Bull. Austral. Math. Soc. Vol. 47 (1993) [457-464]

A DECISION PROBLEM FOR VARIETIES OF COMMUTATIVE SEMIGROUPS

W.L. CAO

For a first order formula $P: \forall x_1 \ldots \forall x_n \exists y_1 \ldots \exists y_m (u(x_1, \ldots, x_n, y_1, \ldots, y_m)) \equiv v(x_1, \ldots, x_n, y_1, \ldots, y_m))$, where u and v are two words on the alphabet $\{x_1, \ldots, x_n, y_1, \ldots, y_m\}$, and a finite set E of semigroup identities with $xy \equiv yx$ in it, we prove that it is decidable whether P follows from E, that is whether all the semigroups in the variety defined by E satisfy P.

1. Introduction

One of the fundamental decision problems in algebra is the so-called word problem: decide whether a identity P follows from a set E of identities. It has been proved that the word problems for semigroups and groups are both undecidable, but decidable for commutative semigroups and commutative groups [1].

Some important semigroup properties cannot be described by semigroup identities, for example, S is

- (i) regular;
- (ii) simple;
- (iii) a group, et cetera.

But they can be described as S satisfies

- (i) $\forall x \exists y (xyx \equiv x)$;
- (ii) $\forall x \forall y \exists u \exists v (uxv \equiv y)$;
- (iii) $\forall x \forall y \exists z (xz \equiv y) \land \forall x \forall y \exists z (zx \equiv y)$, et cetera.

In this paper, we consider the following decision problem for semigroups: decide whether P follows from a set E of semigroup identities, where P is the first order formula

$$\forall x_1 \ldots \forall x_n \exists y_1 \ldots \exists y_m (u(x_1, \ldots, x_n, y_1, \ldots, y_m) \equiv v(x_1, \ldots, x_n, y_1, \ldots, y_m))$$

and u, v are two words on the alphabet $\{x_1, \ldots, x_n, y_1, \ldots, y_m\}$. Notice P will reduce to an identity if the existential variables y_j do not appear in P.

Received 28 May 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

We say a semigroup S satisfies P if for any s_1, \ldots, s_n in S, there are w_1, \ldots, w_m in S, such that

$$u(s_1, \ldots, s_n, w_1, \ldots, w_m) = v(s_1, \ldots, s_n, w_1, \ldots, w_m)$$

holds in S.

We say P follows from E, written as $E \Vdash P$, if whenever a semigroup S satisfies every identity in E, S satisfies P also, that is all semigroups in the variety [E] defined by E satisfy P.

For any set Σ , let Σ^+ and Σ^* denote, respectively, the free semigroup and free monoid generated by Σ . For a word $w \in \Sigma^*$ and a letter $a \in \Sigma$, $\binom{w}{a}$ denotes the number of times the letter a appears in w.

We regard a semigroup identity $u \equiv v$ as a pair of words $(u, v) \in V^+ \times V^+$, where V is a countably infinite set of variables.

Let $A = \{a_1, a_2, \ldots, a_n, \ldots\}$, and $A_n = \{a_1, a_2, \ldots, a_n\}$, $n \ge 1$. We define the following binary relations on A_n^+ :

- (i) $w\rho_n^E w'$, if for some homomorphism $\varphi \colon V^+ \to A_n^+$, and $u \equiv v$ in E, $\varphi(u) = w$, $\varphi(v) = w'$;
- (ii) $w \underset{E}{\leftrightarrow} w'$, if for some $u, v, x, y \in A_n^*$, w = xuy, w' = xvy, and $u\rho_n^E v$ or $v\rho_n^E u$;
- (iii) $w \overset{*}{\underset{E}{\longleftarrow}} w'$, if w = w' or for some $z_1, z_2, \ldots, z_k \in A_n^+$, $w = z_1, w' = z_k$, $z_i \overset{*}{\underset{E}{\longleftrightarrow}} z_{i+1}$, $i \leq k-1$.

So $\stackrel{*}{\underset{E}{\longleftarrow}}$ is the congruence generated by ρ_n^E , and $A_n^+/\stackrel{*}{\underset{E}{\longleftarrow}}$ is the relatively free semi-group in [E] over the set $\{[a_i] \mid 1 \leqslant i \leqslant n\}$, where $[a_i] = \{w \in A_n^+ \mid a_i \stackrel{*}{\underset{E}{\longleftarrow}} w\}$. P follows from E if and only if there are $w_1, w_2, \ldots, w_m \in A_n^+$, such that

$$u(a_1,\ldots,a_n,w_1,\ldots,w_m) \stackrel{*}{\underset{E}{\longleftarrow}} v(a_1,\ldots,a_n,w_1,\ldots,w_m).$$

2. The results

From now on, we assume that $xy \equiv yx$ is in E, that is [E] is a variety of commutative semigroups.

Let $E' = \{u \equiv v \in E \mid {u \choose x} \neq {v \choose x} \text{ for some } x \in V\}$. Without loss of generality, we assume

$$E = E' \cup \{xy \equiv yx\},$$

$$E' = \{x_1^{p_{i1}} x_2^{p_{i2}} \dots x_k^{p_{ik}} \equiv x_1^{p'_{i1}} x_2^{p'_{i2}} \dots x_k^{p'_{ik}} \mid i = 1, 2, \dots, L\}, \text{ (if } E' \neq \emptyset)$$

$$u(x_1, \ldots, x_n, y_1, \ldots, y_m) = x_1^{s_1} \ldots x_n^{s_n} y_1^{t_1} \ldots y_m^{t_m},$$

 $v(x_1, \ldots, x_n, y_1, \ldots, y_m) = x_1^{s_1'} \ldots x_n^{s_n'} y_1^{t_1'} \ldots y_m^{t_m'}.$

LEMMA 1. If $E' = \emptyset$, then it is decidable whether $E \Vdash P$.

PROOF: $E \Vdash P$ if and only if there are $w_j = \prod_{i=1}^n a_i^{x_{ij}} \in A_n^+$, $j \leqslant m$, such that $u(a_1, \ldots, a_n, w_1, \ldots, w_m) \overset{*}{\underset{E}{\longleftrightarrow}} v(a_1, \ldots, a_n, w_1, \ldots, w_m)$. But $E' = \emptyset$ implies that for any words $w, w' \in A_n^+$, $w \overset{*}{\underset{E}{\longleftrightarrow}} w'$ if and only if $\binom{w}{a_i} = \binom{w'}{a_i}$, for all $a_i \in A_n$. So $E \Vdash P$ if and only if the following linear system with integer unknowns x_{ij} is solvable:

$$\begin{cases} \sum_{j=1}^{m} T_{j}x_{ij} = S_{i}, & i = 1, 2, ..., n; \\ \sum_{j=1}^{n} x_{ij} > 0, & j = 1, 2, ..., m; \\ x_{ij} \geqslant 0, & i = 1, 2, ..., n, j = 1, 2, ..., m' \end{cases}$$

where $T_j = t_j - t'_j$, $S_i = s'_i = s_i$. Without loss of generality, we assume that all $T_j \neq 0$ (because we can delete y_j from P, if $T_j = 0$).

Case (i). There are some T_{α} , T_{β} , $1 \leq \alpha$, $\beta \leq m$, $T_{\alpha} > 0$, $T_{\beta} < 0$. In this case (*) is solvable if and only if $(T_1, T_2, \ldots, T_m) \mid S_i$, $1 \leq i \leq n$. Clearly, (*) is solvable implies $(T_1, T_2, \ldots, T_m) \mid S_i$, $1 \leq i \leq n$. On the other hand, if $(T_1, T_2, \ldots, T_m) \mid S_i$, then there are integers α_{ij} , $\sum T_j \alpha_{ij} = S_i$. Let us assume that $T_1 > 0$, $T_m < 0$. Take $\beta_{ij} = -T_m N_{ij} + \alpha_{ij}$, $1 \leq j \leq m-1$, $\gamma_i = \alpha_{im} + \sum N_{ij} T_j$. We have

$$\sum_{i \leq m} T_i \beta_{ij} + T_m \gamma_i = S_i,$$

and if N_{ij} are sufficiently large (in particular, N_{ii}), we have $\beta_{ij} > 0$, $\sum_{j < m} T_j \beta_{ij} > S_i$, then we have $\gamma_i = \left(S_i - \sum_{j < m} T_j \beta_{ij}\right) / T_m > 0$.

Case (ii). $T_j > 0$, j = 1, 2, ..., m. (The case of $T_j < 0$ can be treated similarly.) In this case, any $S_i < 0$ implies (*) is unsolvable. If $S_i \ge 0$ for all i = 1, 2, ..., n, any solution of (*) will satisfy $0 \le x_{ij} \le S_i$, so it is decidable whether or not (*) has solutions.

From now on, we assume that $E' \neq \emptyset$. Define

$$Q_E = \min\{q > 0 \mid (a_1^q, a_1^{p+q}) \text{ or } (a_1^{p+q}, a_1^q) \in \rho_1^E \text{ for some } p > 0\},$$

and

$$D_E = (g_{11}, \ldots, g_{1k}, g_{21}, \ldots, g_{2k}, \ldots, g_{L1}, \ldots, g_{Lk}),$$

that is D_E is the greatest common divisor of g_{ij} , where $g_{ij} = p_{ij} - p'_{ij}$, $1 \le i \le L$, $1 \le j \le k$.

LEMMA 2. For any $w, w' \in A_n^+$, $w \stackrel{*}{\longleftarrow} w'$ implies $\binom{w}{a_i} - \binom{w'}{a_i} = 0 \mod D_E$, $1 \leq i \leq n$.

PROOF: It is enough to prove that $\binom{w}{a_i} - \binom{w'}{a_i} = 0 \mod D_E$, $1 \leq i \leq n$, for all $(w, w') \in \rho_n^E$. Let $f \equiv g \in E'$, $f = x_1^{p_{s1}} \dots x_k^{p_{sk}}$, $g = x_1^{p'_{s1}} \dots x_k^{p'_{sk}}$. Then $\varphi \colon V^+ \to A_n^+$ is a homomorphism, $\varphi(f) = w$, $\varphi(g) = w'$, and $\binom{\varphi(x_j)}{a_i} = \alpha_{ij}$, $j = 1, 2, \dots, k$. We have

$$\binom{w}{a_i} - \binom{w'}{a_i} = \sum_{j=1}^k (p_{sj} - p'_{sj}) \alpha_{ij} = 0 \pmod{D_E}.$$

П

LEMMA 3. $E \Vdash x^{Q_E} \equiv x^{Q_E + D_E}$.

PROOF: Let $D_E = \sum \beta_{ij} g_{ij}$ and $M = \max\{1, 1 - \beta_{ij} \ (1 \leqslant i \leqslant L, 1 \leqslant j \leqslant k)\}$. We have

(*)
$$D_E = \sum (M + \beta_{ij})g_{ij} - \sum Mg_{ij}.$$

Because $M \geqslant 1$, $M + \beta_{ij} \geqslant 1$, for any sufficiently large number N,

$$a_1^N \stackrel{*}{\longleftrightarrow} a_1^{N+D_E},$$

because we can find an implication chain corresponding to equation (*). Assume $\left(a_1^{Q_E}, a_1^{Q_E+p}\right) \in \rho_n^E$, we have

$$a_1^{Q_E} \stackrel{*}{\longleftrightarrow} a_1^{Q_E+N_P} \stackrel{*}{\longleftrightarrow} a_1^{Q_E+N_P+D_E} \stackrel{*}{\longleftrightarrow} a_1^{Q_E+D_E}.$$

For convenience, we write $w_1 \Leftrightarrow w_2$ if for some (w, w') or $(w', w) \in \rho_n^E$, $\binom{w_1}{a_i} - \binom{w}{a_i} = \binom{w_2}{a_i} - \binom{w'}{a_i}$, $i = 1, 2, \ldots, n$, and $\binom{w_1}{a_i} \neq \binom{w_2}{a_i}$ for some $a_i \in A_n$. Note $w_1 \leftrightarrow w_2$ implies $w_1 \xleftarrow{*}{E} w_2$. On the other hand, $w_1 \xleftarrow{*}{E} w_2$ implies either

- (i) $\binom{w_1}{a_i} = \binom{w_2}{a_i}$, $1 \leq i \leq n$; or
- (ii) for some $z_1, z_2, \ldots, z_s \in A_n^+, w_1 = z_1, w_2 = z_s, z_i \Leftrightarrow z_{i+1}, i \leqslant s-1$.

Now, let $N = \max\{k, Q_E\}$. For a word $a_1^{k_1} a_2^{k_2} \dots a_n^{k_n} \in A_n^+$, construct sets $B_i(w)$, $C_i(w)$, and functions $F_i^w: A_n \to \{0, 1\}$ iteratively.

(i) Construct

$$egin{aligned} B_0(w) &= \{w\} = \{a_1^{k_1} \, a_2^{k_2} \, \dots \, a_n^{k_n} \}. \ &F_0^w(a_j) = \left\{egin{aligned} 1, & ext{if } k_j \geqslant N \ 0, & ext{otherwise}; \end{aligned}
ight. &G_0(w) &= \{a_1^{p_1} \, a_2^{p_2} \, \dots \, a_n^{p_n} \mid p_j = \min\{k_j, \, N\}, \, j \leqslant n\}. \end{aligned}$$

(ii) For any i > 0, construct

$$B_1(w) = \{a_1^{m_1} a_2^{m_2} \dots a_n^{m_n} \mid a_1^{m_1} a_2^{m_2} \dots a_n^{m_n} \Leftrightarrow w', \text{ for some } \\ w' \in C_{i-1}(w)\}, \\ I, \quad \text{if } F_{i-1}^w(a_j) = 1 \text{ or } m_j \geqslant N \text{ for some } \\ a_1^{m_1} a_2^{m_2} \dots a_n^{m_n} \in B_1(w) \\ 0, \quad \text{otherwise;} \\ C_i(w) = \{a_1^{p_1} a_2^{p_2} \dots a_n^{p_n} \mid \text{ for some } a_1^{m_1} a_2^{m_2} \dots a_n^{m_n} \in B_1(w), \\ p_j = \min\{N, m_j\}, j \leqslant n\} \\ \cup \{a_1^{p_1} a_2^{p_2} \dots a_n^{p_n} \mid \text{ for some } a_1^{m_1} a_2^{m_2} \dots a_n^{m_n} \in B_i(w), \\ p_j = F_i^w(a_j)N + (1 - F_i^w(a_j))m_j\} \\ \cup C_{i-1}(w).$$

LEMMA 4. The following statements are true:

- (i) $C_i(w) \subseteq C_{i+1}(w), i \geqslant 0;$
- (ii) $C_i(w) \subseteq \{a_1^{m_1} a_2^{m_2} \dots a_n^{m_n} \mid m_j \leqslant N, \ j = 1, 2, \dots, n\};$
- (iii) $C_i(w) = C_{i+1}(w)$ implies $C_i(w) = C_{i+p}(w)$ and $F_{i+1}^w = F_{i+p}^w$, for any p > 0.

Let i be the number such that $C_i(w) = C_{i+1}(w)$, define

$$F^{w} = F_{i+1}^{w};$$
 $C(w) = \{a_1^{m_1} a_2^{m_2} \dots a_n^{m_n} \mid \text{ for some } a_1^{q_1} a_2^{q_2} \dots a_n^{q_n} \in C_i(w),$
 $m_j = F^{w}(a_j)N + (1 - F^{w}(a_j))q_j\}.$

LEMMA 5. For any $i \ge 0$

- (i) $F_i^w(a_j) = 1$ implies $w \stackrel{*}{\longleftarrow} w a_j^{D_E}$;
- (ii) for any $a_1^{p_1} a_2^{p_2} \dots a_n^{p_n} \in C_i(w)$, there is $a_1^{q_1} a_2^{q_2} \dots a_n^{q_n} \in A_n^+$, where $q_k = p_k$ if $F_i^w(a_k) = 0$, otherwise $q_k \ge N$, $k = 1, 2, \dots, n$, and $w \xleftarrow{*} a_1^{q_1} a_2^{q_2} \dots a_n^{q_n}$.

PROOF: We prove this lemma by induction. For i=0, it is clearly true. Now assume it is true for i-1. If $F_i^w(a_j)=1$ and $F_{i-1}^w(a_j)=1$, then $w \overset{*}{\longleftarrow} w a_j^{D_E}$, by inductive assumption. If $F_i^w(a_j)=1$ but $F_{i-1}^w(a_j)=0$, then there are $a_1^{m_1}a_2^{m_2}\ldots a_n^{m_n}\in B_i(w)$, $a_1^{h_1}a_2^{h_2}\ldots a_n^{h_n}\in C_{i-1}(w)$, $a_1^{m_1}a_2^{m_2}\ldots a_n^{m_n}\Longleftrightarrow a_1^{h_1}a_2^{h_2}\ldots a_n^{h_n}$, $m_j\geqslant N$. By

inductive assumption, there are $a_1^{f_1} a_2^{f_2} \dots a_n^{f_n} \in A_n^+$, $a_1^{f_1} a_2^{f_2} \dots a_n^{f_n} \stackrel{*}{\longleftarrow} w$, $f_j = h_j$, but $f_k \geqslant h_k$ for all $k \neq j$. Now we have

$$w \xleftarrow{*}_{E} a_{1}^{f_{1}} a_{2}^{f_{2}} \dots a_{j}^{h_{j}} \dots a_{n}^{f_{n}}$$

$$\overset{*}{\underset{E}{\longleftrightarrow}} a_{1}^{m'_{1}} a_{2}^{m'_{2}} \dots a_{j}^{m_{j}} \dots a_{n}^{m'_{n}} \qquad \text{(where } m'_{k} = f_{k} - h_{k} + m_{k}\text{)}$$

$$\overset{*}{\underset{E}{\longleftrightarrow}} a_{1}^{m'_{1}} a_{2}^{m'_{2}} \dots a_{j}^{m_{j} + D_{E}} \dots a_{n}^{m'_{n}} \qquad \text{(by Lemma 3)}$$

$$\overset{*}{\underset{E}{\longleftrightarrow}} \left(a_{1}^{m'_{1}} a_{2}^{m'_{2}} \dots a_{j}^{m_{j}} \dots a_{n}^{m'_{n}} \right) a_{j}^{D_{E}}$$

$$\overset{*}{\underset{E}{\longleftrightarrow}} w a_{j}^{D_{E}}.$$

Now take $a_1^{p_1} \dots a_n^{p_n} \in C_i(w)$ if $a_1^{p_1} \dots a_n^{p_n} \in C_{i-1}(w)$, then by the inductive assumption and since $w \stackrel{*}{\longleftarrow} w a_j^{D_E}$ for all j with $F_i^w(a_j)$, we know there is $a_1^{q_1} \dots a_n^{q_n} \in A_n^+$, where $q_k = p_k$ if $F_i^w(a_k) = 0$, and $q_k \ge N$, if $F_i^w(a_k) = 0$, $k = 1, 2, \dots, n$, and $w \stackrel{*}{\longleftarrow} a_1^{q_1} \dots a_n^{q_n}$. If $a_1^{p_1} \dots a_n^{p_n} \notin C_{i-1}(w)$, let $a_1^{m_1} \dots a_n^{m_n} \in B_i(w)$, $a_1^{h_1} \dots a_n^{h_n} \in C_{i-1}(w)$, $a_1^{f_1} \dots a_n^{f_n} \in A_n^+$, such that

- (i) $p_j = m_j$, if $F_i^w(a_j) = 0$;
- (ii) $a_1^{h_1} \dots a_n^{h_n} \iff a_1^{m_1} \dots a_n^{m_n}$
- (iii) $x \leftarrow \frac{*}{E} a_1^{f_1} \dots a_n^{f_n}$, and $f_j \geqslant N$ if $F_{i-1}^w(a_j) = 1$, otherwise $f_j = h_j$, $j = 1, 2, \dots, n$.

Then we have

$$w \stackrel{*}{\underset{E}{\longleftarrow}} a_1^{g_1} \dots a_n^{g_n}$$
 (by (iii))
 $\stackrel{*}{\underset{E}{\longleftarrow}} a_1^{m'_1} \dots a_n^{m'_n}$, (by (ii))

where $m'_j = m_j + (g_j - h_j)$. Because $w \stackrel{*}{\underset{E}{\longleftrightarrow}} wa_j^{D_E}$ where $F_i^w(a_j) = 1$, letting $M > N/D_E$, we have

$$w \stackrel{*}{\longleftrightarrow} a_1^{q_1} \dots a_n^{q_n},$$

where $q_j = m'_j + MD_E > N$, if $F_i^w(a_j) = 1$, otherwise $q_j = m'_j = m_j = p_j$.

LEMMA 6. Let $w=a_1^{p_1}\ldots a_n^{p_n}$. If there is $w'=a_1^{q_1}\ldots a_n^{q_n}\in A_n^+$, such that $w\stackrel{*}{\underset{E}{\longleftrightarrow}} w'$ and $q_j\geqslant N$, then $F^w(a_j)=1$.

PROOF: If $p_j \ge N$, then $F^w(a_j) = F_0^w(a_j) = 1$. Now assume $p_j < N$. If $F^w(a_j) = 0$, let

$$w = z_0 \iff z_1 \iff \ldots \iff z_{t-1} \iff z_t \iff \ldots \iff z_s = w',$$

where $z_i = a_1^{q_{i1}} \dots a_n^{q_{in}}$, $i \leq s$, and $q_{ij} < N$ for all $i \leq t-1$, but $q_{ij} \geq N$. There are $z_i' \in C_i(w)$, $z_i' = a_1^{p_{i1}} \dots a_n^{p_{in}}$, where $p_{ij} = q_{ij}$ if $F_i^w(a_j) = 0$, otherwise $p_{ij} = N$, $i\leqslant t-1$. Imitate $z_{t-1}\Longleftrightarrow z_t$, we have $z'_{t-1}\Longleftrightarrow a_1^{h_1}\ldots a_n^{h_n}$, where $h_j=q_{tj}\geqslant N$. So $F^{\boldsymbol{w}}(a_i)=1.$

LEMMA 7. Let $w = a_1^{m_1} \dots a_n^{m_n}$, $w' = a_1^{q_1} \dots a_n^{q_n}$. If $w \stackrel{*}{\longleftrightarrow} w'$, then there is $a_1^{p_1} \dots a_n^{p_n} \in C(w)$, where $p_j = q_j$ if $F^w(a_j) = 0$, otherwise $p_j = N$.

PROOF: Let

$$w = z_0 \iff z_1 \iff \ldots \iff z_t = w',$$

where $z_i = a_1^{q_{i1}} \dots a_n^{q^{in}}$, $i \leqslant t$. Just as we did in the proof of Lemma 6, take the same $z_i' \in C_i(w)$. So there is $a_1^{p_1} \dots a_n^{p_n} \in C(w)$, where $p_j = N$ if $F^w(a_j) = 1$, otherwise $p_j = q_{ij} = q_j.$

LEMMA 8. Let $w = a_1^{m_1} \dots a_n^{m_n}$, $w' = a_1^{q_1} \dots a_n^{q_n}$. Then $w \stackrel{*}{\longleftrightarrow} w'$, if and only if

- (i) $m_i q_i = 0 \pmod{D_E}, i \leqslant n;$ (ii) $F^w = F^{w'};$
- (iii) $C(w) \cap C(w') \neq \emptyset$.

PROOF: Clearly, $w \stackrel{*}{\longleftrightarrow} w'$ implies the conditions (i), (ii), and (iii), by Lemma 2, 5, 6, 7. Now assume that (i), (ii) and (iii) are true. For convenience, we assume that $F^w(a_j) = 1$ for all $j \leq d$, $F^w(a_j) = 0$ for all j > d, where $d \geq 0$. (ii) and (iii) imply that there are $w_1 = a_1^{f_1} \dots a_d^{f_d} a_{d+1}^{p_{d+1}} \dots a_n^{p_n}, \ w_2 = a_1^{h_1} \dots a_d^{h_d} a_{d+1}^{p_{d+1}} \dots a_n^{p_n} \in A_n^+, \ f_j$ $h_j\geqslant N$, and $w\stackrel{*}{\underset{E}{\longleftrightarrow}}w_1$, $w'\stackrel{*}{\underset{E}{\longleftrightarrow}}w_w$. For any $j\leqslant d$, $f_j-h_j=(f_j-m_j)+(m_j-q_j)+$ $(q_j-h_j)=0 \pmod{D_E}$, by (i) and Lemma 2, and therefore $a_j^{f_j} \xleftarrow{*} a_j^{h_j}$, by Lemma 3. Hence $w \stackrel{*}{\longleftrightarrow} w_1 \stackrel{*}{\longleftrightarrow} w_2 \stackrel{*}{\longleftrightarrow} w'$. 0

Now we state and prove the main result of this paper.

THEOREM 9. Let E and P be as described before, $E' \neq \emptyset$. It is decidable whether $E \Vdash P$.

PROOF: $w=a_1^{s_1}\ldots a_n^{s_n}$, $w'=a_1^{s_1'}\ldots a_n^{s_n'}$. We can assume $F^{w'}(a_j)=1$ if and only if $j \leq p$, for some $p \geq 0$. We need to consider three cases.

- (i) All t_j and $t'_j = 0$. In this case, P reduces to an identity, and $E \Vdash P$ if and only if $w \stackrel{*}{\longleftrightarrow} w'$. By Lemma 8, this is decidable.
- (ii) Some $t_i' > 0$, and some $t_i > 0$. In this case, $E \Vdash P$ if and only if $(D_E, T_1, T_2, \ldots, T_m) \mid S_i, i = 1, 2, \ldots, n, \text{ where } T_j = t_j - t_j', S_i = s_i - s_i.$ Be-

casue there are $w_1, \ldots, w_m \in A_n^+$, such that

$$u(a_1,\ldots,a_n,w_1,\ldots,w_m) \stackrel{*}{\underset{E}{\longleftarrow}} v(a_1,\ldots,a_n,w_1,\ldots,w_m),$$

the following system with integer unknowns x_{ij} is solvable:

(***)
$$S_i + \sum T_j x_{ij} = 0 \pmod{D_E}, \quad i = 1, 2, ..., n;$$

and this in turn implies $(D_E, T_1, T_2, \ldots, T_m) \mid S_i$, $i = 1, 2, \ldots, n$. On the other hand, $(D_E, T_1, T_2, \ldots, T_m) \mid S_i$ means (***) is solvable, and if x_{ij} , $i \leq n$, $j \leq m$, is a solution, then $MD_E + x_{ij}$, $i \leq n$, $j \leq m$, is also a solution, for any M > 0. Therefore, there exist $w_1, \ldots, w_m \in A_n^+$, such that

$$\binom{u}{a_j} > N, \quad \binom{v}{a_j} > N,$$
 $\binom{u}{a_j} - \binom{v}{a_j} = 0 \pmod{D_E},$
 $j = 1, 2, \dots, n;$

where $u = u(a_1, \ldots, a_n, w_1, \ldots, w_m), v = v(a_1, \ldots, a_n, w_1, \ldots, w_m)$. Let

$$X = a_1^{h_1} \dots a_n^{h_n}, \quad Y = a_1^{f_1} \dots a_n^{f_n},$$

where $h_j = \binom{u}{a_j}$, $f_j = \binom{v}{a_j}$, $j \leqslant n$. We have

$$u \stackrel{*}{\longleftrightarrow} X \stackrel{*}{\longleftrightarrow} Y \stackrel{*}{\longleftrightarrow} v.$$

- (iii) All $t'_j = 0$, but some $t_j > 0$. We can assume that all $t_j > 0$. In this case, it is not difficult to see that $E \Vdash P$ if and only if
 - (a) $F^w \leqslant F^{w'}$ (that is $F^w(a_j) = 0$ for all j > p);
 - (b) $(t_1, t_2, \ldots, t_m, D_E) | s s', i \leq p;$
 - (c) for some $a_1^{f_1} \ldots a_n^{f_n} \in C(w')$, there exist $x_{ij} \ge 0$, such that $s_i + \sum_{j=1}^m t_j x_{ij} = f_i$, $i \ge P+1$;

so it is also decidable.

REFERENCES

 B. Benninghofen, S. Kemmerich and M.M. Richter, Systems of reductions (Springer-Verlag, Berlin, Heidelberg, New York, 1987).

Monash University Clayton, Victoria 3168 Australia