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Abstract
For each prime p, we show that there exist geometrically simple abelian varieties A over Q with X(𝐴) [𝑝] ≠ 0.
Specifically, for any prime 𝑁 ≡ 1 (mod 𝑝), let 𝐴 𝑓 be an optimal quotient of 𝐽0 (𝑁) with a rational point P of order
p, and let 𝐵 = 𝐴 𝑓 /〈𝑃〉. Then the number of positive integers 𝑑 ≤ 𝑋 with X(𝐵𝑑) [𝑝] ≠ 0 is � 𝑋/log 𝑋 , where
𝐵𝑑 is the dual of the dth quadratic twist of B. We prove this more generally for abelian varieties of GL2-type with
a p-isogeny satisfying a mild technical condition. In the special case of elliptic curves, we give stronger results,
including many examples where X(𝐸𝑑) [𝑝] ≠ 0 for an explicit positive proportion of integers d.
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1. Introduction

Let A be an abelian variety over Q. The Tate–Shafarevich group of A is the abelian group

X(𝐴) = ker

(
𝐻1 (Q, 𝐴) →

∏
ℓ≤∞

𝐻1(Qℓ , 𝐴)
)

classifying Q-isomorphism classes of A-torsors that are isomorphic to A over Qℓ for every prime ℓ,
including the infinite prime ℓ = ∞. Much is conjectured but little is known about the structure of this
group. Famously, the Birch and Swinnerton-Dyer conjecture predicts that X(𝐴) is finite. On the other
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hand, heuristics suggest that, for each prime p, a positive proportion of elliptic curves 𝐸/Q, ordered by
height, have X(𝐸) [𝑝] ≠ 0 [Del07, PR12, BKL+15], and one expects something similar for abelian
varieties of higher dimension.

In stark contrast to these expectations, it seems to be an open question whether, for each prime p, there
exists even a single elliptic curve over Q with X(𝐸) [𝑝] ≠ 0. There are constructions of elliptic curves
and higher-dimensional abelian varieties A over number fields K with X(𝐴) [𝑝] ≠ 0 [Klo05, CS10,
Cre11], although the degree of K grows as a function of p in these results. Taking Weil restrictions of
these examples gives abelian varieties 𝐴′/Q with X(𝐴′) [𝑝] ≠ 0. However, there again seem to be no
known examples of geometrically simple abelian varieties 𝐴/Q with X(𝐴) [𝑝] ≠ 0, for large primes p.
The purpose of this paper is to provide such examples.

Theorem 1.1. For each prime p, there exists a geometrically simple abelian variety 𝐴/Q such that
X(𝐴) [𝑝] ≠ 0.

In fact, for each p, we exhibit infinitely many such 𝐴/Q in distinct Q-isogeny classes. Our examples
arise from optimal quotients 𝐴 𝑓 of the modular Jacobian 𝐽0(𝑁), attached to weight two newforms
𝑓 ∈ 𝑆2 (Γ0(𝑁)) of prime level N.

Theorem 1.2. Let N be a prime, and let 𝑝 ≥ 3 be a prime divisor of (𝑁 − 1)/gcd(12, 𝑁 − 1). Let
𝐴 𝑓 be any optimal quotient of 𝐽0 (𝑁) containing a point 𝑃 ∈ 𝐴 𝑓 (Q) of order p. Let 𝐵 = 𝐴 𝑓 /〈𝑃〉, let
𝜙 : 𝐴 𝑓 → 𝐵 be the canonical isogeny, and let 𝜙 : 𝐵 → 𝐴 𝑓 be the dual isogeny. Then

#
{
𝑑 : 0 < |𝑑 | ≤ 𝑋 and X(𝐵𝑑) [𝑝] ≠ 0

}
� 𝑋

log 𝑋
,

where 𝐵𝑑 is the dth quadratic twist of 𝐵, for each 𝑑 ∈ Z.

Theorem 1.1 follows immediately from Theorem 1.2. Indeed, the abelian varieties 𝐴 𝑓 and 𝐵𝑑 are
geometrically simple [Rib75, Corollary 1.4]; and for any prime p dividing 𝑁−1

(12,𝑁−1) , there exists at least
one newform 𝑓 ∈ 𝑆2 (Γ0(𝑁)) such that 𝐴 𝑓 (Q) contains a point of order p [Eme03, Theorem B]. Hence,
given a prime p, it suffices to apply Theorem 1.2 to any prime 𝑁 ≡ 1 (mod 𝑝). Moreover, Dirichlet’s
theorem on primes in arithmetic progressions guarantees that there are infinitely many such N. Since N
is prime, 𝐽0(𝑁) is semistable with conductor a power of N, and we see that different choices of N give
geometrically non-isogenous abelian varieties 𝐴/Q with X(𝐴) [𝑝] ≠ 0.

The dimensions of the abelian varieties A we produce grow with p. Indeed, the Weil conjectures
imply that dim 𝐴 𝑓 ≥ log 𝑝

2 log(1+
√

2)
[Maz77, Proposition 7.2]; in particular, 𝐴 𝑓 is not an elliptic curve if

𝑝 ≥ 7. One could give a very crude upper bound for the minimal dimension of an A with X(𝐴) [𝑝] ≠ 0
by combining bounds for the smallest prime 𝑁 ≡ 1 (mod 𝑝) with well-known bounds on the dimension
of 𝐽0 (𝑁).

Our proof of Theorem 1.2 is fairly short but uses several deep inputs. First, we prove that if 𝜙 : 𝐴 → 𝐵
is a p-isogeny of abelian varieties, whose Selmer ratio 𝑐(𝜙) equals 𝑝𝑖 (see Definition 2.2), then there exists
an explicit, positive density set of squarefree integers Σ+ such that rk 𝐴𝑑 (Q) +dimF𝑝 X(𝐴𝑑) [𝑝] ≥ 𝑖 for
all but finitely many quadratic twists 𝐴𝑑 with 𝑑 ∈ Σ+ (Theorem 2.4). Our proof uses techniques from
Galois cohomology, particularly the Greenberg–Wiles formula.

In the case that 𝐴 = 𝐴 𝑓 is an optimal quotient of 𝐽0(𝑁), we then invoke nonvanishing results for
special values of L-functions, due to Bump–Friedberg–Hoffstein and Ono–Skinner [BFH90, OS98], to
show that 𝐿( 𝑓𝑑 , 𝑠) ≠ 0 for many quadratic twists 𝑓𝑑 of f. By work of Gross–Zagier and Kolyvagin–
Logachev [GZ86, KL89] or Kato [Kat04], we have rk 𝐵𝑑 (Q) = 0 for such d. It follows that if 𝐴 = 𝐴 𝑓 is an
optimal quotient of 𝐽0 (𝑁) that admits a p-isogeny 𝜙 : 𝐴 → 𝐵 such that 𝑐(𝜙) ≥ 𝑝2, then X(𝐴𝑑) [𝑝] ≠ 0
for infinitely many quadratic twists 𝐴𝑑 (Theorem 3.1).

In Section 4, we specialise to prime N, where we use Mazur’s study of the Eisenstein ideal [Maz77,
Eme03] to show that the condition on 𝑐(𝜙) is always satisfied, thereby proving Theorem 1.2. Our
computation of 𝑐(𝜙) is a generalisation of [Shn21, §6], which was for the prime 𝑝 = 3.
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In the case of elliptic curves, we prove an even stronger bound than the one in Theorem 1.2, by
invoking recent work of Smith [Smi20] instead of results on L-functions. In Section 5, we prove

Theorem 1.3. Let E be an elliptic curve over Q with a degree p isogeny 𝜙 : 𝐸 → 𝐸 ′, for some prime
𝑝 ≥ 3. Assume that 𝑐(𝜙) ≥ 𝑝2 and that 𝐸 [2] (Q) ≠ Z/2Z. Then for a positive proportion of squarefree
integers d, we have X(𝐸𝑑) [𝑝] ≠ 0.

The hypothesis 𝑐(𝜙) ≥ 𝑝2 applies to ‘most’ quadratic twist families of p-isogenies of elliptic curves
with 𝑝 ≥ 3, in a certain sense (see Proposition 5.1).

For each elliptic curve E in Theorem 1.3, we can give an explicit lower bound on the proportion of d
such that X(𝐸𝑑) [𝑝] ≠ 0. Sometimes these bounds are larger than those predicted by a naïve generali-
sation of the heuristics of Delaunay [Del01] and Poonen–Rains [PR12]. For example, in Section 6, we
prove that for the elliptic curve 𝐸 : 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 − 7820𝑥 − 263580 with LMFDB label 11.a1, we
have X(𝐸𝑑) [5] ≠ 0 for at least 22.9% of squarefree integers d. This example shows that the heuristics
of Delaunay and Poonen–Rains on distributions of p-Selmer groups need to be modified when applied
to quadratic twist families of elliptic curves with a rational p-isogeny.

In [BKLOS21, Conjecture 1], Bhargava, Klagsbrun, Lemke Oliver and the first author state a con-
jecture that for any abelian variety 𝐴/Q, we should have X(𝐴𝑑) [𝑝] ≠ 0 for a positive proportion of
squarefree integers d. They prove special cases of this conjecture, without invoking Smith’s work, when
one of E or 𝐸 ′ admits an additional 3-isogeny, in addition to a p-isogeny. In general, most known system-
atic constructions of elements in X(𝐴) [𝑝] over Q exploit either multiple isogenies or the Cassels–Tate
pairing; see, for example, [Cas64, Fis01, Fly19, Shn21, BH22, BFS21]. One exception is a theorem of
Balog–Ono [BO03, Theorem 2], which applies to a large class of elliptic curves 𝐸/Q with a point of or-
der p. As with our proof of Theorem 1.2, their proof relies on nonvanishing results for L-functions, but
to prove Sel𝑝 (𝐸𝑑) ≠ 0, they instead use nonvanishing results for class groups. This leads to the weaker
bound {𝑑 : 0 < |𝑑 | ≤ 𝑋, X(𝐸𝑑) [𝑝] ≠ 0} � 𝑋

1
2+

1
2𝑝 /log2 𝑋 . Thus, even in the special case of elliptic

curves, we improve significantly on the known quantitative results whenever our method applies.

2. Selmer groups of abelian varieties with a 𝑝-isogeny

Let 𝜙 : 𝐴 → 𝐵 be an isogeny of abelian varieties over Q.

2.1. Selmer groups and the Selmer ratio

Definition 2.1. The 𝜙-Selmer group is

Sel(𝜙) = ker

(
𝐻1 (Q, 𝐴[𝜙]) →

∏
ℓ≤∞

𝐻1(Qℓ , 𝐴)
)
.

In the special case 𝐴 = 𝐵 and 𝜙 = [𝑝]𝐴, we write Sel𝑝 (𝐴) instead of Sel([𝑝]𝐴).

Definition 2.2. For ℓ a finite or infinite prime, define the local Selmer ratio

𝑐ℓ (𝜙) =
# coker(𝐴(Qℓ) → 𝐵(Qℓ))
# ker(𝐴(Qℓ) → 𝐵(Qℓ))

.

When ℓ = ∞, we use the convention that Q∞ = R. We then define the global Selmer ratio

𝑐(𝜙) =
∏
ℓ≤∞

𝑐ℓ (𝜙).

These Selmer ratios were defined in [BES20] but were already studied in [Cas65] under a slightly
different guise. The notation is meant to recall the Tamagawa number 𝑐ℓ (𝑋) of an abelian variety X
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over Qℓ . Indeed, the following lemma shows that for all but finitely many primes ℓ, we have 𝑐ℓ (𝜙) =
𝑐ℓ (𝐵)/𝑐ℓ (𝐴).

Lemma 2.3. For any finite prime ℓ, we have

𝑐ℓ (𝜙) =
𝑐ℓ (𝐵)
𝑐ℓ (𝐴)

𝛾𝜙,ℓ ,

where 𝛾−1
𝜙,ℓ is the normalised absolute value of the determinant of the map Lie(A) → Lie(B) on tangent

spaces of the Néron models over Zℓ . In particular, if ℓ � deg(𝜙), then 𝛾𝜙,ℓ = 1.

Proof. This lemma is [Sch96, Lemma 3.8]. Recall that 𝑐ℓ (𝐴) = #𝐴(Qℓ)/𝐴0(Qℓ), where 𝐴0(Qℓ) is the
subgroup of points that reduce to the identity component in the special fibre of the Néron model A
of A. �

The local Tamagawa numbers 𝑐ℓ (𝐴), 𝑐ℓ (𝐵) are equal to 1 for all primes ℓ of good reduction. Hence,
we have 𝑐ℓ (𝜙) = 1 for all but finitely many primes, so the global Selmer ratio 𝑐(𝜙) =

∏
ℓ 𝑐ℓ (𝜙) is

well-defined. Moreover, if 𝜙 has prime degree p, then 𝑐(𝜙) is an integer power of p.

2.2. Lower bounds on Selmer groups

Let N be the radical of the conductor of A. Thus, a prime ℓ divides N if and only if A has bad reduction
at ℓ.

Let Σ+ be the set of positive squarefree integers d such that 𝑑 ∈ Z×2
ℓ for all primes ℓ | 𝑝𝑁 . For any

squarefree 𝑑 ∈ Z, write 𝜙𝑑 : 𝐴𝑑 → 𝐵𝑑 for the dth quadratic twist of 𝜙, which again has degree p.

Theorem 2.4. Suppose that 𝜙 : 𝐴 → 𝐵 is a degree p isogeny, and write 𝑐(𝜙) = 𝑝𝑖 for some 𝑖 ∈ Z. Then
for all but finitely many 𝑑 ∈ Σ+, we have dimF𝑝 Sel𝑝 (𝐴𝑑) ≥ 𝑖, and hence

rk 𝐴𝑑 (Q) + dimF𝑝 X(𝐴𝑑) [𝑝] ≥ 𝑖.

The proof will require several lemmas.

Lemma 2.5. If ℓ � 𝑝𝑁∞, then 𝑐ℓ (𝜙𝑑) = 1 for all nonzero 𝑑 ∈ Z.

Proof. Let 𝜒𝑑 : Gal(Qℓ/Qℓ) → F×𝑝 denote the character corresponding to the (possibly trivial)
extension Qℓ (

√
𝑑)/Qℓ . If 𝜒𝑑 is unramified, then 𝐴𝑑 has good reduction over Qℓ , and 𝑐ℓ (𝜙𝑑) =

𝑐ℓ (𝐵𝑑)/𝑐ℓ (𝐴𝑑) = 1 by Lemma 2.3. Assume now that 𝜒𝑑 is ramified (and, in particular, nontrivial).
Since A has good reduction overQℓ , the extensionQℓ (𝐴[𝜙])/Qℓ is unramified. Hence, the Gal(Qℓ/Qℓ)-
action on 𝐴𝑑 [𝜙𝑑] 
 𝐴[𝜙] ⊗F𝑝 𝜒𝑑 is via a nontrivial character 𝜒̃𝑑 . Thus

𝑐ℓ (𝜙𝑑) =
# im(𝐵𝑑 (Qℓ) → 𝐻1(Qℓ , 𝜒̃𝑑))

#𝐻0 (Qℓ , 𝜒̃𝑑)
.

The denominator is 1 since 𝜒̃𝑑 is nontrivial. Let 𝜖 : Gal(Qℓ/Qℓ) → F×𝑝 be the mod p cyclotomic
character, which is unramified. We have #𝐻1 (Qℓ , 𝜒̃𝑑) = #𝐻0 (Qℓ , 𝜒̃𝑑)#𝐻0(Qℓ , 𝜒̃−1

𝑑 𝜖) = 1, by local
Tate duality [Mil06, Corollary I.2.3] and the Euler characteristic formula [Mil06, Theorem I.2.8]. Hence,
𝑐ℓ (𝜙𝑑) = 1. �

Lemma 2.6. We have 𝑐∞(𝜙) = #𝐴[𝜙] (R)−1.

Proof. We have

# coker(𝐴(R) → 𝐵(R)) = # im(𝐵(R) → 𝐻1 (Gal(C/R), 𝐴[𝜙])).
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Since #𝐴[𝜙] = 𝑝 is odd, we have 𝐻1(Gal(C/R), 𝐴[𝜙]) = 0. Hence,

𝑐∞(𝜙) = # coker(𝐴(R) → 𝐵(R)) · #𝐴[𝜙] (R)−1 = #𝐴[𝜙] (R)−1. �

To prove Theorem 2.4, we will use the Greenberg–Wiles formula [NSW08, Theorem 8.7.9], which
is a consequence of Poitou–Tate duality. If 𝜓 : 𝑋 → 𝑌 is an isogeny, it relates the size of Sel(𝜓) to the
size of Sel(𝜓), where 𝜓 : 𝑌 → 𝑋 is the dual isogeny. Applied to the isogeny 𝜙𝑑 : 𝐴𝑑 → 𝐵𝑑 , it reads

𝑐(𝜙𝑑) =
# Sel(𝜙𝑑)
# Sel(𝜙𝑑)

· #𝐵𝑑 [𝜙𝑑] (Q)
#𝐴𝑑 [𝜙𝑑] (Q)

. (2.1)

Proof of Theorem 2.4. First note that if A is any abelian variety and 𝑝 > 2, then 𝐴𝑑 [𝑝] (Q) = 0 for all
but finitely many quadratic twists of A. Indeed, if 0 ≠ 𝑃 ∈ 𝐴𝑑 [𝑝] (Q), then the Galois module 𝐴[𝑝]
has a subrepresentation isomorphic to the quadratic character 𝜒𝑑 : Gal(Q/Q) → F×𝑝 that cuts out the
extension Q(

√
𝑑)/Q. Since 𝐴[𝑝] is finite-dimensional, there can only be finitely many such d. As a

consequence, if 𝜙 : 𝐴 → 𝐵 is a p-isogeny, then 𝐴[𝜙] ⊂ 𝐴[𝑝], and we see that 𝐴𝑑 [𝜙𝑑] (Q) = 0 for all
but finitely many d.

We may therefore ignore the finitely many 𝑑 ∈ Σ+ such that #𝐴𝑑 [𝜙𝑑] (Q)#𝐵𝑑 [𝜙𝑑] (Q) ≠ 1. Hence,
from (2.1), we have

# Sel(𝜙𝑑) = 𝑐(𝜙𝑑)# Sel(𝜙𝑑) ≥ 𝑐(𝜙𝑑).

Now, if 𝑑 ∈ Σ+, then 𝜙𝑑 = 𝜙 over Qℓ , for all primes ℓ | 𝑝𝑁∞. Hence, by Lemma 2.5, we have
𝑐(𝜙𝑑) = 𝑐(𝜙) = 𝑝𝑖 for all 𝑑 ∈ Σ+. It follows that

dimF𝑝 Sel(𝜙𝑑) ≥ 𝑖

for all but finitely many 𝑑 ∈ Σ+.
Finally, we note that for all but finitely many 𝑑 ∈ Σ+, the inclusion 𝐴𝑑 [𝜙𝑑] → 𝐴𝑑 [𝑝] induces an

injection

Sel(𝜙𝑑) ↩→ Sel𝑝 (𝐴𝑑).

Indeed, by [BKLOS19, (9.1)], the kernel of this map is 𝐵𝑑 [𝜓𝑑] (Q)/𝜙𝑑 (𝐴𝑑 [𝑝] (Q)), where 𝜓𝑑 : 𝐵𝑑 →
𝐴𝑑 is the isogeny such that 𝜓𝑑 ◦ 𝜙𝑑 = [𝑝]. As before, this kernel vanishes for all but finitely many d.
Hence, for such d, we have dimF𝑝 Sel𝑝 (𝐴𝑑) ≥ 𝑖, and the exact sequence

0 → 𝐴𝑑 (Q)/𝑝𝐴𝑑 (Q) → Sel𝑝 (𝐴𝑑) → X(𝐴𝑑) [𝑝] → 0

implies that rk 𝐴𝑑 (Q) + dimF𝑝 X(𝐴𝑑) [𝑝] ≥ 𝑖. �

3. Quotients of 𝐽0 (𝑁) with a 𝑝-isogeny

For 𝑁 ≥ 1, let 𝐽0(𝑁) be the Jacobian of the modular curve 𝑋0(𝑁) over Q.

Theorem 3.1. Let A be a simple abelian variety over Q arising as a quotient of 𝐽0 (𝑁) for some integer
𝑁 ≥ 1. Assume that A admits a degree p isogeny 𝜙 : 𝐴 → 𝐵 over Q for some prime 𝑝 ≥ 3 and that
𝑐(𝜙) ≥ 𝑝2. Then

#{𝑑 : 0 < |𝑑 | ≤ 𝑋 and X(𝐴𝑑) [𝑝] ≠ 0} �𝐴
𝑋

log 𝑋
.
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Proof. Let 𝑀 | 𝑁 be the minimal positive integer such that A is a quotient of 𝐽0 (𝑀). Then there is
a newform 𝑓 =

∑
𝑎𝑛𝑞

𝑛 ∈ 𝑆2 (Γ0 (𝑀)) such that the coefficient field 𝐸 := Q({𝑎𝑛}) is isomorphic to
EndQ(𝐴) ⊗ Q and 𝐿(𝐴, 𝑠) =

∏
𝜎∈Hom(𝐸,C) 𝐿( 𝑓 𝜎 , 𝑠). Since 𝐽0(𝑀) has good reduction at all primes

ℓ � 𝑀 , so does A.
Let Σ be the set of squarefree integers d such that 𝑑 ∈ Z×2

ℓ for all primes ℓ | 𝑝𝑀 . By [OS98, Corollary
3], we have

#{𝑑 ∈ Σ : 0 < |𝑑 | ≤ 𝑋 and 𝐿( 𝑓𝑑 , 1) ≠ 0} � 𝑋

log 𝑋
,

where 𝑓𝑑 is the dth quadratic twist of f. Moreover, by [Kat04, Corollary 14.3], or alternatively by [GZ86,
KL89] and [BFH90, Theorem 1], we have rk 𝐴𝑑 (Q) = 0 whenever 𝐿( 𝑓𝑑 , 1) ≠ 0.

By Lemma 2.5 and the assumption that 𝑑 ∈ Z×2
ℓ for all primes ℓ | 𝑝𝑀 , we have 𝑐ℓ (𝜙𝑑) = 𝑐ℓ (𝜙) for

all finite primes ℓ and all 𝑑 ∈ Σ. If 𝑑 > 0, we therefore have 𝑐(𝜙𝑑) = 𝑐(𝜙) ≥ 𝑝2. If 𝑑 < 0, we have
𝑐∞(𝜙𝑑)/𝑐∞(𝜙) ∈ {𝑝, 𝑝−1} by Lemma 2.6, so 𝑐(𝜙𝑑) ≥ 𝑐(𝜙)/𝑝 ≥ 𝑝. Thus, we have 𝑐(𝜙𝑑) ≥ 𝑝 for all
𝑑 ∈ Σ. Applying Theorem 2.4 both to A and to 𝐴−1, we have

rk 𝐴𝑑 (Q) + dimF𝑝 X(𝐴𝑑) ≥ 1

for all but finitely many 𝑑 ∈ Σ. It follows that

#{𝑑 ∈ Σ : 0 < |𝑑 | ≤ 𝑋 and X(𝐴𝑑) [𝑝] ≠ 0} � 𝑋

log 𝑋
,

as desired. �

4. Quotients of 𝐽0 (𝑁) with 𝑁 prime

Let N be a prime, and let 𝑝 ≥ 3 be a divisor of 𝑁−1
gcd(12,𝑁−1) . Let T be the finite Z-algebra generated by

the Hecke operators acting on the space 𝑆2 (Γ0(𝑁)) of weight 2 cusp forms on Γ0(𝑁). For each newform
𝑓 ∈ 𝑆2 (Γ0(𝑁)), let 𝜆 𝑓 : T → C be the homomorphism giving the action of the Hecke operators on f,
and let 𝐼 𝑓 = ker 𝜆 𝑓 . Let 𝐽 = 𝐽0 (𝑁) be the modular Jacobian. Then T ↩→ EndQ 𝐽, and 𝐴 𝑓 := 𝐽/𝐼 𝑓 𝐽 is
an abelian variety over Q called the optimal quotient corresponding to f [Eme03].

By [Maz77, Theorem 1], the torsion subgroup 𝐽0(𝑁) (Q)tors is cyclic of order 𝑁−1
gcd(12,𝑁−1) and hence

is divisible by p. By [Eme03, Theorem B], there exists at least one optimal quotient 𝐴 = 𝐴 𝑓 with a
point 𝑃 ∈ 𝐴(Q) of order p. Let 𝐵 = 𝐴/〈𝑃〉 be the quotient, let 𝜙 : 𝐴 → 𝐵 be the canonical p-isogeny
over Q, and let 𝜙 : 𝐵 → 𝐴 be the dual isogeny.

Proof of Theorem 1.2. By Theorem 3.1, it is enough to prove that 𝑐(𝜙) = 𝑝2. By the Greenberg–Wiles
formula in equation (2.1), it is equivalent to show that 𝑐(𝜙) = 𝑝−2. By Lemma 2.5, we have 𝑐ℓ (𝜙) = 1
whenever ℓ ∉ {𝑝, 𝑁,∞}. Moreover, by Lemma 2.6, we have 𝑐∞(𝜙) = # ker(𝜙) (R)−1 = 𝑝−1. To compute
the remaining two local Selmer ratios, we use some facts about the Néron model of A.

Lemma 4.1. We have 𝑐𝑝 (𝜙) = 1.

Proof. Since A has good reduction at p, we have 𝑐𝑝 (𝐴) = 𝑐𝑝 (𝐵) = 1. In the notation of Lemma 2.3, we
therefore have 𝑐𝑝 (𝜙) = 𝛾𝜙,𝑝 . Now, the generator P of ker(𝜙) is the image of a rational cuspidal divisor
under the map 𝐽0(𝑁) → 𝐴 by [Eme03, Theorem B]. Thus, by [Maz77, II.11.11], 𝜙 extends to an étale
isogeny of Néron models overZ𝑝 . It follows that Lie(A) → Lie(B) is an isomorphism and 𝛾𝜙,𝑝 = 1. �

Lemma 4.2. We have 𝑐𝑁 (𝜙) = 𝑝−1.

Proof. The Atkin–Lehner operator 𝑊𝑁 acts on A by −1. Indeed, A belongs to the Eisenstein quotient
of 𝐽 = 𝐽0 (𝑁), which is itself a quotient of 𝐽−, the maximal quotient of J on which the Atkin–Lehner
eigenvalue is −1 [Maz77, Proposition 17.10]. Hence, the global root number of f is +1, and by [CS01,
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Proposition 7.1], the abelian variety 𝐴 = 𝐴 𝑓 has split purely toric reduction. Moreover, the order p
point P reduces to a non-identity component of the special fibre of the Néron model of A over Z𝑁 , since
specialisation induces an isomorphism from 𝐴(Q)tors to the component group Φ𝐴 by [Eme03, Theorem
B]. Thus, the lemma follows from [BFS21, Proposition 5.1]. �

We compute 𝑐(𝜙) =
∏

ℓ≤∞ 𝑐ℓ (𝜙) = 𝑐𝑁 (𝜙)𝑐∞(𝜙) = 𝑝−2, as desired. �

5. Applications to elliptic curves

Proof of Theorem 1.3. By a recent result of Smith [Smi20, Corollary 1.4], we have

lim
𝑋→∞

#{𝑑 : 0 < |𝑑 | ≤ 𝑋 : rk 𝐸𝑑 (Q) ≤ 1}
2𝑋

= 1,

under the assumption that either 𝐸 [2] (Q) = 0 or 𝐸 [2] (Q) = (Z/2Z)2 and E does not admit a cyclic
4-isogeny. In our case, E also admits a p-isogeny. If 𝐸 [2] (Q) = (Z/2Z)2, then E cannot also admit a
cyclic 4-isogeny: otherwise, the isogeny class of E would contain a cyclic 8𝑝-isogeny, but𝑌0 (8𝑝) (Q) = ∅
for 𝑝 ≥ 3 [Ken82, Theorem 1]. Thus, E satisfies the hypotheses of Smith’s result, and by Theorem 2.4
and our assumption that 𝑐(𝜙) ≥ 𝑝2, it follows that X(𝐴𝑑) [𝑝] ≠ 0 for 100% of 𝑑 ∈ Σ+. �

It is natural to ask about the scope of Theorem 1.3. In this direction, we have:

Proposition 5.1. Suppose that 𝑝 > 2 and that 𝜙 : 𝐸 → 𝐸 ′ is a p-isogeny of elliptic curves over Q.
Suppose also that E has at least three primes, distinct from p, of multiplicative reduction. Then there
exists an integer d such that either 𝑐(𝜙𝑑) ≥ 𝑝2 or 𝑐(𝜙𝑑) ≥ 𝑝2. In particular, the conclusion of
Theorem 1.3 applies to at least one of E or 𝐸 ′.

Proof. We apply [DD15, Table 1]. Let ℓ1, ℓ2, ℓ3 be the primes of multiplicative reduction, and write 𝑣𝑖
for the corresponding ℓ𝑖-adic valuation. Let 𝑗 , 𝑗 ′ be the j-invariants of E and 𝐸 ′. Replacing 𝐸, 𝐸 ′ by
quadratic twists, we may assume that all three primes have split multiplicative reduction. Moreover, we
may further twist so that, at every other prime, E has either good or additive reduction.

After reordering and possibly replacing 𝜙 with its dual, we may assume that 𝑣𝑖 ( 𝑗) = 𝑝𝑣𝑖 ( 𝑗 ′) for
𝑖 = 1, 2. Indeed, for each i, we have either 𝑣𝑖 ( 𝑗) = 𝑝𝑣𝑖 ( 𝑗 ′) or 𝑣𝑖 ( 𝑗 ′) = 𝑝𝑣𝑖 ( 𝑗), so, possibly replacing 𝜙
with its dual, the first option must happen for at least two primes.

Twisting again by an integer d, such that ℓ3 | 𝑑 and
(
𝑑
𝑝

)
= 1 for all other primes of bad reduction,

we may assume that 𝐸, 𝐸 ′ have additive, potentially multiplicative reduction at ℓ3. Similarly, we may
assume that 𝐸 [𝜙] (R) = 0. Hence, by [DD15, Table 1] and Lemma 2.3, we have 𝑐ℓ𝑖 (𝜙) = 𝑝 for 𝑖 = 1, 2
and 𝑐ℓ3 (𝜙) = 1. Moreover, as in Lemma 2.6, we have 𝑐∞(𝜙) = 1.

Twisting at p so that E has additive reduction, we have either 𝑐𝑝 (𝜙) = 1 or p, again by [DD15,
Table 1]. Finally, by construction, A has good or additive reduction at all the other primes, so 𝑐ℓ (𝜙) = 1
for all primes ℓ � ℓ1ℓ2ℓ3𝑝∞ [DD15, Table 1]. Putting everything together, we have 𝑐(𝜙) ≥ 𝑝2. �

Proposition 5.1 shows that in a certain natural sense, Theorem 1.3 applies to ‘most’ twist families of
elliptic curves 𝐸/Q with an isogeny of degree 𝑝 > 2. To make this claim more precise, we first recall
that for 𝑝 ∉ {3, 5, 7, 13}, there are only finitely many j-invariants of elliptic curves with a p-isogeny
[Maz78]. The modular curves 𝑋0(𝑝) with 𝑝 ∈ {3, 5, 7, 13} are all isomorphic to P1. Hence, there are
infinitely many j-invariants of such elliptic curves over Q. However, for any p in this set, and for any
𝑘 ≥ 1, one can show that 100% of rational points in 𝑋0 (𝑝) (Q), ordered by height, have at least k primes
of potentially multiplicative reduction. We will not prove this here, but for arguments along these lines,
see [BKLOS21].

https://doi.org/10.1017/fms.2022.80 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.80


8 Ari Shnidman and Ariel Weiss

6. An example: an elliptic curve with a 5-isogeny

In this final section, we look at the example 𝑁 = 11 and 𝑝 = 5. In this case, 𝐽0 (11) is an elliptic
curve with a 5-isogeny 𝜙 : 𝐽0 (11) → 𝐸 , and we work out an explicit lower bound on the proportion of
squarefree integers d with X(𝐸𝑑) [5] ≠ 0.

In [Del01], Delaunay gives a Cohen–Lenstra type heuristic, which predicts that, for fixed 𝑟 ∈ {0, 1},
and as E varies over all elliptic curves over Q ordered by conductor,

Pr(X(𝐸) [𝑝] ≠ 0 | rk 𝐸 = 𝑟) = 1 −
∞∏
𝑘=1

(1 − 𝑝1−𝑟−2𝑘 ).

Assuming Goldfeld’s conjecture that 50% of elliptic curves have rank 0 and 50% have rank 1, this
distribution predicts that

Pr(X(𝐸) [5] ≠ 0) = 1 − 1
2

( ∞∏
𝑘=1

(1 − 51−2𝑘 ) +
∞∏
𝑘=1

(1 − 5−2𝑘 )
)
≈ 0.124132.

Delaunay’s heuristics were presented for the family of all elliptic curves over Q; however, it is natural
to guess that they should hold in quadratic twist families as well, as is suggested by Delaunay [Del07,
Section 4] and Poonen–Rains [PR12, Remark 1.9].

In the following example, we prove that the family of quadratic twists of E do not follow this
distribution. In particular, in twist families of elliptic curves with a p-isogeny, our example shows that
the distribution of the groups X(𝐸) [𝑝] must follow a different distribution.

Theorem 6.1. Let 𝐸 : 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 − 7820𝑥 − 263580, an elliptic curve of conductor 11. Then at
least 11/48 ≈ 22.9% of squarefree integers d satisfy X(𝐸𝑑) [5] ≠ 0.

Proof. The modular curve 𝑋0 (11) is genus 1 and has model 𝐸 ′ : 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 − 10𝑥 − 20. We
therefore have 𝐸 ′ 
 𝐽0(11) 
 𝐴 𝑓 , where f is the unique weight two eigenform of level Γ0(11). The
torsion subgroup is order 5 generated by the point (5, 5). The curve E in the theorem is the quotient
𝜙 : 𝐸 ′ → 𝐸 by the subgroup generated by (5, 5).

Since 𝐸 [2] (Q) = 0, by [Smi20, Corollary 1.4], we have rk 𝐸𝑑 (Q) ≤ 1 for 100% of squarefree integers
d. Hence, by Theorem 2.4, X(𝐸𝑑) [5] ≠ 0 whenever 𝑐(𝜙) ≥ 52 or, equivalently, whenever 𝑐(𝜙) ≤ 5−2.

By Lemmas 2.6, 4.1 and 4.2, or by [DD15, Table 1], we have 𝑐11 (𝜙) = 1
5 , 𝑐∞(𝜙) = 1

5 and 𝑐5(𝜙) = 1.
Moreover, by [DD15, Table 1], we have 𝑐5 (𝜙𝑑) = 1 for all d. If ℓ � 5 · 11 · ∞, we have 𝑐ℓ (𝜙𝑑) = 1
by Lemma 2.5. Hence, if Σ+ denotes the set of positive squarefree integers, such that 𝑑 ∈ Z×2

11 , then
𝑐(𝜙𝑑) ≤ 5−2 for all 𝑑 ∈ Σ+.

As a subset of the set of squarefree integers, Σ+ has relative density

1
2
· 5 · 11

112 − 1
=

11
48

.

Hence, at least 11/48 of squarefree integers d satisfy X(𝐸𝑑) [5] ≠ 0. �

The fact that Delaunay’s heuristics for the distribution of the groups X(𝐸𝑑) [𝑝] should be modified
in certain cases was already understood in [BKLOS21], which is one reason why the authors formulate
[BKLOS21, Conjecture 1] without specifying a conjectural proportion. That paper contains several
results that show Delaunay’s distribution does not always hold when the (isogeny class of the) elliptic
curve admits at least two independent cyclic isogenies. Theorem 1.3 shows that this phenomenon persists
even in the presence of a single cyclic isogeny. It would be interesting to develop consistent heuristics
that describe a conjectural distribution in all cases.
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