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Nonlinear surface Ekman effects on cyclonic and
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The transfer of momentum between the atmosphere and oceanic motions affected by the
Earth’s rotation occurs through the thin surface Ekman layer. The exchange depends
on the surface wind stress, which produces the Ekman pumping of fluid to the ocean
upper layer. The Ekman pumping mainly depends on: (i) the curl of the wind stress and
(ii) the advection of vorticity due to the Ekman transport. The wind stress is usually
parametrised as a quadratic function of the relative speed between the wind and the
ocean currents, providing a feedback mechanism between the two fluids. Under steady
and spatially uniform wind conditions over mesoscale vortices, the first mechanism
generates vertical motions that induce the vortex decay (top drag), while the second
promotes the horizontal advection of vorticity in the Ekman transport direction. This
study examines the nonlinear effects of both mechanisms in cyclonic and anticyclonic
vortices. The analyses consist of simple analytical approximations and nonlinear numerical
simulations of quasi-two-dimensional vortices. When considering only the top drag
mechanism, it is found that anticyclones decay faster than cyclones. By considering
only the vorticity-advection effect, the vortices acquire horizontal momentum and drift;
furthermore, anticyclones are reinforced while cyclones are weakened. The joint action of
both mechanisms and the possible consequences on vertical transport properties are also
discussed.

Key words: ocean processes, quasi-geostrophic flows, vortex dynamics

1. Introduction

In the wide range of oceanic motions, mesoscale vortices play a fundamental role because
they concentrate an important fraction of the global surface kinetic energy (Klein et al.
2019). With typical radii of the order of O(10–100) km, nonlinear mesoscale eddies usually
travel distances much further than their size and remain active from weeks to months or
even years. Along their trajectory, these vortices can transport and mix different physical,
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chemical and biological properties around the ocean (Chelton, Schlax & Samelson 2011).
An essential characteristic of mesoscale vortex motions is that they are strongly influenced
by the Earth’s rotation, and consequently, their horizontal motions are at least an order
of magnitude greater than vertical displacements. Nevertheless, vertical motions are of
primary relevance for material exchange of nutrients, carbon, heat and momentum between
the upper surface and interior layers (McGillicuddy 2016).

The vertical velocity in the ocean may be associated with several mechanisms:
free surface effects, horizontal divergence, tilting of fluid columns, topography effects,
baroclinic processes, and horizontal and vertical mixing, among others. Here we
investigate the vertical velocity due to the surface wind stress on mesoscale vortices. The
influence of the lower atmosphere on the ocean takes place through the surface boundary
layer (the Ekman layer), which is usually thin (of the order of tens of m) with respect to
the average vortex depth in the mixed layer (a few hundred m). The flow inside the Ekman
layer is generally divergent; therefore, it injects or extracts fluid from the balanced flow
underneath. The resulting vertical velocity is usually called Ekman pumping or suction,
and sometimes just the Ekman condition (Pedlosky 1987). Despite the weak values of
the Ekman condition (from the order of 10−1 to a few m day−1), the resulting upward
and downward anomalies of the density field either reinforce or weaken the strength of
mesoscale structures, in addition to having a significant influence on transport properties.

The Ekman pumping depends on the wind stress over the ocean’s free surface. A suitable
expression for the Ekman vertical velocity was derived by Stern (1965) as

ws = 1
ρ0

∇ ×
(

τ

f + ω

)
, (1.1)

where τ = (τ x, τ y) is the two-dimensional stress vector with components in the horizontal
directions (x, y), f the Coriolis parameter and ω the vertical component of the relative
vorticity. This expression can be decomposed as ws = wd + wa, where

wd = 1
ρ0( f + ω)

∇ × τ , (1.2)

wa = 1
ρ0( f + ω)2

(
τ x ∂ω

∂y
− τ y ∂ω

∂x

)
. (1.3)

The first part, wd, is given by the wind stress curl, ∇ × τ . The second contribution,
wa, depends on the advection of vorticity by the Ekman transport, τ⊥ · ∇ω, where
τ⊥ = (−τ y, τ x). On a β-plane, there is an additional pumping term associated with the
latitudinal change of the Coriolis parameter; such a contribution is proportional to the
zonal stress τ x and is approximately two orders of magnitude smaller than the other
contributions (Gaube et al. 2015), even for strong zonal winds, so it has been neglected.

A key point to study the effects of wd and wa on geostrophic flows is the choice of the
wind stress parametrisation. The classical wind-stress bulk formula is based on a quadratic
function of the wind velocity U as τ = ρaCD|U |U , where ρa is the air density and CD
a drag coefficient (Hellerman 1967). A more suitable parametrisation considers that the
air–sea momentum transfer depends on the relative velocity between the wind and the
ocean current u, so the bulk formula is (Dewar & Flierl 1987; Pacanowski 1987)

τ = ρaCD|U − u|(U − u). (1.4)

When using this expression, the resulting vertical velocity has been identified as a
current-induced Ekman pumping (Gaube et al. 2015). In this case, the Ekman condition
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generates a feedback mechanism or current-induced surface stress (Renault et al. 2016)
because the oceanic flow influences the wind stress.

Several studies have addressed the effects of wd and/or wa on ocean motions using
parametrisation (1.4). Although the energy transfer is mostly from the atmosphere to the
ocean, the wind stress dependence on the relative velocity allows the loss of energy from
the ocean to the atmosphere, as suggested by observations (Xu, Zhai & Shang 2016)
and numerical simulations (Renault et al. 2016). The wind damping effects have been
demonstrated for spatially uniform background wind, a reasonable approach for scales
shorter than 260 km, according to the recent estimations of Rai et al. (2021). Under
uniform wind conditions, Dewar & Flierl (1987) considered the decay of mesoscale rings
due to wd. Their results showed that the predominant vertical motion is concentrated at
the vortex core and has the opposite sign to that of the peak vorticity. This configuration
triggers a damping effect or ‘top drag’ in oceanic rings: upwelling in the interior
of anticyclones and downwelling in the core of cyclones. On the other hand, the
vorticity-advection effect given by wa for uniform wind conditions consists of an upwelling
and downwelling dipolar structure oriented in the wind direction (McGillicuddy, Ledwell
& Anderson 2008). Since the net vertical motion is too small (but not null), this term has
received less attention or has been ignored.

Other works have discussed the Ekman contributions in the vertical transport properties
within oceanic vortices. McGillicuddy et al. (2007) concluded that the predominant
upwelling of nutrients in anticyclones is due to wd because it is localised at the core of
the vortex, while the dipolar form of wa nearly cancels out upward and downward motions
(McGillicuddy et al. 2008). Mahadevan, Thomas & Tandon (2008), in contrast, argued
that upwelling should occur at the rim of the vortex, caused either by wa or submesoscale
processes. More recently, Gaube et al. (2015) pointed out that both contributions to the
vertical velocity are comparable in magnitude under typical wind conditions and gave a
detailed description of their spatial structures in the world’s oceans. Estrada-Allis et al.
(2019) performed numerical simulations under realistic conditions to study the vertical
velocity dynamics within an anticyclone. Chen, Gaube & Pallàs-Sanz (2020) compared
the output of baroclinic simulations using either the wind or the wind–sea relative velocity
to calculate the surface stress and examined the role of several types of vertical fluxes to
evaluate the nutrient budget in the euphotic zone. Following a similar numerical approach,
Wilder et al. (2022) studied Ekman effects on the stability of idealised anticyclones. For
uniform wind stress conditions and without considering the ocean-atmosphere relative
velocity (1.4), Wenegrat & Thomas (2017) studied the structure of the Ekman transport
associated with the flow curvature and obtained analytical solutions for circular vortices.

In this paper, we discuss the effects of the Ekman vertical velocities wd and wa on
cyclones and anticyclones. It is shown that the vortex decay associated with wd is faster for
anticyclones than cyclones. In contrast, the vorticity-advection contribution wa reinforces
anticyclones and weakens cyclones; furthermore, this effect produces the drift of both
types of vortices at a right angle of the wind direction, as first predicted by Stern (1965).
To better understand these effects, we use an idealised one-layer model to derive the vortex
decay, and the cyclone/anticyclone drift analytically. It is shown that, although the latter
effect is rather modest, it is able to modify the vortex trajectory in β-plane simulations.

Differences of Ekman effects in cyclones and anticyclones may be relevant under
strong and persistent wind conditions. From an oceanographic point of view, our study
is motivated by the occurrence of intense northerly wind events during winter in the
Gulf of Mexico, the so-called ‘Nortes’, which reach speeds of more than 20 m s−1 and
may last 2–6 days (Romero Centeno & Zavala Hidalgo 2021). The Nortes may interact
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with large anticyclonic eddies shed by the Loop Current that travel westwards through
the basin during several months (e.g. Tenreiro et al. 2018; Meunier et al. 2020). In
some cases, these warm vortices develop enhanced surface chlorophyll concentrations,
presumably due to vertical fluxes driven by eddy–wind interactions (Damien et al. 2021).
Another motivation is found in the Caribbean Sea, where the easterly winds intensify
and form the Caribbean low-level jet (Amador 2008). The jet speed is 6–8 m s−1 at the
sea surface (and up to 15 m s−1 at 925 hPa), with maxima during summer and winter,
when the intense wind conditions can last for several weeks (García-Martínez & Bollasina
2020). The low-level jet may affect cyclonic and anticyclonic eddies that have important
contributions to the dynamics of the Caribbean Sea circulation (Jouanno et al. 2012).
Strong cyclone-anticyclone asymmetries have also been documented in other oceanic
regions (Mkhinini et al. 2014).

From the fluid dynamics point of view, our calculations are related to former analyses
of nonlinear bottom Ekman effects in rotating tank experiments, either with a flat bottom
(Zavala Sansón & van Heijst 2000) or variable topography (Zavala Sansón & van Heijst
2002). For a flat bottom, it is found that cyclones decay faster than anticyclones (Zavala
Sansón 2001; Zavala Sansón, van Heijst & Backx 2001), opposite to the Ekman surface
effect that we will discuss here. The difference between cyclones and anticyclones is
a relevant issue for ocean turbulence because it may help to explain asymmetries in
global or regional vorticity distributions, stability properties (Mahdinia et al. 2017), and to
better understand cascade processes in turbulent regimes (Ding et al. 2020) or the global
distribution of turbulent shear that generates ocean mixing due to mesoscale eddies (Zhang
et al. 2018).

The paper is organised as follows. Section 2 presents the nonlinear Ekman effects in
the dynamical model, together with analytical results concerning the decay and drift of
cyclones and anticyclones. Section 3 is devoted to numerical simulations that show the
evolution of vortices and evaluate the calculations from the previous section. In § 4, the
results are summarised and discussed.

2. Surface Ekman effects on cyclones and anticyclones

We consider a fluid layer with density ρ0 and constant thickness H at the upper ocean under
the influence of the Earth’s rotation and the surface wind stress vector τ . Rotation effects
restrict motions to be predominantly horizontal, so we consider a planar system with
coordinates (x, y). For the β-plane approximation, the Coriolis parameter is f = f0 + βy,
with f0 its value at a mid-latitude and β its latitudinal gradient. The flow is described by the
horizontal velocity vector u = (u, v) and the vertical component of the relative vorticity
ω = ∂xv − ∂yu. The flow is relatively slow for mesoscale motions with a dynamical Rossby
number ωmax/f0 < 1, which is a few times larger than the standard Rossby number Uo/f0L
based on the characteristic length and velocity scales (Stegner & Dritschel 2000). The
vertically integrated vorticity equation for a flat bottom and a rigid-lid is

∂ω

∂t
+ u · ∇ω + βv = f0

H
w, (2.1)

where the weak Ekman pumping w at the right-hand side appears as the surface boundary
condition (Vallis (2017), Chap. 14). The simplified form of the forcing term is associated
with the smallness of the vertical velocity, as discussed in Appendix A.

For w, we consider either the full Stern’s expression (1.1) or any of its main components
wd (1.2) or wa (1.3). In all cases, the wind stress is based on the air-sea relative velocity
(1.4) with a spatially uniform wind field U . It is assumed that the wind speed is much more
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intense than the ocean currents, |U | >> |u|. In the rest of this section, we present some
theoretical analyses concerning the effects of wd and wa in cyclones and anticyclones, and
in § 3, we study the Ekman effects in nonlinear numerical simulations.

2.1. Spatial structure of wd and wa

Here we revisit the spatial structure of the pumping terms in the presence of a uniform
wind to better understand their influence on cyclones and anticyclones. The surface stress
τ (1.4) and its curl are calculated using a uniform large-scale northerly wind

U = (0,−Vw), |U | ≡ Vw. (2.2a,b)

The vortex model is an isolated circular flow whose vorticity and azimuthal velocity
profiles in polar coordinates are given by

ω(r) = ω0

[
1 − α

2

( r
R

)α]
exp

[
−

( r
R

)α]
, (2.3)

v(r) = ω0r
2

exp
[
−

( r
R

)α]
, (2.4)

where ω0 is the peak vorticity, R a horizontal length scale, r the radial distance to the centre
of the vortex and α a shape parameter that determines the steepness of the profiles (Carton
& McWilliams 1989). The structure is isolated because it has zero total circulation: the
cyclonic or anticyclonic core is surrounded by an annulus of opposite-sign vorticity. This
vortex is often used to model experimental vortices in the laboratory (Kloosterziel & van
Heijst 1992; van Heijst & Clercx 2009; Zavala Sansón & van Heijst 2014), and similar
structures are also helpful for representing mesoscale oceanic vortices (e.g. Gaube et al.
2015).

Figure 1 shows the spatial structure of wd and wa for three magnitudes of a uniform
northerly wind (average, moderately intense and strong) for an intense anticyclonic vortex.
The current-induced Ekman pumping (figure 1a–c) has a dominant pattern with an
opposite sign of the vortex core (upwelling). In contrast, the vorticity-advection vertical
velocity (figure 1d–f ) has a dipolar structure with upwelling (downwelling) to the right
(left)-hand side of the wind. In both cases, the lower intensity regions surrounding the
vortex are of secondary importance and are associated with the chosen vortex model.

To better appreciate the magnitude and distribution of the vertical velocities, figure 2
presents the profiles wd(x, 0) and wa(x, 0) for cyclones and anticyclones subject to
different wind strength. The following are observed.

(i) The Ekman velocities in all cases are enhanced for stronger winds. For instance, the
current-induced velocity within the anticyclone in figure 2(a) goes from less than
1 m d−1 for Vw = 7.5 m s−1 to nearly 3 m d−1 for the intense wind Vw = 22.5 m s−1.
The upwelling and downwelling generated by the vorticity-advection term are even
larger: approximately 6 and −6 m d−1, respectively, see figure 2(c).

(ii) As expected, the profiles are mirror-shaped for cyclones and anticyclones, but the
absolute magnitudes are not the same. The positive wd velocity in the anticyclone is
stronger than the negative velocity in the cyclone (figure 2a,b). This difference is an
indication that anticyclones decay faster than cyclones.

(iii) Regarding the magnitude of wa, note that the downward velocity is larger than
the upward velocity in both anticyclones (figure 2c) and cyclones (figure 2d). The
asymmetry is caused by the relative wind stress, which is enhanced when the
northerly wind and the current flow are in opposite directions.
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Vw = 7.5 m s–1

wd

wa

Vw = 15 m s–1 Vw = 22.5 m s–1

(a) (b) (c)

(d ) (e) ( f )

Figure 1. Spatial structure of the pumping terms (a–c) wd and (d–f ) wa generated by a uniform northerly wind
(2.2a,b) with three different magnitudes Vw and blowing over an anticyclonic vortex with vorticity profile (2.3).
Red (blue) colours indicate upwelling (downwelling). The vortex parameters are R = 100 km, ω0/f0 = −0.25,
α = 2. The vortex is centred at the origin of the coordinate system.

(iv) Both the upwelling and downwelling wa velocities are more significant in the
anticyclone than in the cyclone (compare figures 2c and 2d).

The pumping fields lift up or push down water through the mixed layer, but the fluid
parcels or any passive tracer is also subject to the swirling flow around the vortex core.
Thus, an appropriate way to evaluate the net vertical velocity is by taking azimuthal
averages (McGillicuddy et al. 2008). Using the azimuthal coordinate θ , we calculate such
averages as

w̄d(r) =
∫ 2π

0
wd dθ,

w̄a(r) =
∫ 2π

0
wa dθ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.5)

Figure 3(a,b) shows the radial profiles of the azimuthally averaged wd pumping terms.
The velocity scale is kept the same as in figure 2(a,b), so we can appreciate that the
integrated magnitude of the pumping terms at the vortex centre is similar to that found in
the zonal profiles. In contrast, the integrated wa profiles are strongly reduced, as shown in
figure 3(c,d), because the upwelling side is nearly cancelled out by the downwelling region
in both vortices. However, the residual pumping is not zero but slightly negative and off
the vortex centre for cyclones and anticyclones. This net downward flow suggests that w̄a
produces a weak damping effect on the cyclone and slightly intensifies the anticyclone, as
we shall verify below.
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Figure 2. Profiles along the x-direction of the pumping terms wd and wa for (a,c) anticyclones and
(b,d) cyclones. The colours indicate the wind magnitude: Vw = 7.5 m s−1 (black), Vw = 15 m s−1 (blue),
Vw = 22.5 m s−1 (red). Vortex parameters as in figure 1.

2.2. Effects of wd: vortex decay
Let us now examine the nonlinear decay of circular vortices due to the Ekman pumping
term wd. The change of relative vorticity on the f -plane is approximated as

∂ω

∂t
= f0

H
wd. (2.6)

Using ω < f0, the Ekman pumping is expanded in Taylor series as

wd = 1
ρ0( f0 + ω)

∇ × τ ≈ 1
ρ0 f0

(
1 − ω

f0

)
∇ × τ . (2.7)

Without loss of generality, we concentrate on the large-scale northerly wind (2.2a,b). Then,
the surface stress τ (1.4) can be simplified by using the fact that the wind speed is much
faster than the ocean currents, u, v << Vw. After some algebra to simplify the product
|U − u|(U − u), the stress is approximated as

τ = ρaCDVw(−u,−Vw − 2v). (2.8)

The curl is

∇ × τ = ρaCDVw

(
−2
∂v

∂x
+ ∂u
∂y

)
. (2.9)

An equivalent expression for ∇ × τ was found by Dewar & Flierl (1987). Assuming that
the vortex remains circular, then ∂v/∂x = −∂u/∂y at the centre, so the stress curl at the
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Figure 3. Radial profiles of the azimuthally averaged pumping terms wd and wa for (a,c) anticyclones and
(b,d) cyclones. The colours and vortex parameters are as in figure 2.

origin can be written as
(∇ × τ )c = −3

2ρaCDVwωc, (2.10)

where ωc is the peak vorticity. Plugging (2.10) in (2.7) yields

wd = −3
2
ρaCDVw

ρ0 f0

(
1 − ωc

f0

)
ωc. (2.11)

Substituting in (2.6) gives an equation for the peak vorticity decay:

dωc

dt
= −3

2
ρaCDVw

ρ0H

(
1 − ωc

f0

)
ωc ≡ − 1

Tf0
( f0 − ωc)ωc, (2.12)

where the time scale T is defined as

T = 2
3

ρ0H
ρaCDVw

. (2.13)

The solutions of (2.12) are of the form

ωc(t) = ω0 exp(−t/T)
1 − (ω0/f0)(1 − exp(−t/T))

, (2.14)

where ω0 is the peak vorticity at t = 0. These are decaying solutions at the characteristic
time T . The most important feature is that (2.14) distinguishes the vortex polarity in the
denominator, implying that anticyclones (ω0 < 0) decay faster than cyclones (ω0 > 0).
The solutions can be called nonlinear because of the form of the evolution equation (2.12).
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Solutions (2.14) are equivalent – but not the same – to those applied for representing
the decay of vortices due to bottom Ekman friction in rotating tank experiments (Zavala
Sansón & van Heijst 2000). The comparison of top and bottom friction effects is further
discussed in the last section.

The more conventional (exponential) decay is recovered in the limit of weak vortices
ω/f0 << 1. In that case, the vertical velocity simplifies as

wlin = 1
ρ0 f0

∇ × τ . (2.15)

Thus, the vorticity equation (2.6) becomes linear:

dωc

dt
= −3

2
ρaCDVw

ρ0H
ωc ≡ − 1

T
ωc, (2.16)

with exponentially decaying solutions

ωc(t) = ω0 exp(−t/T). (2.17)

In this approach, cyclones and anticyclones decay at the same rate. The linear decay
was discussed by Gaube et al. (2015), who found the same eddy attenuation time scale
T but followed a different approach. They considered a randomly directed wind U =
Vw(cos θ, sin θ) >> u, and then averaged over a uniform θ -distribution to obtain a mean
surface stress τ̄ proportional to the surface currents. Using the curl ∇ × τ̄ in the linear
Ekman condition (2.15) yields the same stress curl (2.9) and therefore the exponential
decay (2.17) (see also Renault et al. 2016).

2.3. Effects of wa: vortex drift
From the azimuthally averaged profiles in figure 3(c,d), we observed that w̄a < 0, so this
downward velocity slightly intensifies anticyclones and weakens cyclones. However, the
effect is relatively weak because the net pumping is small, as we shall corroborate in
numerical simulations.

Another effect associated with wa is the vortex translation in the direction of the Ekman
transport, a process correctly predicted by Stern (1965) and, to the best of our knowledge,
not discussed in previous studies. From Ekman theory, and ignoring the contribution of a
solenoidal vector field (Wenegrat & Thomas 2017), the transport components are

HUE = τ y

ρ0( f0 + ω)
,

HVE = − τ x

ρ0( f0 + ω)
,

⎫⎪⎪⎬
⎪⎪⎭ (2.18)

where (UE,VE) is the integrated velocity in the Ekman layer that the vortex eventually
acquires. Since the northerly wind is such that Vw >> v, the only relevant stress
component from (2.8) is τ y ≈ −ρaCDV2

w, which implies that the vortex drifts westward
with speed UE. Assuming small ω/f0 again, we approximate the speed using the peak
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vorticity:

UE ≈ τ y

ρ0Hf 2
0
( f0 − ωc),

= −ρaCDV2
w

ρ0Hf 2
0
( f0 − ωc) ≡ −2

3
Vw

f0T

(
1 − ωc

f0

)
, (2.19)

where we introduced the characteristic time T defined in (2.13). Note that anticyclones
move faster than cyclones due to factor 1 − ωc/f0. The vortex speed is approximately
constant because ωc does not change much under the influence of wa (as we shall see
later). Thus, the vortex displacement after time Ta is

Δx = −2
3

VwTa

f0T

(
1 − ωc

f0

)
. (2.20)

A conventional (or linear) displacement that would not distinguish between cyclones
and anticyclones is obtained by assuming ωc << f0, which yields

Δxlin = −2
3

VwTa

f0T
. (2.21)

2.4. Relative importance of wd and wa

There has been some discussion on the relative importance of wd and wa for typical
oceanic vortices due to their differences in magnitude and spatial structure (McGillicuddy
et al. 2007; Mahadevan et al. 2008). Here we propose an alternative view based on our
previous results in § 2.2. The relative magnitude of the pumping terms is estimated as∣∣∣∣wa

wd

∣∣∣∣ ≈
∣∣∣∣ −τ y∂ω/∂x
( f0 + ω)∇ × τ

∣∣∣∣ ≈
∣∣∣∣ (ρaCDV2

w) (ω0/R)
( f0 + ω0) (−3/2)ρaCDVwω0

∣∣∣∣
= 2/3
(1 + Ro)

|Vw|
f0R

, (2.22)

where we considered τ y ≈ −ρaCDV2
w from (2.8), the wind stress curl ∇ × τ from (2.10),

f ≈ f0 and the dynamical Rossby number Ro = ω0/f0. Note that the denominator depends
on the vortex sign contained in Ro, so it is verified that∣∣∣∣wa

wd

∣∣∣∣
cyclones

<

∣∣∣∣wa

wd

∣∣∣∣
anticyclones

. (2.23)

This fact can be observed in figure 4(a), which presents the |wa/wd| versus Ro curves for
the three wind regimes. For the average wind, the current-induced velocity wd dominates
(black curve). For the moderately intense forcing, |wa/wd| > 1 for anticyclones and < 1
for cyclones (blue curve). The vorticity-advection velocity wa is dominant in the strong
wind regime (red line).

The previous estimate (2.22) only considers the characteristic magnitude of the pumping
terms but not their spatial structure. A different comparison consists of using the
azimuthally integrated pumping components. For the current-induced velocity w̄d, we can
use again ∇ × τ from (2.10) because the integrated pumping is approximately the same
with or without integration (see the peak values in figures 2a,b and 3a,b). For w̄a, we have
to consider that the upwelling at a flank of the vortex cancels most of the downwelling at
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Figure 4. Ratio of the pumping terms as a function of the dynamical Rossby number. (a) Ratio based on the
peak values of wa and wd estimated by (2.22) for three wind speeds. (b) Ratio of the azimuthally integrated
pumping terms (2.24). This ratio does not depend on the wind speed. The stars in both panels indicate the
anticyclonic and cyclonic cases in figures 2 and 3.

the other side, and the remaining part is the negative velocity found in figure 3(c,d). Thus,
using (2.8), we estimate w̄a ∝ τ y∂ω/∂x ≈ (−ρaCDVw2v)(ω0/R). The vortex azimuthal
velocity is well approximated by its value at R/2, where the negative pumping takes place,
so v ≈ ω0R/6 (to check for the factor 1/6, evaluate, for instance, the azimuthal velocity
(2.4) at r = R/2). Thus,∣∣∣∣ w̄a

w̄d

∣∣∣∣ ≈
∣∣∣∣∣ −τ y∂ω/∂x
( f0 + ω)∇ × τ

∣∣∣∣∣ ≈
∣∣∣∣ (ρaCDVwω0R/3) (ω0/R)
( f0 + ω0) (−3/2)ρaCDVwω0

∣∣∣∣
= 2/9
(1 + Ro)

|Ro|. (2.24)

Now the comparison of the Ekman terms does not depend on the wind magnitude as its
effect was cancelled out when estimating w̄a. Figure 4(b) shows the resulting curve, which
reveals that the top drag velocity dominates, |w̄a/w̄d| < 1, for any (small) Rossby number.

3. Numerical simulations of circular vortices

The experiments in this section verify the previous results regarding the relative
importance of the Ekman pumping terms wd and wa for circular vortices under the effect
of a uniform wind. In most of simulations, we consider an f -plane but we also analyse
further aspects of the nonlinear evolution of cyclones and anticyclones on the β-plane.

3.1. Dynamical model and description of experiments
We consider a two-dimensional (2-D) homogeneous flow governed by the vorticity
equation (2.1). The vorticity-stream function formulation of this model is

∂ω

∂t
+ J (ω + βy, ψ) = f0

H
w, (2.1)

where J(a, b) = ∂xa∂yb − ∂ya∂xb is the Jacobian operator, H a depth scale and w the
surface Ekman pumping. The horizontal velocity components are defined from the stream
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Parameter Symbol and value in arbitrary units

Domain size L = 1200 km
Depth scale H = 650 m
Coriolis parameter f0 = 10−4 s−1

β parameter β = 2 × 10−11 (ms)−1

Vortex radius R = 100 km
Peak vorticity ω0 = 2.5 × 10−5 s−1

Wind magnitude Vw = 20 m s−1

Drag coefficient CD = 0.0025

Table 1. Fixed flow parameters in all simulations.

function ψ as

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (3.2a,b)

The relative vorticity is the 2-D Laplacian of the stream function:

ω = −∇2ψ. (3.3)

Table 1 shows the parameters that are kept constant in all simulations. The flow domain
is a square, closed box with lateral walls at −L ≤ x, y ≤ L. The fluid depth is constant,
and there is no bottom friction. Some simulations are performed on the f -plane, in which
the flow dynamics are equivalent to the purely 2-D case, while some others are performed
on the β plane. The simulations are initialised with an intense isolated vortex (2.3) with
peak vorticity ω0 = 0.25f0 and radial scale R = 100 km. Note that we consider a rather
strong vortex with maximum velocities of approximately umax ∼ 1 m s−1. The vortex
initial position is at the origin (0, 0), so the structure is sufficiently far away from the walls
(R/L < 1) at all times. We use no-slip conditions (by setting a small viscous parameter) to
confine the wall effects within a thin boundary layer that does not influence the vortex.

The Ekman pumping w may be either wd (1.2), wa (1.3) or the combination wd + wa,
as outlined in table 2. The wind stress is parametrised with the atmosphere-ocean relative
velocity (1.4) using a constant wind with magnitude Vw in a fixed, arbitrary direction θ
with respect to the positive x-direction:

U = Vw(cos θ, sin θ), −π ≤ θ ≤ π. (3.4)

For all f -plane simulations, we use the ‘northerly’ wind θ = −π/2, but we also examine
other directions in the β-plane simulations. To simulate strong atmospheric fronts, we
focus on intense winds of Vw = 20 ms−1, for which CD = 2.5 × 10−3 (e.g. García-Nava,
Ocampo-Torres & Hwang 2012). The duration of the simulations is 30 days to appreciate
significant changes in the vortex strength and position.

The numerical model is a finite differences code used in previous works to simulate
experimental rotating flows over topography (Zavala Sansón & van Heijst 2014) and
turbulent wind-driven flows (Zavala Sansón 2022). Further details can be consulted in
those studies. The nonlinear terms are discretised in a rectangular grid and treated with an
Arakawa scheme to avoid the spurious production of energy or enstrophy in the inviscid
limit. Time advancement is performed with an explicit, third-order Runge–Kutta method.
In all cases shown below, there are 513 × 513 grid points (dx = dy ≈ 2.3 km) and the time
step is dt = 3600 s. Several preliminary runs were performed with a lower resolution of
257 × 257 points, and the results were essentially the same.
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Subsection Number # Plane Vortex Pumping Wind provenance (θ )

3.2 and 3.3 A1 f Anticyclone wd N (−π/2)
Vortex decay and drift A2 f Anticyclone wa N (−π/2)

A3 f Anticyclone wd + wa N (−π/2)
A4 f Anticyclone wlin N (−π/2)
C1 f Cyclone wd N (−π/2)
C2 f Cyclone wa N (−π/2)
C3 f Cyclone wd + wa N (−π/2)
C4 f Cyclone wlin N (−π/2)

3.4 A0 β Anticyclone — —
Vortex β-drift AN β Anticyclone wa N (−π/2)

AS β Anticyclone wa S (π/2)
AE β Anticyclone wa E (π)
AW β Anticyclone wa W (0)
C0 β Cyclone — —
CN β Cyclone wa N (−π/2)
CS β Cyclone wa S (π/2)
CE β Cyclone wa E (π)
CW β Cyclone wa W (0)

Table 2. Outline of the simulations. The pumping term in experiments A4 and C4 is given by (2.15).

3.2. Evolution of vortices
To illustrate the effects of the Ekman pumping terms separately, we consider an
anticyclonic vortex subject to large-scale northerly wind, θ = −π/2 in (3.4), equivalent
to (2.2a,b) (experiments A1, A2 and A3 in table 2). Although these simulations are
performed on the f -plane, we will refer to the uniform wind as ‘northerly’ because it
is directed downward in the planar plots, and for a better comparison with the β-plane
simulations presented in § 3.4.

Figure 5 presents the vorticity fields at the initial time and 30 days after in the three
experiments. When the Ekman pumping is only wd (figure 5a), the vorticity field decays
(as appreciated from the colour scale); however, the vortex stays at its initial position
and does not change its shape appreciably. When the pumping is only wa (figure 5b),
the vorticity field does not change appreciably but the vortex drifts westward with a slight
southward component. Recall that the vortex drift takes place in the direction of the Ekman
transport (westward, for the northerly wind). When the two Ekman pumping components
are considered (figure 5c), we observe that the vortex experiences both effects: it decays
and moves westward.

The vertical velocity fields induced by the pumping terms are shown in figure 6. For
wd (figure 6a), we observe the characteristic upwelling at the central part (flanked by two
elongated downwelling regions), which is weakened after 30 d. The up-and-downwelling
pattern generated by the vertical velocity wa (figure 6b) drifts westward with the vortex
and does not decay in time. Note that the magnitude of wa is greater than that of wd at
the initial and final times. When the two effects are considered (figure 6c), we observe
an upwelling/downwelling pattern that differs from the current-induced upwelling wd (in
figure 6a) and is more similar to the wa field (figure 6b). Again, the structure weakens in
time and drifts to the west.

To compare the difference between cyclones and anticyclones, figure 7 presents the
vorticity profiles along the x-direction at times 0 and 30 d. In figure 7(a), we observe that
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–0.2 –0.1 0

ω /f0
0.1 0.2

Vw Vw Vw

t = 0 d

t = 30 d

(a) (b) (c)

Figure 5. Numerically calculated relative vorticity surfaces in: (a) experiment A1 using only wd;
(b) experiment A2 using wa; (c) experiment A3 using wd + wa for (top) the initial time and (bottom) 30 days.
The flow parameters are shown in table 1. The vertical and horizontal dashed lines are drawn to identify the
initial vortex position and displacement.

–2

w (m d–1)

0 2

t = 0 d

t = 30 d

(a) (b) (c)

Figure 6. Ekman pumping surfaces in experiments A1, A2 and A3 shown in figure 5: (a) wd; (b) wa;
(c) wd + wa.
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Figure 7. Vorticity x-profiles (passing over the vortex centre) for cyclones (red) and anticyclones (blue) at
t = 30 d in experiments: (a) A1, C1; (b) A2, C2; (c) A3, C3. The anticyclone profiles are multiplied by −1 to
facilitate the comparison. The profiles at t = 0 d are shown with dashed curves.

the anticyclone decays more than the cyclone due to wd; figure 7(b) shows that wa promotes
the westward drift of both vortices while the peak vorticity remains constant; finally,
figure 7(c) shows the combined effects in the two vortices (decay and displacement). In
what follows, we evaluate these effects quantitatively and test the theoretical predictions
derived in the previous section.

3.3. Decay of cyclones and anticyclones
Let us consider the influence of the Ekman pumping terms on the vortex strength.
Figure 8(a) presents the time evolution of the normalised peak vorticity ωc(t) in
four simulations: two of them for an anticyclone using wd, wa (A1 and A2) and the
corresponding cases for a cyclone (C1 and C2). The curves show that the peak vorticity
in the anticyclone decays faster than in the cyclone when the only pumping term is wd.
The analytical expression (2.14) for the nonlinear decay is also shown for both vortices
(magenta curves), which agree very well with the numerical results. The decay time scale
(2.13) is T ≈ 84 days. The figure also shows the exponential decay given by (2.17) (dashed
line), which lies between the cyclone and anticyclone curves. Regarding the wa effects,
the peak vorticity remains constant because wa is zero at the centre of a circular vortex, as
can be observed in the vorticity profiles in figure 2(c,d). This is also evident by noticing
from the wa definition (1.3) that ∂ω/∂x = ∂ω/∂y = 0 at the centre of a circular structure.
However, wa plays a role in the kinetic energy budget, as discussed below.

In figure 8(b), we compare the peak vorticity decay of the cyclone and the anticyclone
in simulations using the two Ekman terms (experiments A3 and C3). The curves are
virtually the same as the previous simulations with wd because the contribution of wa
to this parameter is nearly zero. We also plotted the exponential decay from simulations
using wlin (experiments A4 and C4), which collapse into one single curve (black line).
Overall, the results prove that the peak vorticity value at the eddy’s centre decays faster in
the anticyclone than in the cyclone and that the mechanism is the wd pumping term.

Now we examine the evolution of the kinetic energy integrated over a circular area S
surrounding the vortex

E = 1
2

∫
S
(u2 + v2) dS. (3.5)

We use S = πR2
s with Rs = 3R. Figure 9 shows the energy curves for the same experiments

shown in previous plots. In figure 9(a), it is found again that, when using only wd, the
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Figure 8. Temporal evolution of the peak vorticity in anticyclonic (blue) and cyclonic (red) vortices subject to
different pumping effects. (a) Experiments A1, C1 (using wd) and A2, C2 (using wa). The analytical nonlinear
decay (2.14) for cases A1, C1 is indicated with solid magenta lines. The linear decay (2.17) is represented by the
dashed curve. (b) Simulations of the same vortices but now using wd + wa (experiments A3, C3). The black
curve corresponds to simulations with linear decay A4, C4.
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Figure 9. Temporal evolution of the vortex kinetic energy defined in (3.5) for cyclones (red) and anticyclones
(blue). (a) Experiments A1, C1 (using wd) and A2, C2 (using wa). The standard decay (3.6) is represented by
the dashed curve. (b) Simulations of the same vortices but now using wd + wa (experiments A3, C3).

kinetic energy in the anticyclone decays faster than in the cyclone. Between the two
decreasing curves, we plotted the expected energy curve corresponding to the exponential
decay:

E(t) = E(0) exp(−2t/T). (3.6)

The e-folding time T/2 is due to the quadratic form of the kinetic energy (see e.g. Zavala
Sansón et al. 2001; Renault et al. 2016). What is different now is the effect of wa: the
energy increases in the anticyclone and decays in the cyclone. These changes due to wa
are smaller than the decay due to wd, but they are evident. The cause for these behaviours
is the net downwelling flow that results from the azimuthal integration of the wa dipolar
field (described in figure 3c,d). Indeed, the average downward velocity w̄a is faster in the
anticyclone, so its intensification (approximately 12 % in kinetic energy after 30 days) is
greater than the weakening of the cyclone (approximately 9 %).
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Figure 10. Temporal evolution of (a) the peak vorticity ratio |ω−|/ω+ between anticyclones and cyclones for
different vortex amplitudes ω0 and wind speeds Vm, and (b) the corresponding kinetic energy ratio E−/E+.

Figure 9(b) presents the kinetic energy decay of the cyclone and anticyclone in the
simulations using the two Ekman terms. The curves almost collapse, with the anticyclonic
decay being slightly faster. For the anticyclone, this means that the energy decay due to
wd is compensated by the energy increase due to wa. For the cyclone, both effects produce
energy decay but with a smaller magnitude, so the final curve is almost identical to that of
the anticyclone.

How is the anticyclone/cyclone asymmetric decay in terms of the wind speed and vortex
strength? To explore this question, we performed new experiments using wd + wa and
measured the time evolution of the anticyclone/cyclone peak vorticity and the kinetic
energy ratios, defined as |ω−|/ω+ and E−/E+, respectively. The results are presented
in figure 10(a,b) for different combinations of the initial peak vorticity ω0 and wind speed
Vm. At t = 0, the curves start at 1 and, since anticyclones decay faster, the curves decay
in time. The resulting ratios for the vortices presented in figures 8(b) and 9(b) are plotted
with black lines. Both ratios decay less for weaker vortices and wind speeds (see e.g. the
green curves), indicating a more symmetrical behaviour of cyclones and anticyclones.

3.4. Vortex drift
We showed in figures 5–7 that the Ekman pumping wa induces the vortex drift (2.20) to the
right of the wind direction. Figure 11 presents the kinetic energy field and the numerically
calculated trajectory of anticyclone A2 and cyclone C2 (that is, under the influence of
wa alone) at day 30. The westward displacements are 56.3 km for the anticyclone and
42.2 km for the cyclone. These values agree with the displacements calculated with (2.20),
which gives Δx = 59.6 and 35.8 km, respectively. Note also that the numerical trajectory
is not purely westward, but there is a small southward shift (approximately 9 km in both
simulations). Overall, the experiments confirm that the anticyclone drifts to the right of
the wind at the predicted speed and faster than the cyclone. The kinetic energy fields
demonstrate that the anticyclone is reinforced compared with the cyclone, as shown in
figure 9(a).

Now we will examine the vortex trajectory on the β-plane. Recall that nonlinear
barotropic anticyclones (cyclones) on a β-plane drift southwestward (northwestward)
(Adem 1956). In particular, intense shielded vortices as those defined by (2.3) follow
a trochoid trajectory with a strong meridional component (Zavala Sansón, van Heijst &
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Figure 11. Kinetic energy surfaces and velocity vectors in simulations using wa: (a) anticyclone A2;
(b) cyclone C2. The vortex displacement is shown with green curves. The maximum velocity is 0.55 m s−1.
Vertical and horizontal dashed lines are drawn to identify the vortex initial position at the origin.
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Figure 12. Vortex trajectories calculated in β-plane simulations with different wind provenance: (a) northerly
wind (simulations AN, CN); (b) southerly (AS, CS); (c) easterly (AE, CE); (d) westerly (AW, CW). Cyclone
(anticyclone) trajectories are denoted with red (blue) curves. In all panels, the trajectories in the absence of
wind are shown with dashed lines (experiments A0, C0). In each panel, the black arrow indicates the wind
direction and the magenta arrow the direction of the Ekman transport.

Doorschot 1999; Flór & Eames 2002). Then we may ask, what is the effect of the Ekman
term wa on the vortex drift? To answer this question, we performed several simulations for
cyclones and anticyclones (see table 2). Note that we only consider wa because it is the
pumping term responsible for the vortex drift, so we omit the decaying effects associated
with wd. It must be taken into account that now the wind direction is of fundamental
importance. Thus, we analysed the vortex trajectories in five simulations: a reference
experiment with no Ekman terms (cases A0 and C0, dashed lines), and four simulations
using wa and having the wind provenance from the cardinal directions (figure 12).

Let us focus first on the anticyclones (drifting southwestward – blue curves). In all cases,
we can observe that the trajectory is deflected from the reference run according to the
wind direction. For instance, for the northerly wind (figure 12a), the vortex trajectory
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is deflected to the west. In contrast, for southerly wind (figure 12b), the Ekman drift is
eastward, and the trajectory is deflected more to the south. Note that the β-drift may be
arrested (figure 12c) or augmented (figure 12d). For cyclones (drifting northwestward), we
observe that the trajectories are also deflected from the reference experiment depending
on the wind direction. An exception is the case shown in figure 12(d) (westerly wind). In
general, the nonlinear character of the problem rules out the possibility of explaining the
details of the trajectories because of the complex convolution of the vorticity contours as
the eddies drift, and the radiation of Rossby waves (McWilliams & Flierl 1979; Flór &
Eames 2002).

3.5. Extended vorticity equation
Let us examine additional simulations based on the vorticity equation that retains the
absolute vorticity in the forcing term

∂ω

∂t
+ J (ω + βy, ψ) = ( f + ω)

H
ws. (3.7)

Although we show in Appendix A that the β and ω terms on the right-hand side can be
neglected because of magnitude grounds (so the dominant forcing term is f0w/H), here we
explore the consequences of keeping them.

When using the Ekman pumping terms wd and wa in (3.7), the absolute vorticity f + ω

cancels out, such that:

( f + ω)

H
(wd + wa) = 1

Hρ0
∇ × τ + 1

Hρ0( f + ω)

(
τ x ∂ω

∂y
− τ y ∂ω

∂x

)
. (3.8)

Thus, the forcing term ( f + ω)wd/H becomes identical to the linear case f0wlin/H, with
wlin given by (2.15). A notorious consequence is that cyclones and anticyclones now
decay at the same rate: wd no longer distinguishes the vortex polarity. In contrast, the
effects due to wa remain nonlinear, so its influence on vortices is similar as before: wa
weakens (intensifies) cyclones (anticyclones) and promotes their drift to the right of the
wind direction.

To show these assertions, we reproduced all the simulations in table 2 but now using
(3.7). In general, the results are qualitatively similar, though there are important differences
to mention. We focus on the global energy evolution. Figure 13 presents the vortex energy
for the same cases shown in figure 9. First, note that in figure 13(a), when using wd, the
cyclone and the anticyclone decay in the same fashion: the curves are overlapped and are
given by (3.6). Second, when using wa, the energy evolves in a similar way as in figure 9:
the anticyclone is intensified and the cyclone weakened. Interestingly, when using wd + wa
(figure 13b), the net energy decay of the cyclone is notoriously faster than that of the
anticyclone. Of course, the difference is due to wa, since wd produces the same decay.

4. Summary and discussion

We discussed the effects of the Ekman pumping terms wd (1.2) and wa (1.3) due to a
uniform, uni-directional intense wind blowing over nonlinear cyclones and anticyclones
governed by the vorticity equation (2.1). The surface wind stress is parametrised with the
relative air-sea velocity, so there are current-feedback effects. It is well known that the
vertical velocity wd tends to drain the vortex kinetic energy because it has the opposite
sign of the vortex core (Dewar & Flierl 1987). The role of wa is more controversial,
as its magnitude is usually similar to or even greater than that of wd, but the net up
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Figure 13. Temporal evolution of the vortex kinetic energy of cyclones (red) and anticyclones (blue) in
experiments using the extended vorticity equation (3.7). Compare with the curves shown in figure 9: (a) A1,
C1 (using wd) and A2, C2 (using wa). A1, C1 decay at the same rate (the curves are overlapped); (b) A3, C3
(wd + wa).

or downwelling flow is very weak due to its dipolar spatial distribution (see figure 3).
However, its magnitude contributes to the spatial distribution of vertical transport, a
fundamental issue for nutrient delivery that influences plankton dynamics (Estrada-Allis
et al. 2019; Chen et al. 2020). The main analytical and numerical results are the following.

(i) The top drag mechanism associated with the Ekman pumping wd makes anticyclones
decay faster than cyclones. This difference is found when considering the absolute
vorticity in the denominator of the wd definition (1.2), which leads to the nonlinear
equation for the peak vorticity (2.12). From the analytical solution, we found the
decay time scale T defined in (2.13), which is identical to the scale derived by Gaube
et al. (2015) under different assumptions (they considered a randomly directed
wind). A differential decay between cyclones and anticyclones also occurs when
considering nonlinear Ekman effects generated at the lower Ekman layer, but in that
case, cyclones decay faster than anticyclones (Zavala Sansón et al. (2001) and Zavala
Sansón (2001), see § 1).

(ii) The net pumping w̄a is weakly negative for both types of vortices (figure 3c,d)
and, consequently, anticyclones (cyclones) are intensified (weakened) (figure 11).
Such a downward velocity has not been sufficiently discussed in previous studies,
probably because the mean values tend to be small (of the order of 0.1 m d−1).
Furthermore, the damping effect due to wd is more persistent, thus obscuring the
integrated wa effects. The production or destruction of barotropic kinetic energy
through this mechanism may have consequences for the vortex stability. For instance,
the intensification of anticyclones (2.3) may lead to steeper vorticity profiles that are
more prone to barotropic (Orlandi & Carnevale 1999) or centrifugal (Kloosterziel &
van Heijst 1991) instabilities.

(iii) Another effect produced by the pumping term wa is the vortex drift at the speed
and direction of the Ekman transport. When the wind blows, the mean horizontal
motion in the Ekman layer tries to tilt the axis of the geostrophic vortex. However,
in the constant-depth barotropic model, the fluid columns remain vertical (due to the
rotational constraint), and the vortex moves with speed equal to the Ekman drift,
as predicted by Stern (1965). In our f -plane simulations, we also found a small
drift in the wind direction (figure 11). The origin of this additional displacement
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is unknown, but it could be related to an Ekman transport component along the
wind direction due to the flow curvature, as discussed by Wenegrat & Thomas
(2017). However, that study only considered a constant wind stress, so there are
no current-induced pumping effects. A possible line of research would be to
calculate curvature effects but now using the relative-velocity parametrisation for
circular vortices. Furthermore, we examined the modification of vortex trajectories
in β-plane simulations due to the additional drift induced by wa.

(iv) When the two pumping terms are considered together, the decrease of the net
kinetic energy becomes similar in cyclones and anticyclones (figure 9). The slight
asymmetry tends to disappear for weaker vortices and/or slower winds.

The relative importance of the Ekman terms depends on the problem under study,
and a proper evaluation of which one is more important might require a comparison of
their magnitude or spatial structure. Mahadevan et al. (2008) proposed that the ratio of
the pumping magnitudes scales as Ro(ua/uo), with Ro the Rossby number, and ua, uo
the velocity scales of the wind and the ocean, respectively. Such an expression does
not distinguish cyclones from anticyclones. A similar scaling was proposed by Chen
et al. (2020) as −Ro(ua/2uo)/(1 + Ro), whose denominator is able to distinguish the
vortex polarity. We proposed scaling (2.22), which coincides in that |wa/wd| depends
linearly on the wind speed but explicitly depends only on (1 + Ro)−1 (figure 4). In
addition, we estimated another scaling that considers the spatial structure (2.24). This
expression indicates that |w̄a/w̄d| < 1, so the current-induced term is more relevant. A
similar conclusion led McGillicuddy et al. (2008) to consider only wd and neglect wa for
explaining the persistent vertical transport of nutrients in oceanic eddies.

The two-dimensional approach used here offers the advantage of studying wd and
wa separately in numerical simulations that solve the vorticity equation (2.1). Such a
procedure is difficult to achieve when using more realistic three-dimensional models,
even in idealised simulations. For instance, Chen et al. (2020) and Wilder et al. (2022)
performed baroclinic simulations of idealised anticyclonic vortices using the wind stress
parametrisation (1.4). However, the effects of a persistent wind in a single direction were
filtered out because the wind direction was rotated uniformly in time (one full rotation
every 64 h) to avoid vortex distortions, boundary problems or bias of the sea level slope in
one particular direction. Chen et al. (2020) also performed simulations with realistic wind
forcing. Under these conditions, some Ekman effects may be reduced or inhibited, such as
the vortex drift due to wa. It remains to be seen whether the Ekman effects observed in the
barotropic approach are sufficiently important in baroclinic models or more realistic wind
conditions.

We also explored the form of the Ekman term in the dynamical equation. When using the
vorticity equation (3.7), which includes the absolute vorticity in the forcing term, some of
the previous results hold and some others change sensibly. Essentially, the vortex decay due
to wd no longer distinguishes cyclones from anticyclones because the absolute vorticity
cancels with the denominator of wd. Nevertheless, the cyclone/anticyclone asymmetry
still holds but now only due to wa, which generates similar effects to those described
in items (ii) and (iii). When considering the two Ekman velocities together, the cyclone
clearly decays faster (figure 13). It must be noted that the observed differences between
simulations using (2.1) or (3.7) are not caused by the addition of a new small term, but to
the fact that the analytical form of the Ekman term associated with wd is modified. This
issue requires further analysis in future works.

Finally, we point out the relevance of discerning Ekman effects in cyclones and
anticyclones for a continuously forced turbulent fluid. Indeed, the asymmetric decay of
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these vortices might lead to positive or negative skewness of relative vorticity fields. Future
lines of research are the consequences for the two-dimensional turbulent cascades and the
Ekman effects in other oceanic structures, such as dipolar vortices.
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Appendix A

Consider a homogeneous, quasi-two-dimensional flow with a rigid-lid on a β-plane. The
direct vertical integration of the vorticity equation over the fluid depth H yields

∂ω

∂t
+ u · ∇ω + βv = ( f0 + βy + ω)

H
ws, (A1)

where the right-hand side is the stretching term produced by the Ekman pumping ws.
However, (βy + ω)ws at the forcing term is usually neglected because of the smallness of
the Ekman velocity, even for strong winds.

To verify this assertion, we can estimate the approximate size of all terms in (A1)
using the typical velocity Uo and radial vortex scale L, which gives the following set of
nondimensional numbers:

ε = Uo

f0L
, β̂ = βL

f0
, Ŵ1 = WL

UoH
, Ŵ2 = Ŵ1β̂, Ŵ3 = Ŵ1ε, (A2a–e)

where W ∼ ρaCDU2
w is the vertical velocity scale based on the stress parametrisation

(1.4) with the wind speed Uw, and assuming Uw >> Uo. The numbers Ŵ1, Ŵ2 and
Ŵ3 correspond to the Ekman terms. Evidently, for ε, β̂, Ŵ1 < 1, we get Ŵ2, Ŵ3 << 1,
so these two terms can be neglected. For instance, using the values in the manuscript
(Uo ∼ 0.5 m s−1, Uw ∼ 20 m s−1, W ∼ 7 × 10−5 m s−1, L ∼ 100 km, H ∼ 650 m) gives

ε ∼ 0.05, β̂ ∼ 0.02, Ŵ1 ∼ 0.04, Ŵ2 ∼ 1.5 × 10−4, Ŵ3 ∼ 3.7 × 10−3.
(A3a–e)

Thus, the lasts two terms in (A1) are much smaller, so they are usually dropped in oceanic
models.

What happens if the O(Ŵ2, Ŵ3) terms are retained? For instance, when deriving the
nonlinear pumping velocity ws (1.1), Stern (1965) maintained the O(Ŵ2) β term:

∂ω

∂t
+ u · ∇ω + βv = f

H
ws (A4)

[see his (17)]. At the end of § 3, we briefly discuss numerical simulations that include both
the β and the ω term.
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