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The dynamics of evolving fluid films in the viscous Stokes limit is relevant to various
applications, such as the modelling of lipid bilayers in cells. While the governing
equations were formulated by Scriven (1960), solving for the flow of a deformable viscous
surface with arbitrary shape and topology has remained a challenge. In this study, we
present a straightforward discrete model based on variational principles to address this
long-standing problem. We replace the classical equations, which are expressed with
tensor calculus in local coordinates, with a simple coordinate-free, differential-geometric
formulation. The formulation provides a fundamental understanding of the underlying
mechanics and translates directly to discretization. We construct a discrete analogue of
the system using Onsager’s variational principle, which, in a smooth context, governs the
flow of a viscous medium. In the discrete setting, instead of term-wise discretizing the
coordinate-based Stokes equations, we construct a discrete Rayleighian for the system and
derive the discrete Stokes equations via the variational principle. This approach results
in a stable, structure-preserving variational integrator that solves the system on general
manifolds.

Key words: thin films, membranes

1. Introduction

When surface dissipation dominates bulk dissipation (i.e. when the Saffman–Delbrück
length far exceeds the system size), the viscous flow of evolving fluid films can
be modelled without accounting for the bulk fluid (Saffman & Delbrück 1975;
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Arroyo & DeSimone 2009). The governing equations, known as the evolving Stokes
equations, have not only been of theoretical interest, but also found practical applications
in engineering, such as the study of foam (Exerowa & Kruglyakov 1997). Their use also
has a long-standing history in biophysical contexts, addressing fundamental problems
across scales – from modelling subcellular structures such as lipid bilayers to tissue-level
phenomena such as epithelial monolayers (Al-Izzi & Morris 2021).

Historically, the governing equations were formulated by Scriven (1960) to study foam
instability. When coupled with bending elasticity, the evolving Stokes equations serve as a
common model for lipid membranes (Arroyo & DeSimone 2009). Recently, there has been
substantial interest in modelling cell and tissue growth by coupling the viscous layer with
additional anisotropy and active processes, such as those seen in the cellular cortex and
active nematic fluids (Metselaar, Yeomans & Doostmohammadi 2019; Torres-Sánchez,
Millán & Arroyo 2019; Al-Izzi & Morris 2023). The evolving Stokes equations, along with
extensions to the full Navier–Stokes equations, have been derived independently through
various principles (Scriven 1960; Arroyo & DeSimone 2009; Koba, Liu & Giga 2017;
Miura 2018; Torres-Sánchez et al. 2019; Reuther, Nitschke & Voigt 2020; Sahu et al. 2020;
Al-Izzi & Morris 2023) and are compared in Brandner, Reusken & Schwering (2022).
Our approach is closest to the formulation of Arroyo & DeSimone (2009) via Onsager’s
variational principle for dissipative systems.

To computationally solve the evolving Stokes equations, most existing methods tackle
the partial differential equations by explicitly splitting them into normal and tangential
components. This involves a vector-valued equation for the tangent velocity and a scalar
equation for the normal velocity on a manifold. When viewed this way, the system of
equations is challenging to solve. First, the tangent equation is tensor-valued on an evolving
Riemannian manifold, necessitating specialized techniques for covariant differentiation
(Knöppel et al. 2013; Gross & Atzberger 2018; Nestler, Nitschke & Voigt 2019; Voigt 2019;
Torres-Sánchez, Santos-Oliván & Arroyo 2020). Some methods avoid the tensor-valued
equation of tangent velocity through streamfunction formulations, although this approach
is limited to simply connected domains (Torres-Sánchez et al. 2019) unless additional
topological techniques are employed (Yin et al. 2023). Second, the equations in the
decomposed form are explicitly coupled with surface curvatures, which, in classic
numerical approximations, require representations using high-order basis functions (Sahu
et al. 2020; Krause & Voigt 2023).

In this study, instead of directly tackling the classic equations, we return to the
fundamental governing kinematics and principles of a viscous surface film. We replace the
system of equations expressed in tangent–normal splitting with a simple, coordinate-free
differential-geometric formulation. We show that our resulting equations agree with earlier
formulations by Scriven (1960) and Arroyo & DeSimone (2009) but in a more elegant
form. Our approach also directly carries over to the discrete setting. The abstraction
directly leads to a discretization for the strain rate tensor on discrete meshes. We then
construct a discrete Rayleighian for the system and derive the discrete Stokes equations
via Onsager’s variational principle, leading to a simple linear system. We provide a
self-contained exposition of both the continuous and discrete models, as well as the
numerical methods used to solve the system of equations on arbitrary geometries and
topologies.

2. Theory

We derive the equations of motion for an evolving surface driven by viscous Stokes
flow using Onsager’s variational principle. Specifically, a dissipation functional, called
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Stokes flow of an evolving fluid film

the Rayleighian, is assigned to each position and velocity state of a deformable surface.
The equations of motion are then obtained by finding the velocity that minimizes this
functional.

We adopt a differential-geometric approach, similar to Marsden & Hughes (1994), to
describe continuum mechanics. Tensors are expressed using fibre bundle notation for
clarity. Readers unfamiliar with this terminology can refer to § 2.1 for a brief overview. We
first define relevant tensors and differential operators in § 2.2, followed by the definition of
the Rayleighian for the system in § 2.3. For simplicity in presenting our smooth theory, all
functions and tensors are assumed to be of C∞ class.

2.1. Terminology and notation
On a manifold M, the ‘tangent space’ TpM is a vector space that provides a local linear
approximation of the manifold at p ∈ M. The disjoint union of all tangent spaces forms the
‘tangent bundle’ TM = ⋃

p TpM, where each TpM is also called the ‘fibre’ of the tangent
bundle TM at the ‘base point’ p ∈ M on its ‘base manifold’ M. The dual bundle of TM is
the ‘cotangent bundle’, T∗M, whose fibres are the dual spaces of the tangent spaces. The
(m, n)-typed tensor bundle is written as TM⊗m,n = TM⊗m ⊗ T∗M⊗n. A tensor field Ψ on
M is a ‘section’ of the tensor bundle, denoted as Ψ ∈ Γ (TM⊗m,n), which assigns a tensor
Ψ |p ∈ TpM⊗m,n to each point p ∈ M. When a basis section is chosen, its components,
Ψ

j1...jm
i1...in , have m contravariant indices and n covariant indices.
For a map ϕ : M → W, where W is another manifold, the ‘pullback bundle’ TϕW =

ϕ∗TW is defined with M as its base manifold, while the fibre at p ∈ M, (TϕW)|p = Tϕ( p)W,
is the tangent space to W at ϕ( p) ∈ W.

Note that tensors can be identified with linear maps; for example, Ψ |p ∈ TpM⊗m,n acts
as a linear map Ψ |p : TpM → TpM⊗m,n−1.

2.2. Differential geometry of an evolving surface
We describe a deformable surface as follows. Let M be a 2-dimensional closed manifold
(∂M = ∅) with arbitrary genus, representing the ‘material/Lagrangian space’. Let W
be a three-dimensional (3-D) Riemannian manifold representing the ‘world/Eulerian
space’. Let g ∈ Γ (T∗W ⊗symm T∗W) (i.e. a symmetric (0, 2) tensor field) denote the
Riemannian metric tensor on W. The common setup is to set W = R

3, the Euclidean
3-space, with g[[V , W ]] = V · W being the Euclidean inner product for any V , W ∈ R

3.
However, our theory is not limited to this assumption. The ‘position’ of a deformable
surface is an embedding function ϕ : M ↪→ W from the material space to the world
space. A time-dependent deformable surface, or an evolving surface, is a time-dependent
embedding ϕ(t) = ϕt : M ↪→ W. The ‘material velocity’ of an evolving surface ϕ(t) is
given by ϕ̇t := ∂tϕt, which is a ‘pullback’ vector field ϕ̇t ∈ Γ (Tϕt W) with its base point in
the material frame M (cf. § 2.1). (The velocity ϕ̇t|p is evaluated at each point p ∈ M in the
material domain, and its value ϕ̇t|p ∈ Tϕt( p)W is a tangent vector to the world space based
at ϕt( p) ∈ W.)

Each material velocity ϕ̇t ∈ Γ (Tϕt W) can be extended to a ‘spatial velocity’ over W,
denoted by U t ∈ Γ (TW), such that ϕ̇t = U t ◦ ϕt, or equivalently, ϕ̇t|p = U t|ϕt( p) for
ϕt( p) ∈ W. Note that this extension is not unique, as the assignment of U t at locations
away from the surface ϕt(M) ⊂ W is arbitrary.
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2.2.1. Deformation gradient and Cauchy–Green tensor
The differential of the positioning ϕ : M ↪→ W of a surface is denoted by F := dϕ ∈
Γ (TϕW ⊗ T∗M). This differential is also known as the pushforward map, the tangent
map, or the ‘deformation gradient’. At each point p ∈ M, the two-point tensor F |p can
be identified with a linear map (cf. § 2.1) F |p = dϕ|p : TpM → Tϕ( p)W that realizes a
material tangent vector as a 3-D world vector, as expected for the deformation gradient.
(At each point p ∈ M, the tensor F |p ∈ Tϕ( p)W ⊗ T∗

p M pairs with a vector in TpM and
returns a value in Tϕ( p)W. Since it relates quantities in two different spaces M and W, it is
called a two-point tensor.)

The embedding ϕ : M ↪→ W induces a Riemannian metric (the first fundamental form)
I ∈ Γ (T∗M ⊗symm T∗M) on M from the Riemannian structure g on W. This induced
metric is defined by I[[v, w]] := g[[Fv, Fw]] = v	F	gFw for each v, w ∈ TpM, p ∈ M. In
continuum mechanics, I = F	gF is known as the ‘right Cauchy–Green tensor’. Here we
identify tensors I, g, F as linear maps Ip : TpM → T∗

p M, gq : TqW → T∗
q W, F p : TpM →

Tϕ( p)W. Then we have the compositional relation I = F	gF , where F	
p : T∗

ϕ( p)W → T∗
p M

is the adjoint of F p.)
For brevity, we denote the induced metric as 〈·, ·〉 = I[[·, ·]] and the L2 inner product as

〈〈·, ·〉〉 = ∫
M〈·, ·〉 dA where dA is the area form from the metric I . These inner products

define the vector norm |·|2 and the L2 norm ‖·‖2. Dual pairings between primal
(contravariant) and dual (covariant) tensors are denoted by 〈· | ·〉 and 〈〈· | ·〉〉 = ∫

M〈· | ·〉 dA.
The L2 inner product between two scalar functions f and g is denoted by 〈〈 f , g〉〉 =∫

M fg dA.

2.2.2. Strain rate tensor
For an evolving surface ϕt, the induced metric I t ∈ Γ (T∗M ⊗symm T∗M) varies with time
t. The ‘strain rate tensor’ E t ∈ Γ (T∗M ⊗symm T∗M) is defined as half the rate of change
of the induced metric: 2E t := İ t.

To compute the time derivative of I t = F	
t gF t we first calculate the time derivative of

F t. Let U t ∈ Γ (TW) be any extended velocity field such that ϕ̇t = U t ◦ ϕt. Then,

Ḟ = dϕ̇t = d(U t ◦ ϕt) = ∇(U t ◦ ϕt) ◦ dϕt ≡ (∇U t)F , (2.1)

where ∇ : Γ (TW) → Γ (TW ⊗ T∗W) is the Levi-Civita covariant derivative compatible
with the metric g. When applied to a vector v ∈ Γ (TM), Ḟ tv = ∇F tvU t, which is a
directional derivative of U t tangential to the surface. In particular, (2.1) depends only
on the values of U t ◦ ϕt at the surface and not on the choice of its extension U t over W.

With a time-invariant metric g and (2.1), the strain rate tensor is given by

2E t = İ t = Ḟ	
t gF t + F	

t gḞ t = F	
t ((∇U t)

	g + g∇U t)F t. (2.2)

When applied to vectors, 2E t[[v, w]]|p = (∇F tvU t) · (F tw) + (∇F twU t) · (F tv) for v, w ∈
Γ (TpM). Again, E t depends only on the values of U t ◦ ϕt and not on the choice of its
extension U t.

2.2.3. Differential operators
The operator that takes each velocity field ϕ̇ = U ◦ ϕ at the surface to its induced strain
rate tensor (2.2) is called the Killing operator:

K : Γ (TϕW) → Γ (T∗M ⊗symm T∗M), Kϕ̇ := E = F	 (∇U)	g + g∇U
2

F . (2.3a,b)
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The trace of the strain rate tensor defines the ‘divergence operator’

DIV: Γ (TϕW) → C∞(M), DIV ϕ̇ := tr(Kϕ̇), (2.4a,b)

which measures the rate of change of area induced by the given velocity field. Define the
‘gradient operator’ as the negative adjoint of the divergence operator:

GRAD = − DIV∗ : C∞(M) → Γ (T∗
ϕW), 〈〈GRAD f | ϕ̇〉〉 = −〈〈 f , DIV ϕ̇〉〉, (2.5a,b)

for all f ∈ C∞(M). The ‘covariant divergence’ is the negative adjoint of the Killing
operator:

DIV∇ = −K∗ : Γ (TM ⊗symm TM) → Γ (T∗
ϕW), 〈〈DIV∇ T | ϕ̇〉〉 = −〈〈T |Kϕ̇〉〉,

(2.6a,b)

for all symmetric tensor fields T ∈ Γ (TM ⊗symm TM). Here the dual pairing 〈T | E〉
between (0, 2) and (2, 0) tensors is 〈T | E〉 = tr(T	E) = ∑

ij TijEij.
Notably, the operators K, DIV, GRAD and DIV∇, derived from the strain rate tensor E

of the evolving surface, differ from the commonly used intrinsic operators K , div, grad
and div∇. As shown through the normal–tangent decomposition in the Appendix, these
differences arise from additional contributions related to curvature (cf. A3–A5).

2.3. Onsager’s variational principle for an evolving viscous fluid film
The relaxation dynamics of an evolving viscous fluid film is governed by Onsager’s
variational principle, which states that Stokes flow follows the dynamics of the least
energy dissipation (Arroyo & DeSimone 2009; Doi 2011). The dissipation functional, or
Rayleighian, captures the system’s dissipation rate, and the governing flow is the stationary
condition of this functional subject to the incompressibility constraint.

Consider a viscous dynamical system where the dissipation functional D comprises the
rate of viscous dissipation, and power inputs from an external force B ∈ Γ (T∗W) and a
shape-dependent potential energy Vϕ :

D(U) = 1
2
〈〈E | T 〉〉 − 〈〈B | U〉〉 + V̇ϕ

= 1
2

∫
M

〈E | T 〉 dA −
∫

ϕ(M)

〈B | U〉 dA +
∫

M
〈δϕVϕ | ϕ̇〉 dA. (2.7)

Here, T = 2μE ∈ Γ (TM ⊗symm TM) is the viscous stress tensor (assumed Newtonian
with constant viscosity μ), δϕVϕ is the conservative force obtained by taking the variation
of Vϕ , and ϕ̇ = U ◦ ϕ is the material velocity.

Onsager’s variational principle determines the Stokes flow by solving the constrained
optimization problem:

min
U

D(U) subject to DIV U = 0. (2.8)

Using the fluid pressure p ∈ C∞(M) as a Lagrange multiplier, this problem can be
formulated as a minimax problem involving the augmented Rayleighian R:

min
U

max
p

R(U, p), where R(U, p) = D(U) + 〈〈p, DIV U〉〉. (2.9)
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On a closed surface, the stationary conditions yield the Stokes equations for an evolving
surface:

2μ DIV∇ KU − GRAD p + B − δϕVϕ = 0, DIV U = 0. (2.10)

The symmetric, negative-definite, Laplacian-like operator 2 DIV∇ K : Γ (TW) →
Γ (T∗W) quantifies the viscous force, and is thus termed viscosity Laplacian.
Although not the main focus of this paper, a common free energy in this context
is the Helfrich Hamiltonian Vϕ = ∫

W κH2 dA, which results in the bending force
Bκ = −δϕVϕ = κN(	H + 2H(H2 − K)), where H and K are the mean and Gaussian
curvatures, respectively, κ is the bending modulus, and N is the surface normal (Helfrich
1973). This bending-driven relaxation dynamics is also used in the numerical examples of
§ 4. The commonly used form of (2.10), expressed through normal–tangent decomposition,
is derived in the Appendix.

2.3.1. Remarks on the evolving Stokes equations and their solvability
Note that the presence of a ‘Killing vector field’ X (KX = 0) can make the solution to
(2.10) non-unique. In that case we select the least-norm solution, effectively projecting out
rigid motions. This treatment aligns with scenarios where the surface is immersed with
friction in a bulk fluid. A simple way to model friction is by augmenting the Rayleighian to
Rα = R + α‖U − U0‖2/2, where U0 is the bulk velocity and α is the friction coefficient.
This introduces a friction force Bα = α(U − U0) in the momentum equation. Such flow
driven by the bulk fluid is used as a numerical example in § 4.3. When U0 = 0, the solution
approaches the least-norm solution as α → 0.

3. Methods

In this section, we present a simple numerical method to solve (2.10) on a triangle mesh
with general geometry and topology. We begin by discretizing the strain rate tensor using
finite elements, following the definition provided in (2.2). Based on the discretized strain
rate, we construct the system’s Rayleighian. A nonlinearly stable, structure-preserving
variational integrator is derived based on Onsager’s variational principle. To keep the
numerical scheme minimal, we demonstrate the method using first-order spatial and
temporal discretizations.

We discretize the system on a closed triangular mesh M of arbitrary genus, consisting
of vertices, edges and faces {𝔙,𝔈,𝔉}. The vertex positions are given by the realization
ϕ : M ↪→ R

3. Here M has a tangent space TαM and a surface normal Nα at each face
α ∈ 𝔉 (cf. figure 1).

In the discrete setting, we express tensor-valued functions and operators using index
notation, with upper indices denoting their components in Cartesian coordinates. Vertex
and face elements are denoted with lower indices, where vertex indices are Roman letters
and face indices are Greek letters. For example, we denote vertex positions as ϕi

j , face
normals as Ni

α , face pressure as pα , for j ∈ 𝔙, α ∈ 𝔉 and i ∈ {1, 2, 3}.

3.1. Strain rate tensor and differential operators
To express the strain rate tensor E on M (cf. (2.2)) in Cartesian coordinates, we
first realize it in R

3. We denote this realization as 2Ẽ = P((∇U)	g + g∇U)P , which
satisfies Ẽ[[V , W ]] = E[[PV ,PW ]] for V , W ∈ Γ (R3). Here, the linear projector P =
g − N ⊗ N : Γ (R3) → Γ (TM) projects R

3 vectors onto the surface. In the discrete
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Ui
Nα

Eβ

Φj

Figure 1. Discretization of the strain rate tensor. The velocity U i is defined at each vertex i, with surface
normals Nα at each face α. The finite-element hat function Φj, shown by the colourmap, has local support
around vertex j. Differentiating U i via Φj produces (∇U)β , which is symmetrized and projected using Pβ =
g − Nβ ⊗ Nβ to yield the strain rate tensor Eβ on each face β.

setting (cf. figure 1), the strain rate tensor Ẽkj
α and Killing operator Kkji

αl are expressed
in terms of the velocity Ui

j , projector P ij
α = δ

ij
α − Ni

αN j
α , and R

3 component-wise surface
derivative (∇P)i

αj as

2Ẽkj
α =

∑
l,i

2Kkji
αl U

i
l =

∑
l,i

(P ik
α (∇P)

j
αl + P ij

α(∇P)k
αl)U

i
l . (3.1)

Component-wise, (∇P)i
αj = ∇iΦαj follows scalar finite-element discretization, where Φαj

is the hat function at vertex j restricted to face α. The divergence (2.4) is given by the trace
DIVi

αl = ∑
j Kjji

αl. The gradient (2.5) and covariant divergence (2.6) can be obtained, up
to a sign flip, by permuting the lower indices of the divergence and Killing operators,
respectively.

3.2. Variational integrator by Onsager’s variational principle
Given the vertex position ϕ(0) and pressure p(0) at the current time t = 0, with a time
step ε > 0, the velocity is discretized as U = ◦

ϕ/ε = (ϕ − ϕ(0))/ε, and the power input
as V̇ϕ = (Vϕ − Vϕ(0)

)/ε. State variables ϕ(ε) and p(ε) at t = ε follow a time-incremental
Onsager’s variational principle on a discrete Rayleighian (cf. § 2.3), ϕ(ε), p(ε) =
arg minϕ maxp R, where

R(ϕ, p;ϕ(0), p(0), ε) := ε2[μ‖Ẽ‖2 + 〈〈DIV U, p〉〉 + V̇ϕ − 〈〈U | B〉〉]
≡ μKkji

λm(Aλγ )−1Kkjl
γ n

◦
ϕ|im ◦

ϕ|ln + ε(
◦
ϕ|li DIVl

αi pα + Vϕ − ◦
ϕ|liBl

i)

≡ μ
◦
ϕ

	L
◦
ϕ + ε[(DIV ◦

ϕ)	p + Vϕ − ◦
ϕ

	B]. (3.2)

Here, we assume Einstein summation and L = K	A−1K is half of the discrete viscosity
Laplacian (cf. § 2.3), where Aλγ is the area of the face γ for λ = γ and zero otherwise.

Under any choice of Vϕ (assuming B = 0), the variational integrator is unconditionally
stable by design, as it preserves the system’s dissipative structure. The dynamics follow
a gradient flow of Vϕ in the metric space defined by the Stokes operator, ensuring
a monotonic decrease in the Rayleighian: R(ε) ≤ R(0). Therefore, the allowable time
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step size depends only on the solvability of the optimization in (3.2), which can be
efficiently handled using standard numerical optimization methods. Here we use a
simple gradient flow to solve this saddle-point optimization: Hϕ̇ = −δϕR = −2μL

◦
ϕ −

ε(DIV	 p + δϕVϕ − B) and hṗ = δpR = DIV ◦
ϕ, where H and h provide a general metric

for the gradient flow. Remeshing is performed using SideFx Houdini.) In § 4, we adopt the
Helfrich Hamiltonian as V and follow the discretization used in Zhu, Lee & Rangamani
(2022).

As mentioned in § 2.3.1, (2.10) and its discrete version (3.2) have non-unique solutions
up to rigid body modes in R

3. To ensure that we obtain continuous dynamics during time
evolution, we consistently project out rigid body modes.

A MATLAB implementation of our discrete theory is available at https://t.ly/vUxfh.
Tensorial calculations in (3.1) and (3.2) utilize sptensor (Bader & Kolda 2008), with
remeshing performed using SideFx Houdini as needed.

4. Results

In this section, we validate the discrete model, analyse its convergence properties,
and demonstrate its applicability to manifolds with intricate geometries and topologies.
Numerical validation against analytical solutions is presented in § 4.1, with further
examples provided in §§ 4.2 and 4.3 to showcase its effectiveness.

4.1. Validations
We validate the differential operators K and GRAD on a spheroid with semi-axes a
and c, parametrized by latitude β ∈ [−π/2, π/2] and longitude θ ∈ (−π, π], using the
realization ϕ(β, θ) = [a cos β cos θ, a cos β sin θ, c sin β].

In figure 2(a), we test the operator K by computing the lowest 10 eigenvalues of L =
K	A−1K with LU i = λiAU i (cf. (3.2)). As predicted by the continuous theory, there are
six vanishing eigenvalues, forming a six dimensional kernel of K corresponding to the
space of rigid body motions in R

3.
To validate the operator GRAD (A4), we check that the numerical evaluation of

A−1| DIV	 1| aligns with the analytical mean curvature H(β) of an oblate spheroid with
a = 1 and c = 0.5, as shown in figure 2(b). In fact, this evaluation of mean curvature is
identical with the established cotan Laplacian discretization (Meyer et al. 2003).

We evaluate the convergence of our discretization of (2.10) by comparing it to
an analytical solution on a unit sphere. The forcing term is prescribed analytically
as B = b + bnN = N × grad φ + bnN , where φ is a spherical harmonic satisfying
	φ := div grad φ = λφ, N is the surface normal, and bn is a constant. On the unit
sphere, b is an eigenfunction of the viscosity Laplacian with eigenvalue λ+ 2. The
analytical solution �U = −b/(λ+ 2) and p̄ = −bn/2 satisfies (2.10) (μ = 1, δϕVϕ = 0)
exactly (cf. (A7)). Numerically, the relative residual of the momentum equation, εU =
‖2A−1L�U − A−1 DIV	 p̄ − B‖/‖B‖, and the residual of the continuity equation, εp =
‖A−1 DIV U‖, shown in figure 2(c), decrease approximately linearly as the mesh is refined.

Lastly, figure 2(d) illustrates the total area of the fluid film during the Stokes relaxation
(μ = 1) from a prolate spheroid (a = 1, c = 2) to a sphere under Helfrich energy (κ =
0.05), without mesh reparametrization. Local incompressibility conserves the global area
within a relative error of 10−5 throughout the evolution.
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Figure 2. Validation of our model and method. (a) Minimum eigenvalues λ1≤i≤10 of LU i = λiAU i.
(b) Comparison of numerical GRAD 1 and analytical H(β) evaluations of the mean curvature on a spheroid.
(c) Relative error εU for the momentum equation and εp for the continuity equation as functions of mean edge
length l, with the inset showing the tangential forcing b constructed from a spherical harmonic. (d) Relative
error in total area A compared to the initial area A0 during Helfrich–Stokes relaxation, with insets showing the
initial frame (prolate spheroid) and the final frame (sphere) of the relaxation.

4.2. Relaxation of a genus-6 torus
We model the evolution of a high-genus, non-analytical lipid membrane (μ = 1, κ =
0.05) based on the Helfrich–Stokes relaxation in figure 3(a). In theory, the elastic
Helfrich Hamiltonian should be monotonically dissipated through viscosity, V + Eμ =∫

κH2 dA + ∫ t
0〈〈T | E〉〉/2|τ dτ = const. Although our numerical results in figure 3(b) do

not exactly match this theoretical expectation, they show very good agreement.

4.3. Deformation of a lipid membrane under bulk flow
We model the deformation of a spherical lipid vesicle (μ = 1, κ = 0.01) under the
friction (α = 0.5, cf. § 2.3.1) from a constant bulk shear-extension flow defined
by U0(θ, r, z) = U shear

0 + Uext
0 = (5rz)êθ + (−0.5rêr + zêz) in cylindrical coordinates.

As illustrated in figure 4(a), this bulk flow stretches and twists the initially spherical vesicle
along the z-direction. A snapthrough-like instability occurs around t = 3.7 between frame
(iii) and frame (iv) in figure 4(a). While the bulk friction governs most of the dynamics,
the Helfrich energy dominates during this buckling event, as indicated by the dip of the
energy dissipation rate in figure 4(b) around t = 3.7.
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Figure 3. (a) Helfrich–Stokes relaxation of a genus-6 torus. Snapshots are taken at t = 0, 2, 8, 14, 20, and 40,
from left to right, top to bottom. The animated simulation is available at https://youtu.be/Llh0_N0hCPw and
in movie 1 of the supplementary movies available at https://doi.org/10.1017/jfm.2024.1208. (b) Elastic energy
V = ∫

κH2 dA and cumulative dissipation Eμ = ∫ t
0〈〈T | E〉〉/2|τ dτ , which theoretically sum to a constant value.
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Ė

TUN BαBκ

3 4

(b)

(ii)(i)

(iv)(iii)

(a)

Figure 4. (a) Deformation of a lipid membrane under bulk flow, with the tangent velocity u shown as
streamlines and the normal velocity UN displayed in a colourmap ranging from −1 to 1 (cf. the Appendix
for the tangent–normal decomposition). Snapshots (i)–(iv) are taken at t = 1.5, 2.5, 3.4 and 3.8, respectively.
The animated simulation is available at https://youtu.be/M0WsLihzRJk and in movie 2 of the supplementary
movies. (b) Energy dissipation rate Ė of the system due to viscosity Ėμ = 〈〈T | E〉〉/2, elasticity Ėκ = 〈〈Bκ | U〉〉
and bulk friction Ėα = 〈〈Bα | U〉〉/2.

5. Conclusion

Using Onsager’s variational principle, we derived and reformulated the evolving
Stokes equations on a manifold. We replaced the classic system of equations
expressed in tangent–normal splitting with a simple, coordinate-free differential-geometric
formulation. This approach leads directly to a straightforward discrete model and a
numerical scheme to solve this long-standing problem in its full geometric generality.

Although the theoretical framework is not limited, the current minimal implementation
is restricted to closed manifolds and employs first-order discretization. Future work could
incorporate boundary conditions and higher-order discretizations. For applications, we
expect the minimal system presented here to serve as a foundation for integrating more
complex models for specific biophysical problems. These could include additional global
volumetric/areal constraints, heterogeneity in material properties, in-plane anisotropy and
surface activity, as exemplified in Zhu et al. (2022) and Zhu, Saintillan & Chern (2024).
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1208.
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Appendix. Evolving Stokes equations through normal–tangent decomposition

A.1. Differential operators for an evolving surface
The second fundamental form (i.e. curvature tensor), II ∈ Γ (T∗M ⊗symm T∗M), is given
by the derivative of the surface normal N :

II[[v, w]] = (Fv) · (∇FwN) =: 〈v, Sw〉, (A1)

where S : Γ (TM) → Γ (TM) is the shape operator.
With the induced metric I , there is an intrinsic Levi-Civita covariant derivative ∇ :

Γ (TM) → Γ (TM ⊗ T∗M) on M. The covariant derivative in W used in (A1) and (2.1)
can be expressed in terms of the intrinsic covariant derivative and curvature tensor as

∇FwFv = ∇wv − II[[w, v]]N . (A2)

We can decompose the velocity into tangent and normal parts, U = Fu + UNN , where
u ∈ Γ (TM), UN ∈ C∞(W). Since Fu effectively embeds the tangent vector u in R

3, we
will abbreviate Fu as u when unambiguous. Given v ∈ TpM, (2.1) can be expressed as
∇FvU = ∇vu + UNSv + N(〈grad UN, v〉 − II[[u, v]]). Combining with (2.2) and (2.3),
we have 2(KU)[[v, w]] = 〈∇vu, w〉 + 〈∇wu, v〉 + 2UN II[[v, w]], or

2KU = ∇u + (∇u)	 + 2UN II =: 2K u + 2UNII, (A3)

where K : Γ (TM) → Γ (T∗M ⊗symm T∗M) denotes the intrinsic Killing operator.
Combining (2.4), (2.5) and (A3), the divergence and gradient can be expressed as

DIV U = div u + 2HUN, GRAD( p) = grad p − 2pHN, (A4a,b)

where div = tr(◦K ) is the intrinsic divergence, grad = − div∗ is the intrinsic gradient,
and H = tr II/2 is the mean curvature of the surface. From (2.6) and (A3), we get:

DIV∇ T = div∇ T − 〈II | T 〉N, (A5)

where div∇ = −K ∗ : Γ (TM ⊗ TM) → Γ (T∗M) is the intrinsic covariant divergence.

A.2. Evolving Stokes equations
The viscosity Laplacian for an evolving surface can be explicitly decomposed as

2 DIV∇ KU = 2[div∇ K u + div∇(UN II) − (〈II,K u〉 + UN |II|2)N]

= (� + K + grad ◦ div)u + 2S(grad UN) + 4UN grad H

− 2[〈∇u, II〉 + UN(4H2 − 2K)]N, (A6)

where � = div∇ ∇ : Γ (TM) → Γ (T∗M) is the intrinsic Bochner Laplacian, and K =
det II is the Gaussian curvature.

1003 R1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
08

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1208
https://orcid.org/0000-0003-1373-3492
https://orcid.org/0000-0003-1373-3492
https://orcid.org/0000-0001-9948-708X
https://orcid.org/0000-0001-9948-708X
https://orcid.org/0000-0002-9802-3619
https://orcid.org/0000-0002-9802-3619
https://doi.org/10.1017/jfm.2024.1208


C. Zhu, D. Saintillan and A. Chern

To summarize, by substituting (A3)–(A6) into (2.10), we get the system of evolving
Stokes equations subject to external force B = b + bnN and bending force Bκ =
κN(	H + 2H(H2 − K)):

μ[(� + K)u + 2Q(grad UN) + 2UN grad H] − grad p + b = 0,

−2μ[〈∇u, II〉 + UN(4H2 − 2K)] + 2pH + bn + κ(	H + 2H(H2 − K)) = 0,

div u + 2HUN = 0.

⎫⎪⎬
⎪⎭
(A7)

Note that the Hopf differential Q = S − HI is the traceless part of the shape operator S
that represents the deviatoric curvature. Formulation (A7) agrees with earlier results by
Scriven (1960) and Arroyo & DeSimone (2009).
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