

τG( fG)(x) = tr (d2F∣0) + 1
μx

∑
y∼x

ωx y O (r4) .

Note that tr (d2F∣0) = tr (∇2 f∣x) = τ( f )(x), and conclude with Lemma 4.10. ∎

4.4 Convergence of the energy

We keep the setting of Section 4.3: f ∶ M → N is a smooth function between Rieman-
nian manifolds, and M is equipped with a sequence of meshes (Mn)n∈N that is fine
and crystalline.

4.4.1 Convergence of the energy density

Theorem 4.17 Assume that the sequence of meshes (Mn)n∈N on M is fine and
crystalline. Assume Gn is equipped with a system of vertex and edge weights. Then

eGn( fn) = e( f ) + O (r2)

on the set of vertices where Gn is Laplacian.

Recall that we denote fn ∶= πn( f ) the discretization of f along Gn .

Remark 4.18 Remark 4.16 holds again for Theorem 4.17.

Proof Assume Gn is Laplacian at x. Using (4.6) again, denoting vy = exp−1
x y, we find

that

eG( f )x = 1
4μx

∑
y∼x

ωx y ∥F(vy)∥2

= 1
4μx

∑
y∼x

ωx y ∥(dF)∣0(vy) + 1
2
(d2F)∣0(vy) + O (r3)∥ 2
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= 1
4μx

∑
y∼x

ωx y ∥(dF)∣0(vy)∥2 + 1
4μx

∑
y∼x

ωx y ⟨(dF)∣0(vy), (d2F)∣0(vy)⟩

+ 1
4μx

∑
y∼x

ωx y O (r4) .

Condition (3) of Proposition 3.4 implies that the second sum vanishes. Lemma 4.10
implies that the third sum is O (r2). By condition (2) of Proposition 3.4, the remaining
first sum is rewritten

1
4μx

∑
y∼x

ωx y ∥(dF)∣0(vy)∥2 = 1
2
∥(dF)∣0∥2 = e( f )x ,

since tr(L2) = ∥L∥2 for any linear form L. We thus get

eG( f )x = e( f )x + O (r2) . ∎

4.4.2 Convergence of the energy

Recall that the energy is E( f ) ∶= ∫M e( f )dμ. The convergence of the discrete energy
is now an easy consequence of the weakly-* convergence of measures μn → μ and
the uniform convergence of the energy densities eGn( fn) → e( f ). This is the classical
combination of weak convergence and strong convergence.

Definition 4.3 Let (M , g) be a Riemannian manifold. Consider a sequence of
geodesic meshes (Mn)n∈N, and equip the underlying graphs Gn with a system of
positive vertex and edge weights. We call the sequence of biweighted graphs (Gn)n∈N
Laplacian provided that:

(i) The sequence of meshes (Mn)n∈N is fine and crystalline.
(ii) For every n ∈ N, the vertex weights on Gn are given by the volume weights (see

Section 3.2).
(iii) For every n ∈ N, the system of vertex and edge weights on Gn is Laplacian.

Theorem 4.19 Let M be a Riemannian manifold and let (Mn)n∈N be a Laplacian
sequence of meshes. For any smooth f ∶ M → N with compact support:

lim
n→+∞

EGn( fn) = E( f ).

Recall that we denote fn ∶= πGn( f ) the discretization of f along Gn .

Proof By Theorem 4.13,

E( f ) = lim
n→+∞∫

M
e( f )dμn .

By Theorem 4.17, on the support of μn , e( f ) = eGn( fn) + O (r2). It follows that

E( f ) = lim
n→+∞∫

M
eGn( fn)dμn ,

in other words, E( f ) = limn→+∞ EGn( fn). ∎
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Remark 4.20 The proof of Theorem 4.19 hints that E( f ) = EGn( fn) + O (r2), pro-
vided that the convergence of μn to μ is sufficiently fast. Improvements of this estimate
can occur in more restricted situations: for instance, when both the target and the
domain are hyperbolic surfaces:

E( f ) = EGn( fn) + O (r4) .

This can be proven by carrying out involved calculations in the hyperbolic plane,
which we spare.

4.5 Weak Laplacian conditions

It is clear from the proofs of the main results in the previous subsections that the
Laplacian conditions for sequences of meshes can be weakened and still produce the
same results, or at least some of them, with minimal changes in the proofs. This is a
useful generalization, for it is very stringent to require a sequence of weighted graphs
(Gn) to be Laplacian for all n. Instead we start by asking that the sequence is merely
asymptotically Laplacian in the following sense.

Definition 4.4 Let M be a Riemannian manifold. Consider a sequence of geodesic
meshes (Mn)n∈N, and equip the underlying graphs Gn with a system of positive
vertex weights {μx ,n}. We call the sequence of weight systems ({μx ,n})n∈N asymptotic
volume weights provided that

μx ,n = (1 + o(1)) μ̂x ,n

for some function o(1) independent of x, where μ̂x ,n denote the volume weights (see
Section 3.2).

The following proposition is an immediate consequence of Theorem 4.13:

Proposition 4.21 If M is any Riemannian manifold and (Mn)n∈N is any fine sequence
of meshes, then the measures (μn)n∈N on M defined by any system of asymptotic volume
vertex weights converge weakly to the volume density on M.

It is immediate to show that for asymptotic volume weight, Theorem 3.6 holds
with a Lipschitz constant Ln =

√
1 + dim M + o(1). Although this is sufficient for

the needs of this paper (see Lemma 5.5), let us state in the next theorem that the
result can be improved to Ln = 1 + o(1). The proof follows from Theorem 3.6 by
writing an expansion of the volume form in normal coordinates, we skip it for
brevity.

Theorem 4.22 Let M be a compact Riemannian manifold and let (Mn)n∈N be a fine
sequence of meshes equipped with a system of asymptotic volume vertex weights. For any
complete Riemannian manifold N of nonpositive sectional curvature, the center of mass
interpolation map ιn ∶MapGn

(M , N) → C(M , N) is Ln-Lipschitz with respect to the L2

distance on both spaces, with Ln = 1 + o(1).

Definition 4.5 Let M be a Riemannian manifold. Consider a sequence of geodesic
meshes (Mn)n∈N with mesh size r = rn , and equip the underlying graphs Gn with a
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system of positive vertex and edge weights. We call the sequence of biweighted graphs
(Gn)n∈N asymptotically Laplacian provided that

(i) The sequence of meshes (Mn)n∈N is fine and crystalline.
(ii) The vertex weights are asymptotic volume weights (see Definition 4.4).

(iii) The system of vertex and edge weights on Gn is Laplacian up to O (r2) at all
vertices.

Explicitly, (iii) means that for all x ∈ Vn and L ∈ T∗x M:
(1)

1
μx

∑
y∼x

ωx y
�→x y = O (r2) ,

(2)
1

μx
∑
y∼x

ωx y L(�→x y)2 = 2∥L∥2 (1 + O (r2)) ,

(3)
1

μx
∑
y∼x

ωx y L(�→x y)3 = ∥L∥3O (r2) .

The O(r2) functions above should be independent of x and L. Note again that to
alleviate notations, we drop the dependence in n when writing r, μx , and ωx y .

It is immediate to check that the proofs of Theorems 4.14, 4.17, and 4.19 apply to
asymptotically Laplacian sequences of graphs. Alas, it is still unreasonable to expect
to be able to construct asymptotically Laplacian sequences in general. Fortunately,
the notion may be further slightly weakened while keeping the validity of the most
important theorems, and allowing the systematic construction of such sequences in
Section 6 (at least in the two-dimensional case).

Definition 4.6 Let M be a compact Riemannian manifold of dimension m. We say
that the sequence of biweighted graphs (Gn)n∈N is almost asymptotically Laplacian if
it satisfies conditions (i) and (ii) of Definition 4.5, and the modified version of (iii):
(iii’) There is a decomposition Vn = ⊔2

k=0 V
(k)
n , with μn (V(k)n ) = O(rk), so that the

system of vertex and edge weights on Gn is Laplacian up to O (r2−k) on V
(k)
n .

Remark 4.23 Any asymptotically Laplacian sequence of meshes is almost asymptot-
ically Laplacian: take V(0)n = Vn and V

(1)
n = V

(2)
n = ∅.

Remark 4.24 In application, the set V
(k)
n will be the vertices contained in the

codimension k-skeleton of a fixed triangulation of M (and not contained in V
(k+1)
n ).

The following theorems are generalized or weakened versions of Theorems 4.14,
4.17, and 4.19.

Theorem 4.25 Let M be a compact Riemannian manifold. Consider a sequence of
geodesic meshes (Mn)n∈N, with mesh sizes r = rn , and equip the underlying graphs Gn
with a system of vertex and edge weights. Let f ∶ M → N be any smooth map to another
Riemannian manifold.
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(1) If (Gn)n∈N is asymptotically Laplacian, then ∥ τ( f ) − τGn( fn) ∥∞ = O (r2). A
fortiori,

∥τ( f ) − τGn( fn)∥ 2 = O (r2) .

(2) If (Gn)n∈N is almost asymptotically Laplacian, then

∥τ( f ) − τGn( fn)∥ 2 = O (r) .(4.7)

Furthermore, if V⃗ ∈ T fn MapGn
(M , N) is a unit tangent vector such that ∥V⃗∥

V
(2)
n

=
o(1), then

⟨ τ( f ) − τGn( fn) , V⃗ ⟩ = o(r).(4.8)

Note that we use the discrete measure μn on the vertex set of Gn in order to define
the L2-norm on spaces of discrete maps along Gn .

Proof When (Gn)n∈N is Laplacian, (1) is an immediate consequence of Theorem
4.14. When (Gn)n∈N is merely asymptotically Laplacian, the proof of Theorem 4.14 is
still valid up to O (r2).

For the proof of (2), let V(k)n be the subset of Vn of mass O(rk) where Gn is
Laplacian up to O (r2−k). By tracing the proof of Theorem 4.14, one quickly sees
that τ( f ) = τGn( fn) + O (r2−k) on V

(k)
n , for each k ∈ {0, 1, 2}. The decomposition

Vn = ⊔2
k=0 V

(k)
n implies

∥τ( f ) − τGn( fn)∥2 =
2
∑
k=0

∥τ( f ) − τGn( fn)∥2
V
(k)
n

⩽
2
∑
k=0

∥τ( f ) − τGn( fn)∥2
∞,V(k)

n
μ(V(k)n )

⩽
2
∑
k=0

O (r4−2k) O (rk) = O(r2).

For the second estimate, write similarly

⟨τ( f ) − τGn( fn) , V⃗⟩ =
2
∑
k=0

⟨τ( f ) − τGn( fn) , V⃗⟩
V
(k)
n

⩽
2
∑
k=0

∥τ( f ) − τGn( fn)∥V(k)
n

∥V⃗∥
V
(k)
n

⩽ O (r2) ⋅ 1 + O (r3/2) ⋅ 1 + O (r) ⋅ o(1) = o(r). ∎

Theorem 4.26 We keep the setup of Theorem 4.25.

(1) If (Gn)n∈N is Laplacian or asymptotically Laplacian, then

∥e( f ) − eGn( fn)∥∞ = O (r2) .
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(2) If (Gn)n∈N is almost asymptotically Laplacian, with decomposition Vn =
⊔2

k=0 V
(k)
n , then

∣e( f )(x) − eGn( fn)(x)∣ = O (r2−k)

for every x ∈ V(k)n .

Proof The proof is easily adapted from the proof of Theorem 4.17. ∎

Theorem 4.27 We keep the setup of Theorem 4.25. If (Gn)n∈N is almost asymptotically
Laplacian,

lim
n→+∞

EGn( fn) = E( f ) .

Remark 4.28 Of course, Theorem 4.27 also holds for Laplacian and asymptotically
Laplacian sequences of meshes, given the hierarchy between these conditions.

Proof By definition of almost asymptotically Laplacian, the sequence of measures
(μn)n∈N converges weakly-* to the measure μ on M, therefore

E( f ) = ∫
M

e( f )dμ = lim
n→+∞∫

M
e( f )dμn .(4.9)

Let Vn = ⊔2
k=0 V

(k)
n be the decomposition of the vertices of Gn granted by Definition

4.6. By Theorem 4.26,

∫
M

e( f )dμn =
2
∑
k=0

∫
V
(k)
n

e( f )dμn =
2
∑
k=0

∫
V
(k)
n

eGn( fn) + O (r2−k)dμn .

It follows:

∫
M

e( f )dμn = ∫
M

eGn( fn)dμn +
2
∑
k=0

O (rk) O (r2−k) = EGn( fn) + O (r2) .

In particular, we find that ∫M e( f )dμn = EGn( fn) + o (1). Injecting this into (4.9)
yields the desired result E( f ) = limn→+∞ EGn( fn). ∎

5 Convergence to smooth harmonic maps

Let (M , g) be a compact Riemannian manifold and let (N , h) be a Riemannian
manifold of nonpositive sectional curvature. which does not contain any flats (totally
geodesic flat submanifolds). Consider a connected component C of the space of
smooth maps C∞(M , N) that does not contain any map of rank everywhere ⩽ 1. For
instance, take any connected component of maps whose topological degree is nonzero
when dim M = dim N . When N is compact, a celebrated theorem of Eells-Sampson
implies that C contains a harmonic map w [7], and by Hartman [9], the harmonic
map w is unique.

In this section, we show that one can obtain the harmonic map w ∈ C as the limit
of discrete harmonic maps un along a sequence of meshes (Mn)n∈N, provided that:

(i) The sequence (Mn)n∈N is fine and crystalline (see Remark 4.3).
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(ii) The discrete energy functional En is sufficiently convex on the discrete homotopy
class Cn . We expect that this is the case when N is compact and has negative
sectional curvature, and have showed it in the two-dimensional case in our
previous work [8] (see Section 5.6).

(iii) The sequence of meshes is either Laplacian (Definition 4.3), or one of the weaker
versions (Definitions 4.5 and 4.6). In the next and final section Section 6, we
systematically construct such sequences.

We then show convergence of the discrete heat flow ukn to the smooth harmonic map
w, when the time and space discretization indices k and n simultaneously run to +∞,
provided the adequate CFL condition is satisfied (see Section 5.5).

5.1 Strong convexity of the discrete energy

Please refer to [8, Section 3.1] for the definition of convex, strictly convex, and
strongly convex functions on Riemannian manifolds. In a nutshell, these notions are
generalized from the one-dimensional case by restricting to geodesics; the convexity
[resp. α-strong convexity] of a smooth function is characterized by its Hessian being
⩾ 0 [resp. ⩾ αg where g is the Riemannian metric].

Keeping the same setup as above, assume moreover that N is compact and has
negative sectional curvature. In this case, we expect that the discrete energy functional
EG ∶CG → R is αG-strongly convex for any biweighted graph G on M underlying
a mesh, for some αG > 0. In our previous paper, we proved this statement when
M and N are two-dimensional. The estimates we obtained (see [8, Theorem 3.20
and Proposition 3.14]) imply that, when G is equipped with volume weights, αG =
Ω (diam(G)−1). Further, when (Mn)n∈N is a fine and crystalline sequence of meshes
of M and mesh sizes r = rn , with underlying graphs Gn , discrete energy functionals
En ∶= EGn , and moduli of convexity αn ∶= αGn , Theorem 4.4 implies that we have the
estimate αn = Ω (r).

In fact, we conjecture that the smooth energy E∶C → R is α-strongly convex for
some α > 0 (see [8, Section 3.2] for a discussion), and we expect that α = limn→+∞ αn
for any asymptotically Laplacian sequence of meshes (Mn)n∈N. In particular, the
sequence (αn)n∈N should be Ω(1) in great generality (see Notation 4.5 for the
notations Ω and Θ).

5.2 L2 convergence

The main theorem of this section is:

Theorem 5.1 Let M and N be any Riemannian manifolds with M compact and N
complete with nonpositive sectional curvature. Let C be a connected component of
C∞(M , N) containing a harmonic map w. Consider a fine and crystalline sequence
of meshes (Mn)n∈N of M with mesh size r = rn and underlying graphs (Gn)n∈N that
satisfy:

(i) The sequence (Gn)n∈N is almost asymptotically Laplacian.
(ii) The discrete energy En ∶MapGn

(M , N) → R is αn-strongly convex on Cn , with αn =
Ω (rc).
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Denote vn ∈ MapGn
(M , N), the minimizer of En on Cn and v̂n its center of mass

interpolation.
If c < 1, then

v̂n ���→
n→+∞

w in L2(M , N).

Moreover, the conclusion still holds if c = 1 and dim M = 2, assuming (Gn)n∈N has
uniformly bounded ratio between edge weights.

Remark 5.2 Under the assumptions of Theorem 5.1, w must be the unique smooth
harmonic map in C, the minimizer of the energy functional.

Remark 5.3 The case c = 1 and dim M = 2 is especially salient in light of [8], which
guarantees that c = 1 does hold when dim M = 2 in a broad setting: see Section 5.6 for
details.

Proof The proof is a combination of a few key ideas that we emphasize using in-proof
lemmas. The bulk of the hard work has been done in the previous sections, which we
will refer to for the proof of these lemmas.

Let wn ∶= πn(w) ∈ Map(Gn , N) denote the discretization of w (restriction of w to
the vertex set of Gn). We also denote ŵn the center of mass interpolation of wn .

Lemma 5.4 We have ŵn → w in L2(M , N) when n → +∞, moreover
E(ŵn) → E(w). ∎
Proof This is an immediate consequence of Corollary 4.8, which we can invoke since
M is compact and the sequence of meshes (Mn)n∈N is fine and crystalline. ∎
Lemma 5.5 There exists a constant L > 0 such that

d(ŵn , v̂n) ⩽ L d(wn , vn),

where d(ŵn , v̂n) and d(wn , vn) indicate the L2 distances in C(M , N) and
MapGn

(M , N).

Proof This follows immediately from Theorem 4.22. ∎
Lemma 5.6 Let R be a complete Riemannian manifold and F∶ R → R be a C2 α-
strongly convex function. Then F has a unique minimizer x∗, and for all x ∈ R

d(x , x∗) ⩽
∣⟨ grad F(x) , V⃗ ⟩∣

α
,(5.1)

where V⃗ is a unit tangent vector in the direction exp−1
x (x∗), in particular

d(x , x∗) ⩽ ∥ grad F(x)∥
α

.(5.2)

We also have

0 ⩽ F(x) − F(x∗) ⩽ ∥grad F(x)∥ 2

α
.(5.3)

Proof Recall that on a complete Riemannian manifold, there exists a length-
minimizing geodesic between any two points. It is not hard to show that a strongly
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convex function on a complete (finite-dimensional) Riemannian manifold is proper,
hence existence of the minimizer, and uniqueness follows from strict convexity.

The first inequality (5.1) is easy to prove for a function f ∶R→ R by integrating
f ′′(x) ⩾ α. For the general case, take a length-minimizing unit geodesic γ∶R→ R
with γ(0) = x∗ and γ(L) = x, and apply the previous result to f = F ○ γ. The second
inequality (5.3) follows with Cauchy–Schwarz. For (5.3), the one-dimensional case is
readily obtained via the mean value theorem, and the general case quickly follows. ∎
Lemma 5.7 We have

d(wn , vn) ⩽
∣⟨ τGn(wn) , V⃗ ⟩∣

αn
where V⃗ =

exp−1
wn

vn

∥ exp−1
wn

vn∥
,(5.4)

where d denotes the L2 distance in MapGn
(M , N). In particular,

d(wn , vn) ⩽ ∥τGn(wn)∥
αn

.(5.5)

Proof Apply Lemma 5.6 (5.1) and (5.2) to R = MapGn
(M , N) and F = En . ∎

At this point, we would like to apply Lemma 5.7 and Theorem 4.25 to conclude that

d(wn , vn) → 0.

Indeed, (5.5) together with (4.7) imply that d(wn , vn) = O(r1−c). If c < 1, we thus
clearly have d(wn , vn) → 0. The equality case c = 1 is much more subtle. In theory,
we can still conclude that d(wn , vn) → 0 with (5.4) and (4.8), which together yield
d(wn , vn) = o(1). However, to apply (4.8), we need to know that ∥V⃗∥

V
(2)
n

= o(1).
Although we believe this is always true, we only show it when dim M = 2 in this paper.

Lemma 5.8 Assume dim M = 2. We have ∥V⃗∥
V
(2)
n

= o(1).

Proof Clearly, ∥V⃗∥2
V
(2)
n

⩽ ∥V⃗∥2
∞ μ(V(2)n ), that is

∥V⃗∥2
V
(2)
n

⩽ d∞(wn , vn)2

d(wn , vn)2 O(r2).

It appears that we win if we can show that d∞(wn ,vn)
d(wn ,vn)

= o(r−1). Unfortunately, the
comparison between the L∞ distance and the L2 distance on MapGn

(M , N) only sat-
isfies d∞(u ,v)

d(u ,v) = O(r−1) in general. However, this inequality may be slightly improved
when v is the discrete energy minimizer. In order to avoid burdening our exposition,
we relegate this technical estimate to Appendix B. The desired comparison is given
in Corollary B.4 (which requires the uniform bound assumption on ratios of edge
weights). ∎

We can now smoothly wrap up the proof of Theorem 5.1: write

d(v̂n , w) ⩽ d(v̂n , ŵn) + d(ŵn , w), (triangle inequality)

⩽ L d(wn , vn) + o(1). (by Lemmas 5.4 and 5.5)

We proved that d(wn , vn) → 0 if c < 1 or c = 1 and dim M = 2, so we are done.
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Remark 5.9 We believe that the restriction dim M = 2 when c = 1 is superfluous.
Indeed, we expect that Lemma 5.8 is true in any dimension. However, proving it
requires generalizations of the technical estimates of Appendix B when dim M > 2.
We reserve this (possibly) for a future paper, as well as discussing cotangent weights
and the constructions of Section 6 to dimensions > 2.

5.3 L∞ convergence

Under stronger assumptions, we are able to prove uniform convergence in the two-
dimensional case by comparing the L2 and L∞ distances on the space of discrete
maps MapGn

(M , N) (also using Corollary 4.8). See Appendix B for details about this
comparison.

Theorem 5.10 In the setup of Theorem 5.1, if dim M = 2 and c = 0, then v̂n → w in
L∞(M , N).

Proof Write

d∞(v̂n , w) ⩽ d∞(v̂n , ŵn) + d∞(ŵn , w).

The second term d∞(ŵn , w) converges to zero by Corollary 4.8. It remains to show
that d∞(v̂n , ŵn) → 0. By Theorem 2.3(iii), d∞(v̂n , ŵn) ⩽ d∞(vn , wn). Using Corol-
lary B.4, we find that d∞(vn , wn) = o (r2−dim M), and we conclude that d∞(vn , wn) =
o(1). ∎

Remark 5.11 We believe that c = 0 holds in great generality (see Section 5.1).

Remark 5.12 We believe that the restriction dim M = 2 (also possibly c = 0) is
superfluous, but are unable to omit it in the current stage of our work. See Remark
5.13 for a related discussion.

5.4 Convergence of the energy

One would like to discuss convergence of the discrete minimizer v̂n to the smooth
harmonic map w in the Sobolev space H1(M , N), say, under the assumptions of
Theorem 5.1, but this function space (or rather its topology) is not well-defined, see
Remark 4.9. It is however still reasonable to ask whether the energy of vn converges
to the energy of w.

We shall see that it does not cost much to prove that the discrete energy En(vn)
converges to E(w), however, it is much more difficult to show that the energy of the
interpolation E(v̂n) also converges to E(w). While we believe that En(vn) and E(v̂n)
are asymptotic, proving it is too hard in the current state of our work. We will thus be
content with stating the desired convergence result under very restrictive assumptions.

Remark 5.13 The obstacle to show that En(vn) and E(v̂n) are asymptotic would
be lifted by showing that the sequence (v̂n)n∈N has a uniformly bounded Lipschitz
constant, but this would be a very strong result. It would in fact enable us to prove
Theorem 5.1 for any asymptotically Laplacian sequence of meshes, with no assumption
involving c, with a completely different method involving a Rellich–Kondrachov
theorem. In the smooth setting, a uniform Lipschitz bound is achieved by using the
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Bochner formula and Moser’s Harnack inequality (see, e.g., [10] and [12, Section 2.2]).
This is an essential feature of the heat flow and the theory of harmonic maps. While
developing a discrete Bochner formula and a discrete Moser’s Harnack inequality is
certainly a worthwhile project, it is also beyond the scope of this paper.

Theorem 5.14 In the setup of Theorem 5.1, if c < 2, then En(vn) → E(w). If moreover
dim M = 2, c = 0, and the sequence of meshes is asymptotically Laplacian, then we also
have E(v̂n) → E(w).

Proof First write that E(w) = limn→+∞ En(wn) by Theorem 4.27. Thus it is suffi-
cient to show that En(wn) and En(vn) are asymptotic. By Lemma 5.6 (5.3) applied to
F = En , we find that

0 ⩽ En(wn) − En(vn) ⩽ ∥τGn(wn)∥ 2

αn
,

so with (4.7) we find that ∣En(wn) − En(vn)∣ = O (r2−c) and the claim follows.
For the second claim, first write that E(w) = limn→+∞ E(ŵn) by Corollary 4.8.

Thus it is sufficient to show that E(ŵn) and E(v̂n) are asymptotic. One can derive
from Theorem 2.3(iii) and Proposition 4.2(ii) that for a fine and crystalline sequence
of meshes,

∣∥d f̂ (x)∥ − ∥dĝ(x)∥∣ = O (d∞( f , g)
r

) ,

uniformly in f , g ∈ MapGn
(M , N) and in x ∈ M in the interior of the triangulation,

from which it follows ∣E( f̂ ) − E(ĝ)∣ = O ( d∞( f ,g)
r ). In our case this gives ∣E(ŵn) −

E(v̂n)∣ = O ( d∞(wn ,vn)
r ). By Lemma 5.7, Theorem 4.25(1), and Corollary B.4, we

have d∞(wn , vn) = o (r2−c− dim M
2 ), so we find ∣E(ŵn) − E(v̂n)∣ = o (r1−c− dim M

2 ) hence
∣E(ŵn) − E(v̂n)∣ = o(1) when c = 0 and dim M = 2. ∎

5.5 Convergence in time and space of the discrete heat flow

We turn to more practical considerations about how to compute harmonic maps. In
the previous subsections, we established that, under suitable assumptions, the discrete
harmonic map vn converges to the smooth harmonic map w. In our previous work [8],
we showed that for each fixed n ∈ N, vn may be computed as the limit of the discrete
heat flow uk ,n when k → +∞. While this is relatively satisfactory, in practice one
cannot wait for the discrete heat flow to converge for each n. Hence, it is preferable to
let both indices k and n run to+∞ simultaneously. In the theory of PDEs, this situation
with a double discretization in time and space is typical—they call it full discretization,
and one expects convergence to the solution provided that the time step and the space
step satisfy a constraint, called a CFL condition. We are happy to report a similar result.

We keep the same setup as in the beginning of the section. Let u ∈ C be a smooth
map, denote by un ∈ MapGn

(M , N) its discretization. For each n ∈ N, denote by
(uk ,n)k∈N the sequence in MapGn

(M , N) obtained by iterating the discrete heat flow
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from the initial map u0,n = un . We recall that the discrete heat flow is defined by

uk+1,n = uk ,n + tn τGn(uk ,n),

where tn is a suitably chosen time step and we use the notation x + v for the
Riemannian exponential map expx(v) in N. We recall that the discrete heat flow is
just a fixed stepsize gradient descent method for the discrete energy functional En
on the Riemannian manifold MapGn

(M , N). In particular, strong convexity of the En
implies convergence of the discrete heat flow to the unique discrete harmonic map vn
with exponential convergence rate. We refer to [8] for more details.

Theorem 5.15 Consider the same setup and assumptions as in Theorem 5.1. Also
assume that for any constant K > 0, the discrete energy En has Hessian bounded above
by βn ,K = O(r−d) on its sublevel set {En ⩽ K}, for some d ⩾ 0 independent of K. Then

ûk ,n ����→
k ,n→+∞

w in L2(M , N),

provided the CFL condition:

k = Ω ( log(r−1)
rc+d ) .(5.6)

Remark 5.16 The assumption on the upper bound of the Hessian is reasonable
when compared to the Euclidean setting due to scaling considerations. When N is
a hyperbolic surface, we have βn ,K = O(r−2) by [8, Proposition 3.17], which satisfies
the assumption but is surely not optimal.

Remark 5.17 The CFL condition (5.6) is most likely far from optimal.

Proof Let us break the proof into a few key steps.

Lemma 5.18 There exists a constant K > 0 such that

En(uk ,n) ⩽ K

for all k, n ∈ N. ∎
Proof For each fixed n ∈ N, the discrete energy En(uk ,n) is nonincreasing with k,
since the discrete heat flow is a gradient descent for the discrete energy. In particular,
En(uk ,n) ⩽ En(u0,n). To conclude, we must argue that the sequence (En(un))n∈N is
bounded. This is true since it converges to E(u) by Theorem 4.27. ∎
Lemma 5.19 For every k, n, we have

d(uk ,n , vn) ⩽ cn qk
n ,

where cn = O (r−c/2) and qn = 1 − Crc+d + o (rc+d) with C > 0.

Proof This is an immediate consequence of [8, Theorem 4.1]. Note that for the
estimate of cn , we need to use the fact that En(u0,n) = O(1), which we showed in
Lemma 5.18. ∎

We now finish the proof of Theorem 5.15. For every k, n ∈ N, we have

d(ûk ,n , w) ⩽ d(ûk ,n , v̂n) + d(v̂n , w).
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The second term d(v̂n , w) converges to zero by Theorem 5.1. As for the first term, we
have d(ûk ,n , v̂n) ⩽ L d(uk ,n , vn) for some constant L > 0 by Theorem 4.22. Thus it is
enough to show that d(uk ,n , vn) → 0 under the appropriate CFL condition.

Let (εn)n∈N be a sequence of positive real numbers converging to zero to be
chosen later. Since (uk ,n) converges to vn when k → +∞, there exists k0(n) such
that d(uk ,n , vn) ⩽ εn for all k ⩾ k0(n). Note that the inequality k ⩾ k0(n) is the CFL
condition that we are after, for a/any choice of (εn). It is possible to compute k0(n)
explicitly with Lemma 5.19; one finds that

k0(n) = log(cn) + log(ε−1
n )

log(q−1
n )

is sufficient. With our estimates we get log(cn) = Θ(log(r−1)) and log(q−1
n ) ∼ Crc+d .

It is easy to choose εn so that log(ε−1
n ) is negligible compared to log(r−1), e.g., εn = rn .

We thus find k0(n) = Θ ( log(r−1)
rc+d ) as desired.

Remark 5.20 We could similarly show L∞ convergence (resp. convergence of the
energy) of ûk ,n to w under the assumptions of Theorem 5.10 (resp. Theorem 5.14) and
suitable CFL conditions.

5.6 Application to surfaces

When M and N are both two-dimensional, our previous work [8] gives estimates for
the strong convexity of the discrete energy. More precisely, consider the following
setup:

Let S = M and N be closed Riemannian surfaces of negative Euler characteristic.
Assume N has negative sectional curvature. Assume that S is equipped with a fine and
crystalline sequence of meshes (Mn)n∈N, equipped with asymptotic volume weights
and positive edge weights such that the ratio of any two edge weights is uniformly
bounded. Consider a homotopy class of maps C ⊂ C∞(M , N) of nonzero degree, and
its discretization Cn along each mesh.

Lemma 5.21 The discrete energy functional En ∶Cn → R has Hessian bounded below
by αn and above by βn ,K on any sublevel set {En ⩽ K}, with

αn = Ω(r),
βn ,K = O(r−2).

Proof The estimate for αn is an immediate consequence of [8, Theorem 3.20]. The
estimate for βn is an immediate consequence of [8, Proposition 3.17]. Note that [8,
Proposition 3.17] is only stated for a hyperbolic metric, but it can be extended to
any Riemannian metric of curvature bounded below, which is always the case on a
compact manifold. ∎

Remark 5.22 The estimate αn = Ω(r) based on [8, Theorem 3.20] only assumes that
N has nonpositive sectional curvature. When N has negative curvature (bounded away
from zero by compactness), we expect that a better bound αn = Ω(rc) with c < 1 is
possible to achieve, in fact we conjecture that αn = Ω(1).
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As a consequence of Lemma 5.21 and the previous theorems of this section, we
obtain the following theorem for surfaces.
Theorem 5.23 If the sequence of meshes (Mn)n∈N is fine, crystalline, and almost
asymptotically Laplacian, then the sequence of interpolations (v̂n)n∈N of the discrete
harmonic maps (vn) converges to the unique harmonic map w ∈ C in L2(M , N), and
E(w) = limn→+∞ En(vn).

Furthermore, the discrete heat flow (ûk ,n)k ,n∈N from any initial condition u ∈ C
converges to w in L2(M , N) when both k, n → +∞, provided the CFL condition k =
Ω (log(r−1)r−3) holds.

The previous theorems of this section (Theorems 5.10 and 5.14) also show that
under the stronger assumption αn = Ω(1) (which we believe holds in a very general
setting), the conclusions of the previous theorem may be strengthened:
Theorem 5.24 In the setup of Theorem 5.23, assuming αn = Ω(1), the convergence of
v̂n to w is uniform. If, moreover, the sequence of meshes is asymptotically Laplacian, then
we also have E(w) = limn→+∞ E(v̂n).

6 Construction of Laplacian sequences

Most of our convergence theorems in Sections 4 and 5 require a Laplacian sequence of
meshes (as in Definition 4.3), or one of the weaker variants (Definition 4.5, Definition
4.6). Indeed, one should only expect convergence for weighted graphs that reasonably
capture the geometry of M.

In this section, we construct a sequence of weighted meshes on any Riemannian
surface and prove that it is always almost asymptotically Laplacian, and discuss cases
where more can be said. This construction is very explicit: in fact, it is implemented
in our software Harmony in the case of hyperbolic surfaces. The construction can
simply be described: take a fine, crystalline sequence of meshes obtained by midpoint
subdivision (Section 2.2) and equip it with the volume vertex weights (Section 3.2)
and the cotangent weights (Section 3.3).
Remark 6.1 It is possible to generalize this construction to higher-dimensional
manifolds, most likely with similar results. We reserve this analysis maybe as part
of a future paper. In Euclidean space, the formula for higher-dimensional cotangent
weights is given in [4].

6.1 Description

Let S = M be a two-dimensional compact Riemannian manifold. One could consider
complete metrics with punctures and/or geodesic boundary, but for simplicity we
assume S is closed.

Consider a sequence of meshes (Mn)n∈N with underlying graphs (Gn)n∈N defined
by:
• M0 is any acute triangulation.
• Mn+1 is obtained from Mn by midpoint subdivision (see Section 2.2).
Furthermore, equip Gn with the volume vertex weights (Section 3.2) and the cotangent
weights (Section 3.3).
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Remark 6.2 Finding an initial triangulation of S that is acute is far from an easy task,
even for a flat surface. The reader may refer to [15] for more background on this active
subject.

Definition 6.1 A Δ-sequence is a sequence of meshes (Mn)n∈N with the associated
biweighted graphs (Gn)n∈N constructed as above.

Remark 6.3 We think of “Δ” here as standing for either “Laplacian” or “simplex.”

6.2 Angle properties

In order for Δ-sequences to be crystalline and have reasonable edge weights systems,
we need to address some questions about the behavior of angles when iterating
midpoint subdivision:
(1) Do all the angles of the triangulation remain bounded away from zero?
(2) Do all angles remain acute?
(3) Do all angles remain bounded away from π

2 ?
These questions are surprisingly subtle. In the context of applying Theorem 5.23,

they are quite natural since: (1) is necessary and sufficient for the sequence of meshes
to be crystalline (see Proposition 4.2), (2) is sufficient for the edge weights to remain
positive, and (3) is necessary for the ratio of any two edge weights to remain uniformly
bounded, a requirement of Theorem 5.23.

As remarked above, (1) has a positive answer for surfaces of constant curvature
by the main theorem of [3], and we expect a positive answer to follow from com-
pactness, without any curvature assumption. Questions (2) and (3) are more subtle,
and the answer seems likely to depend on the initial triangulation chosen, even for
hyperbolic surfaces. In practice, the triangulations of hyperbolic surfaces produced in
our software Harmony (roughly speaking, chosen to maximize the smallest angles,
see [8, Section 6.2]) seem to always yield positive answers to both (2) and (3). It seems
possible, however, to produce contrived initial triangulations whose answers will be
negative to both (2) and (3). Nonetheless, the Riemannian estimates we carry out to
produce Laplacian qualities of mesh sequences can be used to verify positive answers
to (1)–(3) in great generality.

Theorem 6.4 Let (M , g) be a compact Riemannian manifold. Let δ > 0. There is an
R ⩾ 0 so that the following holds: If M0 is a triangulation of M with largest side length
⩽ R and whose angles are all between δ and ⩽ π

2 − δ, then the sequence (Mn)n∈N
of iterated subdivisions of M is fine, crystalline, and with angles bounded uniformly
bounded away from π

2 .

To avoid burdening our presentation with technical Riemannian geometry esti-
mates, we postpone this proof to the Appendix: see Propositions A.13 and A.15 in
Section A.2.

We say a sequence of acute triangulations is strongly acute if the angles remain
uniformly bounded away from 0 and from π

2 . Thus, provided the initial triangulation
is sufficiently fine, any sequence of triangulations obtained from iterated refinement
as in Theorem 6.4 will be strongly acute.

We record the following easy consequence of Definition 6.1.
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Corollary 6.5 Let (Mn)n ∈N be a strongly acute Δ-sequence in (S , g). Then all edge
weights of Gn are Θ(1).

6.3 Laplacian qualities

Let (Mn)n ∈N be a Δ-sequence in (S , g), denote (Gn)n∈N the underlying graphs.

Definition 6.2 Recall that Vn ⊆ S denotes the set of vertices of Gn . Consider the
decomposition Vn = V

(0)
n ⊔V

(1)
n ⊔V

(2)
n , where:

• V
(2)
n consists of the vertices that are also elements of V0, called initial vertices.

• V
(1)
n consists of the vertices that are located on the edges of the initial triangulation

M0, and are not elements of V(2)n , called boundary vertices.
• V

(0)
n consists of all other vertices, called interior vertices.

Lemma 6.6 We have μ (V(k)n ) = Θ(rk) for k ∈ {0, 1, 2}.

Proof The cardinal ∣V(2)n ∣ is clearly constant, while it is easy to show by induction
that ∣V(1)n ∣ = Θ(2n) and ∣V(0)n ∣ = Θ(4n). We also have rn = Θ(2−n) by Proposi-
tion A.15 and μx ,n = Θ (r2

n) for any x ∈ Vn by Theorem 4.4. The desired estimates
follow. ∎

The decomposition Vn = V
(0)
n ⊔V

(1)
n ⊔V

(2)
n thus makes any Δ-sequence a can-

didate to be almost asymptotically Laplacian: see Definition 4.6. The main theorem of
this section provides a positive answer:

Theorem 6.7 Any strongly acute Δ-sequence in a closed Riemannian surface (S , g) is
almost asymptotically Laplacian.

Proof There are several conditions to check: refer to Definition 4.6. Conditions (i)
and (ii) are trivially satisfied by definition of a Δ-sequence.

It remains to check the Laplacian qualities stated in (iii’), namely that Gn is Lapla-
cian up to O (r2−k) on V

(k)
n for k ∈ {0, 1, 2}. For each k, there are three conditions

to check: the first-order, second-order, and third-order Laplacian conditions, up to
O (r2−k) (see Definition 4.5 (iii)). There are thus nine conditions to check, some of
which can be grouped together.

This first lemma almost comes “for free”:

Lemma 6.8 At any vertex x ∈ Vn , the j-th order Laplacian condition (for j ∈ {1, 2, 3})
holds up to O(r j−2). ∎
Proof We have μx = Θ (r2

n) (Theorem 4.4), ωx y = Θ(1) (Corollary 6.5) and �→x y =
O(r) for any y ∼ x, therefore

1
μx

∑
y∼x

ωx y L(�→x y) j = ∥L∥ jO(r j−2).

The conclusion easily follows for each j ∈ {1, 2, 3}. ∎
In what follows, we will frequently need to compare our present Riemannian setting

to its “Euclidean counterpart.” Let us clarify what we typically mean by that. Consider
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a vertex x ∈ Vn ⊆ S and its neighbors {y i} ⊆ S. By working in the normal chart at x,
we can imagine that x and {y i} live in the Euclidean plane Tx S. In this plane, each
edge of the triangulation, a Riemannian geodesic, may be replaced by a Euclidean
straight segment, yielding a Euclidean triangulation. One can then define, for instance,
the Euclidean cotangent weights associated to this Euclidean triangulation. We shall
call the Euclidean cotangent weights ωE

x y the Euclidean counterparts of the cotangent
weights ωx y .

Lemma 6.9 The cotangent weights ωx y are within O(r2) of their Euclidean counter-
parts ωE

x y .

Proof This follows directly from the first-order expansion of the cotangent given in
Proposition A.5. Note that we need to know that all angles are bounded away from 0
and π

2 , which is guaranteed by definition of a strongly acute Δ-sequence. ∎
The fact that the cotangent weights are exactly Laplacian to first order in the

Euclidean setting (Proposition 3.9) and the previous lemma allow us to upgrade the
j = 1 case of Lemma 6.8:

Lemma 6.10 At any vertex x ∈ Vn , the first-order Laplacian condition holds up to
O(r).

Proof Write

∑
y∼x

ωx y
�→x y = ∑

y∼x
(ωx y − ωE

x y)�→x y + ∑
y∼x

ωE
x y

�→x y .

The first sum is O(r3) by Lemma 6.9 and the second vanishes by Proposition 3.9 (note
that �→x y ∶= exp−1

x (y) is equal to its “Euclidean counterpart” �→x yE, since we are looking
at the normal chart at x). Since μx = O(r2), conclude that 1

μx
∑y∼x ωx y

�→x y = O(r). ∎

As far as the first-order Laplacian condition is concerned, Lemma 6.10 is good
enough for vertices x ∈ V(2)n and x ∈ V(1)n . However, for x ∈ V(0)n , we need to upgrade
the estimate to O(r2). Essentially, this follows from the fact that interior vertices have
“almost central symmetry,” and second-order Riemannian estimates. The computa-
tions are tedious but fairly straightforward, we condensed them in the proof of the
next lemma:

Lemma 6.11 At any interior vertex x ∈ V(0)n , the first-order Laplacian condition holds
up to O(r2).

Proof We need to push one step further the asymptotic expansion of the cotangent
weights mentioned in Lemma 6.9. Order the neighbors of x cyclically, and given a
neighbor y, denote y′ and y′′ the previous and the next neighbors. By Proposition
A.12, we have

ωx y = ωE
x y + λx y + O(r3) with λx y = 1

2
(εx y′ y + εx y′′ y) ,

where the notation εOAB is defined in Proposition A.12. It follows that

∑
y∼x

ωx y
�→x y = ∑

y∼x
ωE

x y
�→x y + ∑

y∼x
λx y

�→x y + O(r4).

https://doi.org/10.4153/S0008414X22000074 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000074


Computing harmonic maps between Riemannian manifolds 569

The first sum vanishes as in Lemma 6.10. Since μx = O(r2), we need to show that
∑y∼x ωx y

�→x y = O(r4). Hence we win if we show that ∑y∼x λx y
�→x y = O(r4).

We note that any interior vertex x ∈ V(0)n has “almost central symmetry” up to
O(r3), meaning that its set of neighbors may be divided into pairs {y+ , y−} such
that �→x y+ +�→x y− = O(r3) (equivalently, the central symmetry at x preserves the set of
neighbors up to O(r3)). This immediately follows from the fact that x ∈ V(0)n has in
fact “almost hexaparallel symmetry,” as we shall see in (Lemma 6.12).

Now write

∑
y∼x

λx y
�→x y = ∑

{y+ , y−}
λx y+

�→x y+ + λx y−
�→x y−

= ∑
{y+ , y−}

(λx y+ − λx y−)�→x y+ + λx y− (�→x y− +�→x y+) .

It is not hard to see from the expression of λx y that λx y = O(r2), and, due to the almost
central symmetry, λx y+ − λx y− = O(r4). (To be fair, it is a few lines of calculations, but
let us skip the unnecessary details.) We also have �→x y− +�→x y+ = O(r3), we thus derive
from the previous identity that ∑y∼x λx y

�→x y = O(r5), which is better than the O(r4)
desired result. ∎

At this point, it is good to pause and see that we have proved that the first-order
Laplacian condition holds up to O(r2−k) on V

(k)
n for all k ∈ {0, 1, 2}, as required. Let

us now turn to the second-order condition. On V
(2)
n , we have already proved that

it holds up to O(1) as required: see Lemma 6.8. Let us now show that it holds up to
O(r2) on V

(1)
n (better than the required O(r)) and on V

(0)
n (as required). Along with

Lemma 6.10, this is the most difficult part of the proof.

Lemma 6.12 At any interior vertex x ∈ V(0)n or boundary vertex x ∈ V(1)n , the second-
order Laplacian condition holds up to O(r2).

Proof Let x ∈ V(0)n be an interior vertex. Using Riemannian estimates, we shall
prove that the second-order Laplacian condition holding up to O(r2) is a consequence
of the fact that x has “almost hexaparallel symmetry.” We defined hexaparallel sym-
metry in the Euclidean setting: see Definition 3.3. This definition naturally extends
to the Riemannian setting, using the normal chart at x to bring x and its neighbors
back to the Euclidean setting. We further say that x has almost hexaparallel symmetry
(up to O(r3)) provided that the neighbors of x are within O(r3) of a hexaparallel
configuration. Using Proposition A.8, one quickly shows that any interior vertex has
almost hexaparallel symmetry.

Denote ŷ i the hexaparallel configuration around x such that ŷ i − y i = O(r3), and
denote ωE

x ŷ the Euclidean counterparts of the cotangent weights ωx ŷ . As in Lemma
6.10, one shows that ωx y , ωx ŷ , and ωE

x ŷ are all within O(r2). Now write

1
μx

∑
y∼x

ωx y L (�→x y)2 = 1
μx

∑
y∼x

(ωx y − ωE
x ŷ)L (�→x y)2

+ 1
μx

∑
y∼x

ωE
x ŷ L (�→x y −�→

x ŷ) L (�→x y +�→
x ŷ) + 1

μx
∑
y∼x

ωE
x ŷ L (�→x ŷ)

2
.
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One quickly sees that the first and second sums are ∥L∥2O (r2). As for the third sum,
first note that denoting μE

x the Euclidean area weight at x, we have

1
μE

x
∑
y∼x

ωE
x ŷ L (�→x ŷ)

2
= 2∥L∥2 ,

by Lemma 3.11. Since μx = μE
x (1 + O (r2)) by Proposition A.11, we find

1
μx

∑
y∼x

ωE
x ŷ L (�→x ŷ)

2
= 2∥L∥2 (1 + O (r2)) .

Gathering all three sums, we find 1
μx

∑y∼x ωx y L (�→x y)2 = 2∥L∥2 (1 + O (r2)) as
desired.

One conducts a similar proof when x is a boundary vertex: in that case, it has almost
semi-hexaparallel symmetry up to O(r3), and the proof is similarly derived from the
Euclidean case. ∎

This concludes the proof that the second-order Laplacian condition holds up to
O(r2−k) on V

(k)
n for all k ∈ {0, 1, 2}. Let us finally examine the third-order condition.

We already proved in Lemma 6.8 that it holds up to O(r) at any vertex, which is good
enough for V(2)n and V

(1)
n . It remains to prove that it holds up to O(r2) on V

(0)
n . It

actually holds up to O(r3):

Lemma 6.13 At any x ∈ V(0)n , the third-order Laplacian condition holds up to O(r3).

Proof This is an easy consequence of the almost central symmetry: write

∑
y∼x

ωx y L(�→x y)3 = ∑
{y+ , y−}

ωx y+L(�→x y+)3 + ωx y−L(�→x y−)3

= ∑
{y+ , y−}

(ωx y+ − ωx y−) L(�→x y+)3 + ωx y− (L(�→x y−)3 + L(�→x y+)3) .

By almost central symmetry, we have ωx y+ − ωx y− = O(r2) and �→x y− +�→x y+ = O(r3).
It follows that the first term is ∥L∥3O(r5), as is the second term. (For the second term,
write L(�→x y−) = L(�→x y+) + ∥L∥O(r3) and expand the third power of this identity.)
Thus we find that ∑y∼x ωx y L(�→x y)3 = ∥L∥3O(r5), therefore, 1

μx
∑y∼x ωx y L(�→x y)3 =

∥L∥3O(r3) as required. ∎

This concludes the proof that the third-order Laplacian condition holds up to
O(r2−k) on V

(k)
n for all k ∈ {0, 1, 2}. The proof of Theorem 6.7 is now complete.

Remark 6.14 In retrospect, it is remarkable—almost miraculous—how the condi-
tions for a Δ-sequence to be almost asymptotically Laplacian are barely met, and in
turn how these conditions are barely sufficient for the main convergence theorem
(Theorem 5.1) to hold, at least in the c = 1 case. Seeing how delicate the analysis is,
the reader should not be too surprised that it took us many failed attempts until we
were able to achieve the right definitions and results.
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A Riemannian estimates

Many proofs in this paper can be summarized in two steps: First, the claim is shown
to be true in the Euclidean (flat) setting, by direct proof. Subsequently, it is also true
in the Riemannian setting on first approximation (e.g., provided the mesh is fine).
The moral justification for the second step is that locally, a Riemannian manifold
looks Euclidean. Of course, one should not use this aphorism too liberally, since there
are local Riemannian invariants such as curvature. In some cases, one can make this
type of proof rigorous with a soft argument using only first-order approximation. In
others, one should be more cautious and examine the next order terms, which involve
curvature.

A standard way to obtain estimates in Riemannian geometry is to compute Taylor
expansions in normal coordinates, i.e., using the exponential map at some point as
a chart, and picking an orthonormal basis of the tangent space to have an n-tuple of
coordinates. For example, the Taylor expansion of the Riemannian metric in normal
coordinates reads

g i j = δ i j −
1
3

R ik j l xk x l + O(r3),(A.1)

where R i jk l is the Riemann curvature tensor. This foundational fact of Riemannian
geometry goes back to Riemann’s 1854 habilitation [14]. From this estimate, many
other geometric quantities can be similarly approximated: distances, angles, geodesics,
volume, etc.

In Section A.1, we establish Riemannian estimates of the most relevant geometric
quantities. These are used implicitly or explicitly throughout the paper, especially
Section 6.3. In Section A.2, we study iterated midpoint subdivisions of a simplex in
a Riemannian manifold, proving two key lemmas for Section 6.2.

A.1 Riemannian expansions in a normal chart

Let (M , g) be a Riemannian manifold and let x0 ∈ M. We consider the normal
chart given by the exponential map expx0

∶Tx0 M → M, which is well-defined and a
diffeomorphism near the origin. We do not favor the unnecessary introduction of local
coordinates, so we will abstain from choosing an orthonormal basis of Tx0 M (in other
words fixing an identification Tx M ≈ R

m), and instead work in the Euclidean vector
space (Tx0 M , ⟨⋅, ⋅⟩E) where the inner product ⟨⋅, ⋅⟩E is just gx .

We implicitly identify objects in M and in Tx0 M via the exponential map expx0
,

e.g., x0 = 0, and tangent vectors to some point x ∈ M to vectors (or points) in Tx0 M via
the derivative of the exponential map. Let r > 0. In what follows, all points considered
(typically denoted x, A, B) are within distance ⩽ r of x0. With this setup, (A.1) is
written:

Theorem A.1 (Second-order expansion of the metric.) Let u, v be tangent vectors at
some point x ∈ M. Then

⟨u, v⟩ = ⟨u, v⟩E − 1
3
⟨R(u, x)x , v⟩E + O (r3∥u∥E∥v∥E) ,

where R is the Riemann curvature tensor at x0 = 0.
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Note that when writing R(u, x)x, we think of the point x as an element of Tx0 M.
From this fundamental estimate, it is elementary to show the following series of
estimates.

Remark A.2 All the O (⋅) functions in this section are locally uniform in x ∈ M.

Proposition A.3 (Second-order expansion of the norm)

∥u∥2 = ∥u∥2
E − 1

3
⟨R(u, x)x , u⟩ + O (r3∥u∥2

E) ,

∥u∥ = ∥u∥E − 1
6
⟨R(u, x)x , u⟩

∥u∥2
E

+ O (r3∥u∥2
E) .

Proposition A.4 (Second-order expansion of cosine)

cos∠(u, v)

= cos∠E(u, v) [1 + ⟨R(u, x)x , u⟩E
6∥u∥2

E
+ ⟨R(v , x)x , v⟩E

6∥v∥2
E

− ⟨R(u, x)x , v⟩E
3⟨u, v⟩E

] + O (r3) .

The previous proposition implies the less accurate estimates:

Proposition A.5 (First-order expansions of angles)

cos∠(u, v) = cos∠E(u, v) + O (r2) .

If ∠(u, v) (equivalently ∠E(u, v)) is bounded away from 0 and π
2 modulo π, then

sin∠(u, v) = sin∠E(u, v) + O (r2) ,
cot∠(u, v) = cot∠E(u, v) + O (r2) .

Let A, B be points in our normal chart: they can either be thought of as elements of
M or Tx0 M. We denote as usual

�→AB the vector exp−1
A (B), which is an element of TA M,

or of Tx0 M via our chart. We also denote
�→ABE the Euclidean vector B − A ∈ Tx0 M.

Proposition A.6 (Geodesic through two points) Let γ be the geodesic with γ(0) = A
and γ(1) = B.

γ(t) = γE(t) + t(t − 1)
3

R (A, B)�→ABE + O (tr4) .

Proposition A.7 (Vector between two points)
�→AB = �→ABE + 1

3
R (A, B)�→ABE + O (r4) .

Proposition A.8 (Midpoint) Let I denote be the midpoint of A and B in M, and let
IE = A+B

2 denote their Euclidean midpoint in Tx0 M.

I = IE + 1
12

R (A, B)�→ABE + O (r4) .

Proposition A.9 (Distance between two points)

d(A, B)2 = dE(A, B)2 − 1
3
⟨R (B, A) A, B⟩ + O(r5).
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Remark A.10 Note that ⟨R (B, A) A, B⟩ = K∥B ∧ A∥2 where K is the sectional cur-
vature at x0 = 0. In particular, we see from Proposition A.9 that d > dE near x0 if and
only if M has negative sectional curvature at x0, which should be expected.

We recover the well-known expansion of the volume density:

Proposition A.11 (Volume density) The volume density at x is given by

vg(x) = vE (1 − Ric(x , x)
6

+ O(r3)) ,

where vE is the Euclidean volume density in Tx M and Ric is the Ricci curvature tensor
at x0.

Let us finish with the following estimate that we use in Section 6 (see
Lemma 6.11):

Proposition A.12 Let A, B be two points such that all three sides of the triangle OAB
are Θ(r) (where O = x0). Denote α the unoriented angle B̂AO and αE its Euclidean
counterpart in the normal chart at x0, and suppose that there is a uniform lower bound
to the angle α. Then we have the second-order expansion

cot α = cot αE + εOAB + O(r3) with εOAB = K
6

(2∥OA∥E ∥AB∥E

sin αE
+ ∥OA∥2

E cot αE) ,

where K denotes the sectional curvature at x0.

Proof Let us indicate the relevant angles as follows:

α = B̂AO = ∠(�→AB,
�→AO) ,

α′ = ∠E (�→AB,
�→AO) , and

αE = ∠E (�→ABE ,
�→AOE) .

In broad strokes, the estimate of cot α by cot αE proceeds as follows: Proposition A.4
provides an estimate of cos α by cos α′, and Proposition A.7 provides an estimate
of

�→AB and
�→AO by

�→ABE and
�→AOE, which implies an estimate of cos α′ by cos αE.

Finally, the comparison of cos α and cos αE implies a comparison of the corresponding
cotangents.

Precisely, Propositions A.4 and A.7 imply that

cos α = cos α′ [1 + ⟨R(B, A)A, B⟩E
6∥AB∥2

E
] + O (r3) ,

�→AB = �→ABE + 1
3

R (A, B)�→ABE + O (r4) , and
�→AO = �→AOE + O (r4) .
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Because the sectional curvature K satisfies K = ⟨R(B, A)A, B⟩/
(∥OA∥2∥AB∥2 − ⟨�→OA,

�→AB⟩
2
), we have

cos α = cos α′ [1 + ⟨R(B, A)A, B⟩E

6∥AB∥2
E

] + O (r3)

= cos α′ [1 + K
6
∥OA∥2

E sin2 αE] + O (r3) .(A.2)

As for the comparison of cos α′ and cos αE, observe the following elementary estimate:
suppose that v1, v2, ε1, and ε2 are vectors in a two-dimensional inner product space,
where v i is of size Θ(r) and ε i has size O(r3). If v1 and v2 form angle θ and v1 + ε1
and v2 + ε2 form angle θ′, then we have

cos θ′ = cos θ + ⟨ε1 , v2⟩ + ⟨ε2 , v1⟩
∥v1∥∥v2∥

− cos θ (⟨ε1 , v1⟩
∥v1∥2 + ⟨ε2 , v2⟩

∥v2∥2 ) + O (r4) .

Applying this estimate with v1 =
�→ABE, v2 = �→AOE, ε1 = 1

3 R(A, B)�→ABE + O (r4), ε2 =
O (r4), θ = αE, and θ′ = α′, we find

cos α′ = cos αE + K
3
∥AO∥E∥AB∥E sin2 αE + O (r3) .(A.3)

Putting together (A.2) and (A.3) we have

cos α = [cos αE + K
3
∥AO∥E∥AB∥E sin2 αE] ⋅ [1 + K

6
∥OA∥2

E sin2 αE] + O (r3)

= cos αE + 1
3

K sin2 αE (∥AO∥E∥AB∥E + 1
2
∥OA∥2

E cos αE) + O (r3) .

To finish, observe the following elementary calculation: if cos α = cos αE + δ + O (r3),
where δ = O (r2), then cot α = cot αE + 1

sin3 αE
δ + O (r3). ∎

A.2 Iterated subdivision of a simplex

In this subsection, we estimate the edge lengths and angles in the iterated midpoint
subdivision (see Section 2.2) of a simplex in a Riemannian manifold. We prove two
propositions towards Theorem 6.4.

Proposition A.13 Let (M , g) be a compact Riemannian manifold of dimension m. Let
(Δn)n∈N be a sequence of simplices with geodesic edges such that for every n ∈ N, Δn+1 is
one of the 2m simplices obtained from Δn by midpoint subdivision. Then all edge lengths
of Δn are Θ(2−n).
Remark A.14 In Proposition A.13, the Θ(2−n) function is uniform in the choice of
the sequence (Δn): more precisely, there exists constants C1 , C2 > 0 depending only
on (M , g) such that any edge length xn of the triangulation obtained by nth refinement
of Δ0 satisfies C12−n ⩽ xn ⩽ C22−n .

Proof For comfort, we write the proof when dim M = 2, but it works in any dimen-
sions. We thus have a sequence of geodesic triangles Δn in a Riemannian surface
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(S , g). Choose a labeling of the side lengths of Δn by an , bn , cn . Given the labeling
of Δ0, there is a unique sensible way to do this for all n so that Δn+1 is “similar” to
Δn . For instance, in the Euclidean setting, one should have an = 2−n a0, etc. In order
to show that an , bn , and cn are Θ(2−n), we would like to use Riemannian estimates,
but we must first show that diam(Δn) converges to zero.

Let us prove the stronger claim that rn → 0, where rn is the maximum edge
length of the whole triangulation obtained by nth refinement of Δ0. Notice that (rn)
is nonincreasing: this follows easily from the triangle inequality in each simplex.
Moreover, rn > rn+1 unless one of the simplices is reduced to a point, which cannot
happen unless Δ0 is a point. One can conclude that rn → 0 by compactness: if not, we
could find a converging sequence of simplices with diameter bounded below, etc.

Now we can use the estimates of Section A.1. It is not hard to derive from
Propositions A.8 and A.9 that

∣an − 2an+1∣ = O (r3
n) ,(A.4)

and we have similar estimates for bn and cn . This means that there exists a constant
B > 0 such that for all n sufficiently large, ∣an − 2an+1∣ ⩽ Br3

n . Applying this inequality
repeatedly, we find

∣an − 2k an+k ∣ = ∣(an − 2an+1) + 2(an+1 − 2an+2) +⋯ + 2k−1(an+k−1 − 2an+k)∣

⩽ B (r3
n + 2r3

n+1 +⋯+ 2k−1r3
n+k−1) .

Now, note that rn must satisfy the same inequality (A.4), so in particular

2rn+1 ⩽ rn + Br2
n ⩽ Crn

for any constant C > 1 chosen in advance, provided n is sufficiently large. Therefore,
we obtain

∣an − 2k an+k ∣ ⩽ Br3
n
⎛
⎝

1 + C3

2
+⋯+ (C3

2
)

k−1⎞
⎠

.

Provided we chose 1 < C3 < 2, the sum 1 + C3

2 +⋯+ ( C3

2 )
k−1

is bounded, as a
truncated convergent geometric series. In particular, we find that the sequence
(2k an+k)k∈N is bounded, in other words an+k = O(2−k). Of course this is the same
as saying that an = O(2−n). We similarly show the other inequality an = Ω(2−n), and
conclude that an = Θ(2−n). Obviously, the same argument works for (bn) and (cn).

Note that the claim of Remark A.14 is justified by the fact that the sequence (rn)
and the constant C are independent of the choice of the sequence (Δn). ∎

Proposition A.15 Let (M , g) be a compact Riemannian manifold of dimension m.
Let δ > 0. There exists R > 0 and η > 0 such that the following holds. Let (Δn)n∈N be
a sequence of simplices with geodesic edges where for every n ∈ N, Δn+1 is one of the 2m

simplices obtained from Δn by midpoint subdivision. If the longest edge length of Δ0 is
⩽ R and all angles of Δ0 are between δ and π

2 − δ, then all angles of Δn are between η
and π

2 − η for all n ∈ N.
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Proof We have seen in Proposition A.13 that the diameter of Δn is ⩽ rn , with rn =
Θ(2−n). In particular, rn → 0, so we can use the Riemannian estimates of Section A.1.

Label αn , βn , and γn the angles of Δn . Of course, one should do this labeling in the
only sensible way: for instance in the Euclidean setting we should have αn = αn+1, etc.
It is not hard to derive from Propositions A.5 and A.8 that for all n ∈ N,

cos αn+1 = cos αn + O(r2
n),

in other words there exists a constant C depending only on (M , g) such that

∣cos αn+1 − cos αn ∣ ⩽ Cr02−2n .

Using a telescopic sum, we find that

∣cos αn − cos α0∣ ⩽
n−1
∑
k=0

∣cos αk+1 − cos αk ∣

⩽ Cr0
n−1
∑
k=0

2−2k ⩽ Cr0
∞

∑
k=0

2−2k = Cr0
4
3

.

We therefore have the bounds

cos α0 − C′r0 ⩽ cos αn ⩽ cos α0 + C′r0 ,

where C′ = 4C/3. By assumption, sin δ ⩽ cos α0 ⩽ cos δ. Clearly cos αn is bounded
away from zero if r0 is sufficiently small, for instance r0 ⩽ sin δ

2C′ yields cos αn ⩾ sin δ
2 .

It follows that αn is bounded away from π/2. A uniform lower bound for (αn)n is
obtained similarly. ∎

B Comparing the discrete L2 and L∞ distances

Let M be compact Riemannian manifold, let N be a complete Riemannian manifold
of nonpositive sectional curvature. Let M be a mesh on M and equip the underlying
graph G with vertex weights (μx)x∈V and (ωx y)x∼y . Recall the L2 distance on the
space of discrete maps MapG(M , N):

d(u, v)2 = ∑
x∈V

μx d(u(x), v(x))2 ,

while the L∞ distance is

d∞(u, v) = max
x∈V

d(u(x), v(x)).

Clearly, these distances satisfy the inequality md2
∞ ⩽ d2 ⩽ Wd2

∞, where m ∶=
minx∈V μx is the minimum vertex weight and W ∶= ∑x∈V μx is the sum of the vertex
weights. Typically, W is equal to Vol(M) or asymptotic to it for a fine mesh, so the
second inequality is fairly robust. On the other hand, the first inequality md2

∞ ⩽ d2,
which we rewrite

d∞(u, v) ⩽ m−1/2 d(u, v)(B.1)

is less attractive since typically m → 0 for a fine mesh. This should be expected though,
as the L2 and L∞ distances are not equivalent on the space of continuous maps
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M → N . The goal of this section is to find an improvement of (B.1) when v is a discrete
harmonic map. This step is crucial in our proof of Theorem 5.1.

Proposition B.1 Let G be a biweighted graph embedded in M, and let N be a complete
Riemannian manifold of nonpositive sectional curvature. Let v ∈ MapG(M , N) be the
minimizer of the discrete energy. Denote by r the maximum edge length of G, V the
maximum valence of a vertex of G, m = minx∈V μx the smallest vertex weight, and
ω = ωmax

ωmin
the ratio of the largest and smallest edge weights. Let L > 0. There exists

constants A = A(ω, V) > 0 and B = B(ω, L, V) ∈ R such that for any L-Lipschitz map
u ∈ MapG(M , N):

d∞(u, v) ⩽ max{(κm)−1/2d(u, v) , r1/2} ,

with κ ∶= min (A log (r−1) + B , surj radG − 1).

We recall that the combinatorial surjectivity radius surj radG is defined in
Theorem 4.4.

Proof Let ρ ∶= Lr. Notice that ρ is an upper bound for the length of any edge in N
that is the image of an edge of G by u. Proposition B.1 is a consequence of the following
“bootstrapping” lemma: if some distance d(u(x), v(x)) is large, then d(u(y), v(y))
will also be large, for many vertices y that are near x. More precisely:

Lemma B.2 Let x0 be a vertex which achieves d∞(u, v) =∶ D. Let K be given by

K ∶= min{ ⌊log
δ
(D/ρ)⌋ , surj radG } ,

where δ = 2 (1 + ωV). For each k = 1, 2, . . . , K there exists a vertex xk satisfying:
(1) The combinatorial distance in Gn is given by dGn(x , xk) = k and
(2) d(u(xk), v(xk)) ⩾ D − δk−1ρ. ∎
Remark B.3 The log above is the cutoff function log

b
(x) ∶= max{ logb x , 0}.

Let us postpone the proof of Lemma B.2 until after the end of this proof. Now we
find

d(u, v)2 = ∑
x∈V

μx d(u(x), v(x))2 ⩾ m
K
∑
k=0

d(u(xk), v(xk))2

⩾ mD2 + m
K−1
∑
k=0

(D − δk ρ)2

⩾ mD2(K + 1) − 2mDρδK

⩾ mD2(K + 1) − 2mDρδlogδ(D/ρ) = mD2(K − 1).

The conclusion follows by noting that if D ⩽ r1/2, i.e., d∞(u, v) ⩽ r1/2,
then we are done, and if D ⩾ r1/2 then D/ρ ⩾ r−1/2/L, therefore, K − 1 ⩾
min (A log (r−1) + B , surj radG − 1) where A = 1

2 log δ and B = − logδ(L) − 1.

Proof We make repeated use of the following fact (see [8, Proposition 2.22]): since
v is a discrete harmonic map its discrete tension field is zero: ∑y∼x ωx y

�����→
v(x)v(y) = 0.
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In other words, v(x) is the weighted barycenter of its neighbor values in N. We refer
to this as the balanced condition of v at x.

We prove Lemma B.2 by induction on k. For the base case k = 1, consider the unit
geodesic γ through v(x0) and u(x0), parametrized with a coordinate t chosen by
requiring γ(0) = v(x0) and γ(−D) = u(x0). Define the orthogonal projection prγ as a
map Tv(x0) N → γ ≈ R. If prγ(v(y)) < 0 for all y ∼ x0 then v would not be balanced at
x0, therefore, there exists some neighbor vertex x1 ∼ x0 so that prγ(v(x1)) ⩾ 0. More-
over, by assumption u(x1) is within ρ of u(x0), so that prγ(u(x1)) ⩽ prγ(u(x0)) + ρ =
−D + ρ. We conclude that d(v(x1), u(x1)) ⩾ prγ(v(x1)) − prγ(u(x0)) ⩾ D − ρ.

For the inductive step, we follow the above argument with xk in place of x0.
That is, we have the unit geodesic γ through u(xk) and v(xk), with γ(0) = v(xk),
γ(t) = u(xk) for some t < 0, and the projection prγ ∶ Tv(xk)N → γ ≈ R. Split up the
neighbors of xk into A, those vertices at combinatorial distance at most k from x0
in G, and B, those vertices at distance k + 1 from x0. For each of the vertices y ∈ A,
observe that prγ(v(y)) ⩽ −d(v(xk), u(xk)) + ρ + D ⩽ (1 + δk−1)ρ. Now the balanced
condition for v at xk gives

0 = ∑
y∼xk

ωxk y prγ (
�����→
v(xk)v(y))

= ∑
y∈A

ωxk y prγ (
�����→
v(xk)v(y)) + ∑

y∈B
ωxk y prγ (

�����→
v(xk)v(y))

⩽ ωmax ∑
y∈A

(1 + δk−1)ρ + ∑
y∈B

ωxk y max
y′∈B

prγ (
������→
v(xk)v(y′)) .

If prγ (
�����→
v(xk)v(y)) ⩾ 0 for some y ∈ B, then d(v(y), u(y)) ⩾ d(v(xk), u(xk)) − ρ, so

we may let xk+1 = y. Otherwise, each of these coordinates are negative, and we have

0 < ωmaxV(1 + δk−1)ρ + ωmin max
y∈B

prγ (
�����→
v(xk)v(y)) .(B.2)

Let xk+1 ∈ B satisfy prγ (
�������→
v(xk)v(xk+1)) = maxy∈B prγ (

�����→
v(xk)v(y)). Rearranging

(B.2),

prγ (
�������→
v(xk)v(xk+1)) > −ωV(1 + δk−1)ρ.

Because u(xk+1) is within ρ of u(xk), we find that prγ(u(xk+1)) ⩽ prγ(u(xk)) + ρ. By
the induction hypothesis,

d(v(xk+1), u(xk+1)) ⩾ prγ (
�������→
v(xk)v(xk+1)) − (u(xk) + ρ)

> −ωV(1 + δk−1)ρ + d(u(xk), v(xk)) − ρ

⩾ D − ρ (1 + ωV) (1 + δk−1).
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Finally, we have

(1 + ωV)(1 + δk−1) = δ
2
(1 + δk−1) = δ

2
+ δk

2

⩽ δk

2
+ δk

2
= δk ,

so that we conclude d(v(xk+1), u(xk+1) ⩾ D − δk ρ. ∎

As an application of Proposition B.1 we get:

Corollary B.4 Let M be a compact manifold and let N be a complete manifold of
nonpositive sectional curvature. Equip M with a sequence of meshes (Mn)n∈N that is
fine and crystalline, let r = rn denote the mesh size of Mn , and equip the underlying
graphs Gn with asymptotic vertex weights and positive edge weights. Assume that there
are uniform upper bounds for the ratio of any two edge weights.

Let w∶ M → N be a smooth map, denote by wn its discretization along Gn , and let vn
be a discrete harmonic map. Then there is a constant C > 0 so that

d∞(wn , vn) ⩽ C max{ r− dim M/2 log( 1
r
)
−1/2

d(wn , vn) ,
√

r } .

Remark B.5 In the setting above, (B.1) would yield only

d∞(wn , vn) ⩽ O (r− dim M/2) ⋅ d(wn , vn).

Corollary B.4 represents a slight improvement when vn is discrete harmonic.

Proof Note that since w is C1 on a compact manifold, it must be L-Lipschitz for some
L > 0, and for all n ∈ N the discretization wn is also L-Lipschitz. Proposition B.1 yields

d∞(wn , vn) ⩽ max{(κn mn)−1/2d(wn , vn) , r1/2} ,

where κn = min (A log (r−1
n ) + B , surj radGn − 1), for some uniform constants A > 0

and B ∈ R. In our setting, mn = Θ(rdim M) by Theorem 4.4(i) and surj radGn =
Θ(rdim M) by Theorem 4.4(iv). Therefore, there is some constant C > 0 so that, for
n sufficiently large, mn ⩾ Crdim M and κn ⩾ C log (r−1), and it follows that

d∞(wn , vn) ⩽ max{ Cr− dim M/2 log( 1
r
)
−1/2

⋅ d(wn , vn) ,
√

r } . ∎
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