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Abstract. Direct detection of the Epoch of Reionization via the redshifted 21-cm line will
have unprecedented implications on the study of structure formation in the early Universe. To
fulfill this promise current and future 21-cm experiments will need to detect the weak 21-cm
signal over foregrounds several order of magnitude greater. This requires accurate modeling of
the galactic and extragalactic emission and of its contaminants due to instrument chromaticity,
ionosphere and imperfect calibration. To solve for this complex modeling, we propose a new
method based on Gaussian Process Regression (GPR) which is able to cleanly separate the
cosmological signal from most of the foregrounds contaminants. We also propose a new imaging
method based on a maximum likelihood framework which solves for the interferometric equation
directly on the sphere. Using this method, chromatic effects causing the so-called “wedge” are
effectively eliminated (i.e. deconvolved) in the cylindrical (k. , k) power spectrum.

Keywords. methods:data analysis, statistical; techniques:interferometric; cosmology: observa-
tions, early universe, large-scale structure of universe

1. Introduction

Observations of the redshifted 21-cm signal from neutral hydrogen is a unique probe of
the early universe and can open the entire redshift window z ~ 6—30 for astrophysical and
cosmological studies, allowing us to directly study the astrophysical processes occurring
during the Epoch of Reionization (EoR) and the Cosmic Dawn (CD). This exciting
goal is challenged by the difficulty of extracting the feeble 21-cm signal buried under
astrophysical foregrounds orders of magnitude brighter and contaminated by numerous
instrumental systematics.

Several experiments are currently underway aiming at statistically detecting the 21-cm
signal from the Epoch of Reionization (e.g. LOFAR, MWA, PAPER), already achieving
increasingly attractive upper limits on the 21-cm signal power spectra (Patil et al. 2017;
Beardsley et al. 2016; Ali et al. 2015), and paving the way for the second generation
experiments such as the SKA and HERA which will be capable of robust power spectra
characterization and for the first time directly image the large scale neutral hydrogen
structures from EoR and CD.

To fully exploit the sensitivity of these experiments, accurate removal of the fore-
grounds is required. The radiation from our own Galaxy and other extra-galactic sources
are well-known to vary smoothly in frequency, and this characteristic can be used to
model and remove them (Jeli¢ et al. 2008; Chapman et al. 2013). However, the interac-
tion of the spectrally smooth foregrounds with the Earth’s ionosphere and the observing
instrument create additional “mode-mixing” foregrounds contaminants, which can mimic
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Figure 1. Cylindrically averaged power spectra estimated from the simulated visibilities. The
central and right panel shows the power spectra of the observed signal (foregrounds, noise and
21 cm signal; Stokes I) obtained from the spherical harmonics ML inversion (central) and by
gridding the simulated visibilities using WSClean (right). The absence of structure inside the
10 Field of View wedge line (red dashed line) in the power spectra estimated using the SpH ML
inversion demonstrate that the method effectively compute PSF-deconvolved representation of
the sky. The power spectra of the noise (Stokes V) is plotted in the right panel.

the 21-cm signal. Those are mainly due to the rapid phase and sometime amplitude modi-
fications of radio waves caused by small-scale structures in the ionosphere (e.g. Koopmans
2010), the inherent chromatic response of the instrument which creates chromatic side-
lobe noise (e.g. Vedantham et al. 2012; Thyagarajan et al. 2015; Gehlot et al. 2017),
calibration errors and mis-subtraction of sources due to imperfect sky modeling which
also introduce frequency structure to the otherwise smooth foregrounds (e.g. Patil et al.
2016; Ewall-Wice et al. 2017). Mitigating those sources of chromatic noise has proven to
be extremely difficult. The accuracy of the sky model used for calibration is limited by
the instrument confusion noise level and the precision of the beam response model of our
radio receivers. Unavoidably the observed signal will be contaminated by mode-mixing.
To reduce the impact of this potential ‘show-stopper’, we have developed a Maximum-
Likelihood Power Spectra estimator using the spherical-wave visibility equation (SpH
ML) and a foreground removal method based on Gaussian Process Regression (GPR).

2. Spherical Harmonics Maximum-Likelihood Inversion

The SpH ML is a new method to produce Point-Spread-Function (PSF) deconvolved
images of the sky from radio-interferometric observations. It solves for the interferometric
equation using Maximum-Likelihood inversion of the spherical-wave visibility equation,

formulated in a full sky setting and including the primary beam and its side-lobes (Carozzi
2015; Ghosh et al. 2018):

V= Gt (k) Yim (). (2.1)
Im

The method is tested using simulated LOFAR-HBA full-sky observations which include
diffuse astrophysical foregrounds (Jeli¢ et al. 2008), 21-cm signal simulated using 21cm-
Fast (Mesinger et al. 2011) and noise level corresponding to 100 nights of 12 hr LOFAR
integration time. From the simulated Stokes-I and Stokes-V visibilities, we infer the re-
covered spherical harmonics using the SpH ML algorithm and compute the angular power
spectra. Figure 1 presents the cylindrically averaged power spectra. We find the smooth
diffuse foreground in the Stokes I power spectrum mostly dominates at low kj, where
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Figure 2. Detection of the EoR signal with the reference simulation. The top panel shows
the spherically averaged power spectra. The central and bottom panels show the cylindrically
averaged power spectra as a function of k1 and k) respectively. The simulated observed signal
(dark blue) is composed of intrinsic astrophysical foregrounds (dotted dark blue), instrumental
mode-mixing contaminants (dashed light blue), noise (green) and a simulated 21-cm signal
(dashed gray). Using our GPR method to model and remove the foregrounds from the simulated
cube, the 21-cm signal (orange) is well recovered with limited bias.

most of the foreground power is bound within & < 0.05hcMpc~!. The power drops by
two to three orders of magnitudes in high k| regions, where the 21-cm signal plus noise
signal is expected to dominate. In the power spectra obtained from the same simulated
visibilities but using the more traditional method of gridding the visibilities in uv-space,
a wedge like structure is clearly visible (central panel of Figure 1), and is well known to
be due to the frequency dependence of the PSF (Vedantham et al. 2012; Hazelton et al.
2013). This demonstrate that by doing a ML fit to non-gridded visibility data sets at
each frequency, we effectively obtain a PSF-deconvolved estimates of the sky spherical
harmonics coeflicients.

3. Statistical 21-cm Signal Separation

The source of mode-mixing contaminants are manifold, and we also need to account for
the remaining contaminants related to calibration error and sky-model incompleteness.
Ad-hoc modeling is not an option for most of them, and the problem boils down to
statistically separating this contaminants from the 21-cm signal.

With this aim, we developed a foreground removal method using the technique of
Gaussian Process Regression (GPR) (Mertens et al. 2017). In this framework, the dif-
ferent components of the observations, including the astrophysical foregrounds, mode-
mixing contaminants, and the 21-cm signal, are modeled with Gaussian Process (GP).
Formally, a GP is the joint distribution of a collection of normally distributed random
variables (Rasmussen & Williams 2005). The covariance matrix of this distribution is
specified by a covariance function, which defines the covariance between pairs of obser-
vations (e.g. at different frequencies). The covariance function determines the structure
that the GP will be able to model, for example its smoothness. In GPR, we use GP as
parameterized priors, and the Bayesian likelihood of the model is estimated by condi-
tioning this prior to the observations. Standard optimization or MCMC methods can be
used to determine the parameters of the covariance functions.

This formulation ensures a relatively unbiased separation of their contribution and
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accurate uncertainty estimation, even in very low signal to noise observations. When
applied to simulation datasets, equivalent to LOFAR-HBA 1200 hours of observations
and based on its current assessment of noise and systematic errors, we found that the
method is capable of recovering well the 21-cm signal power spectrum (see Fig. 2).

4. Discussions and Future Perspective

In this paper we have introduced two new methods that aim at mitigating the fore-
grounds contaminants including the mode-mixing.

We have shown that using an ML spherical harmonic power spectra estimator, it is
possible to deconvolve the chromatic “wedge” (caused by frequency-dependent side-lobes)
in the (k_,k)) power spectrum space.

We also introduced a novel signal separation method which uses Gaussian Process Re-
gression (GPR) to model the various mixed components of the observed signal, including
the spectrally smooth sky, mode-mixing, and a 21-cm signal model.

The fundamental improvement of GPR resides in its complete statistical description
of all components contributing to the observed signal. In the current implementation of
GPR, we use generic covariance models for the 21-cm signal and mode-mixing compo-
nents. While this treatment may be sufficient for a detection of the 21-cm signal and its
characterization with LOFAR, an improved model may be build for future experiments
with e.g. the more sensitive SKA. The mode-mixing model for example can be improved
by integrating the k; dependency of the foreground wedge and folding into the model
the analytic work describing the effect on the signal of the instrumental chromaticity,
calibration errors and sky-model incompleteness. Exploiting the isotropic nature of the
21-cm signal and its evolution at different redshift-bins will also ensure a more sensitive
and accurate modeling.
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